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Problem sets back at end.

1. Products of projective varieties; the Segre map

Theorem. The product of two projective varieties is a projective variety.

Proof. Since a closed subvariety of a projective variety is a projective variety, it
is enough to show that Pm × Pn is a projective variety. So we’re done, modulo the
following lemma.

Lemma. Pm × Pn is a projective variety.

Describe the image of (x0; . . . ;xm) × (y0; . . . ; yn) in P(m+1)(n+1)−1: zij = xiyj .
This is called the Segre embedding.

The image is in the locus of rank 1 matrices; in fact it is precisely the rank 1
matrices.

Make clear that you can recover the points of Pm and Pn.

You have defining equations: all the 2 × 2 minors. Hence the image V is a
projective prevariety.

We’ve described the map on points one way. Describe in another way.

Then you have to check on patches. Not hard, but I’ll omit it; you can read
about it in any of the references. The details of the proof are important, but more
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important is the geometric insight into what’s going on. So let’s go through an
example.

Remark (another parallel between affine and projective prevarieties). Recall that
if X and Y are affine, with coordinate rings A(X) and A(Y ), then the coordi-
nate ring of X × Y is A(X)⊗k A(Y ). Something similar happens with projective
prevarieties too. Suppose X and Y are projective, and lie in Pm and Pn respec-
tively, so X has graded coordinate ring R(X) = k[x0, . . . , xm]/I(X), where I(X)
is a homogeneous ideal, and R(Y ) = k[y0, . . . , yn]/I(Y ) similarly. Then under the
Segre embedding (so X × Y ⊂ P(m+1)(n+1)−1), R(X × Y ) ∼= R(X) ⊗ R(Y ) where
the grading behaves well under tensor product (i.e. the tensor product of the ith
graded piece of R(X) and the jth graded piece of R(Y ) lies in the (i+ j)th graded
piece of R(X × Y ).

Exercise. Prove that this is the case if X = Pm and Y = Pn. Caution: I’ve
shown that the product is cut out by the equations of the 2×2 minors, but I didn’t
show that the ideal I(X × Y ) is generated by the 2 × 2 minors, although that’s
true. (Analogy: In A2, the y-axis Y is cut out by the equation x2 = 0, but I(Y )
isn’t generated by x2; it’s generated by x.)

1.1. P1 × P1 and the smooth quadric surface. When you do the numerology
with m = n = 1, we see that P1 × P1 maps into P3, and it is given by a single
equation wx− yz = 0.

Draw a picture.

Remark. Almost all quadric surfaces look the same. Hence we know the (classi-
cal) topology of almost all quadric surfaces: they are products of 2-spheres.

1.2. Rulings of the smooth quadric surface. Show them the lines in the real
picture. We’ll see these algebraically. First of all, a line in P3 is the intersection
of two distinct hyperplanes, e.g. w = x = 0. They are isomorphic to P1, e.g for
w = x = 0, the isomorphism is given by (0; 0; y; z)↔ (y; z). (For hyperplanes with
uglier coefficients, just change coordinates!)

Give the projection to the first P1, and to the second P1: (w0;x0; y0; z0) 7→
(w0; y0) or (z0;x0) is the map to the first P1, and (w0;x0; y0; z0) 7→ (w0; z0) or
(y0;x0) is the map to the second P1.

The two one-parameter family of lines: first note that the Segre map is

(a; b)× (c; d) 7→ (ac; bd; ad; bc).

The first family of lines is: fix (a; b) = (a0; b0), and consider: (a0c; b0d; a0d; b0c);
this is the line that is the intersection of b0w = a0x and b0y = a0z. The second is
similar; just switch the roles of (a; b) and (c; d).
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2. Defining varieties

Definition. A prevariety X is a variety if for all prevarieties Y and for all
morphisms f and g from Y to X, the locus where they agree {y ∈ Y |f(y) = g(y)}
is a closed subset of Y .

This is often called the separatedness condition. Mumford calls this the Hausdorff
axiom, because it is the analogue of the Hausdorff condition in the definition of a
manifold.

Note that the line with the doubled origin is not a variety.

Remark. An open (resp. closed) subprevariety of a variety is a variety.

Remark. An affine variety is a variety. (Sorry for nasty notation!) Reason:
Suppose X is affine, and Y is any prevariety, and f , g are two morphisms Y → X.
Then the subset of Y where f(y) = g(y), {y ∈ Y |f(y) = g(y)} is as follows.

x1 = x2 in affine X iff for all regular functions s ∈ A(X), s(x1) = s(x2). Hence
{y ∈ Y |f(y) = g(y)} is the locus where all regular functions s(f(y))−s(g(y)) vanish
(where s runs through all of A(X)). This is a closed set.

Remark. We will soon see that projective prevarieties are varieties.

Special case: if Y = X ×X, and f and g are the projections. ∆(X) is the locus
where f and g agree. Hence if X is separated, then ∆(X) is closed in X ×X.

This special case is all you need to check:

Proposition (Criterion for separatedness). A prevariety X is a variety iff
∆(X) is closed in X ×X.

Proof. Neat trick, which is a recurring theme. Suppose you have two f and g,
which induce a morphism (f, g) : Y → X ×X. Then

{y ∈ Y |f(y) = g(y)} = (f, g)−1(∆(X)).

Exercise. Show that the line with the doubled origin is not separated, using this
condition.

Proposition (Another criterion for separatedness). LetX be a prevariety.
Assume that for all x, y ∈ X there is an open affine U containing both x and y.
Then X is a variety.

Proof. We use the definition. Consider two functions f, g : Y → X, and let Z be
the locus where they agree Z = {y ∈ Y |f(y) = g(y)}. Let z be in the closure of Z,
and let x1 = f(z), x2 = g(z). We want to show that Z is closed, so we want to show
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that x1 = x2. By assumption, there is an open affine V ⊂ X containing x1 and x2.
Let U = f−1(V ) ∩ g−1(V ); it is an open neighbourhood of Z. Then consider the
“restricted morphisms” f, g : U → V ; now V is affine (hence a variety), so

Z ∩ U = {y ∈ U |f(y) = g(y)}
is closed in U . Thus z ∈ Z ∩ U , and Z is indeed closed.

Corollary. Every quasiprojective prevariety X (i.e. open subset of a projective
prevariety) is a variety.

Proof. As every projective prevariety X is a closed subprevariety of Pn (for
some n, by definition), we just need to show that Pn is a variety. So given any two
points y, z ∈ Pn, we just need to find an affine open containing both. Consider any
hyperplane H not meeting y or z; there are lots! (Instead of proving this, let me
just convince you that it is obvious by example. If y = (1; 0; 0) and z = (0; 1; 1),
take the hyperplane x1−x2 = 0.) The complement of a hyperplane is affine (proved
earlier), so we’re done.

Another nice property of varieties: the intersection of any two affine opens is
another affine open. I don’t foresee using this, so I won’t prove it, but you can find
a proof in Mumford (p. 55) or Hartshorne (Exercise II.4.4).

This isn’t a criterion (as it also holds for the line with the doubled origin), but
it can be strengthed a little into a criterion.

Here’s a prevariety that doesn’t have this property: the plane with the doubled
origin. The intersection of the two elements of the “obvious” affine cover is the
plane minus the origin, which you’ve shown earlier is not affine.

3. Rational maps

I said a few words about rational maps, the topic we’ll address on Thursday.

We can reinterpret the definition of separatedness as follows. Suppose I’m think-
ing of a morphism f : Y → X, where X is a variety. And suppose I tell you what
the morphism is on a non-empty open set U ⊂ Y , i.e. I tell you f |U : U → X.
Then there is only one way for you to recover the “full” morphism f . Because if you
have two different morphisms f1 and f2 extending f , then you have two morphisms
f1, f2 : Y → X which agree on a dense open set (the set U ; recall that dense means
that the closure of U is Y ), and agree on a closed set (as X is separated). Hence
they have to agree everywhere.

Coming soon: completeness (roughly, compactness), dimension, smoothness.
Then we can talk about curves.
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