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Invertible sheaves are manipulated in a really formal way, so it’s hard to see
how geometric it is. The earlier major topics (extension of morphisms to projective
varieties over nonsingular points of curves; identification of nonsingular projective
curves with finitely generated field extensions of transcendence degree 1) involved
proving some technically difficult results with relatively few moving parts. Invertible
sheaves and line bundles involves much less technical sophistication, but there are
many many more ideas involved, so it’s tricky juggling them all.

I really encourage you to play around with invertible sheaves / line bundles in
explicit examples. Choose some nice variety, such as P1 or P2 or P2 minus some
curve, and choose some nice invertible sheaf like O(3), and work out spaces of global
sections.

Remark. An OX -module is an invertible sheaf if there is an open cover U1, . . . ,
Un where LUi ∼= OUi . Reason: all we need to find are the transition functions fij .
Let 1i be the section of L over Ui corresponding to 1 in OUi . Then fij = 1i/1j
(although I might have this backwards). Perhaps it is best to say this when first
introducing invertible sheaves.

You can use a variant of this idea to show that if there is a global section that
vanishes nowhere, then L is triival (i.e. ∼= OX). I’ll give the proof later today, but
some of you might already see how to show it.

Date: Thursday, December 2, 1999.
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1. More background on invertible sheaves

1.1. Operations on invertible sheaves. Last time I described some basic things
you can do with invertible sheaves.

i) Pullback. You can pull back invertible sheaves (or line bundles).

Using that, we proved:

Proposition. OPn(m1) is not isomorphic to OPn(m2) if m1 6= m2.

Fact. Roya mentioned this last time. (We probably won’t prove this for all n,
but the proof isn’t difficult to follow.) These are all the line bundles on Pm. Hence
PicPn ∼= Z, with O(1) the generator.

ii) Tensor product of two invertible sheaves. Take 1: Suppose you have two
invertible sheaves L and M on X, given by the same open cover Ui and (possibly
different) transition functions lij and mij . Then define the tensor product invertible
sheaves L ⊗M by the same open cover, and the transition function lijmij . (You
can immediately check that this satisfies the cocyle condition.)

Take 2: If L and M have possibly different trivializing open covers, you can
“refine” both covers to get a common trivializing open cover.

JP asked why this was called tensor product. Answer: this is tensor product in
the category of OX -modules.

Things you might want to check: that this construction is independent of the
“representation” of the invertible sheaf. Also, L⊗OX is isomorphic to L.

Remark. You can see how this works with OP1(m). Immediately, we have
OP1(m+ n) ∼= OP1(m)⊗OP1(n).

Remark. If a is a section of L (over some open set) and b is a section ofM (over
the same open set), then ab is naturally a section of L ⊗M. For example, x2 is a
global section of OP1(2), and (x+ y)3 is a global section of OP1(3). What is their
product as a global section of OP1(5)? Answer: x2(x+ y)3.

iii) Inverse invertible sheaves. Suppose you have an invertible sheaf L defined
by the open cover Ui and transition functions fij . Then define the inverse, denoted
L−1, by the same open cover, and the transition functions f−1

ij . Note that the
cocycle condition is satisfied, and also that L⊗ L−1 ∼= OX .

Remark. You can even divide by non-zero sections, to get meromorphic sections.
The quotient in the above example is x2/(x+ y)3, which is a meromorphic section
of OP1(−1). Important note: if you have two non-zero rational sections f , g of an
invertible sheaf L, then f/g is a non-zero rational section of the trivial sheaf O,
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i.e. is a rational function. Let me say that again: the ratio of any two (non-zero)
rational sections of a line bundle is a rational function.

You can now check that invertible sheaves form an abelian group:

Definition. The (abelian) group of invertible sheaves on X is called the Picard
group of X, and is denoted PicX.

In general, people often write L⊗m for L ⊗ · · · ⊗ L (m times, if m > 0), OX (if
m = 0), or L ⊗ · · · ⊗ L (−m times, if m < 0); you can check that L⊗m ⊗ L⊗n ∼=
L⊗(m+n).

Remark for the arithmetically minded. If you do this construction in the language
of schemes, for Spec of the ring of integers in a number field (a number field is a
finite extension of Q, and the ring of integers are the integral closure of Z in the
field), then you get the class group of the field. If you’re interested, and know what
the class group is, ask me about it.

We’ll see later that Pic P1 is Z, and I’d mentioned that Pic Pn is Z as well. Here’s
some other behavior: Picard groups can be torsion.

Exercise. Let X be the variety P2 minus an irreducible conic. Let OX(m)
be the restriction of OP2(m) to X. Show that OX(2) is trivial, but that OX(1)
isn’t. Hence OX(1) is a 2-torsion element of PicX. (Hint: Show that OX(2) has a
global section vanishing nowhere, and that every global section of OX(1) vanishes
somewhere. Use the following proposition.)

Proposition. Suppose L is an invertible sheaf on a variety X, and that there is
a global section s of L vanishing nowhere. Then L is isomorphic to OX , the “trivial
sheaf”.

Proof. We give an identification of L(U) with OX(U) (that commutes with
restriction maps); this will do the trick. (Do you see why?) To the section a of
OX(U) associate the section as of L(U). (More precisely, the section a resX,U s.)
Conversely, to the section b of L(U), associate the section bs−1 of L(U).

1.2. Maps to projective space correspond to a vector space of sections
of a invertible sheaf. Suppose you have a variety X, and an invertible sheaf L,
and n + 1 sections s0, . . . , sn that don’t have a common zero. Then this induces
a map to projective space:

(s0, . . . , sn) : X → Pn.

Here’s how.

Let Ui be a cover ofX trivializing the invertible sheaf, and let fij be the transition
functions of L with respect to this trivialization. I’ll i) define the morphism from
Ui → Pn, and ii) show that they agree (as maps of sets) on the Ui ∩ Uj .
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i) For the morphism from Ui → Uj , let (g0, . . . , gn) be functions on Ui corre-
sponding to sections (s0, . . . , sn). Then g0, . . . , gn don’t have a common zero in Ui,
and hence define morphism to Pn.

ii) Now consider the two morphisms from Ui∩Uj to Pn, one given by considering
it as a subset of Ui, and the other by considering it as a subset of Uj . As in i),
let (g0, . . . , gn) be the functions on Ui that correspond to our sections (s0, . . . , sn).
Similarly, let (h0, . . . , hn) be the functions on Uj . Then under the first morphism,
the point p ∈ Ui ∩ Uj is sent to

(g0(p); . . . ; gn(p)) = (fij(p)h0(p); . . . ; fij(p)hn(p)) = (h0(p); . . . ;hn(p))

which is precisely where it is sent to under the second morphism.

Remark. This generalizes the fact stated earlier, that if you have a projective
variety X ⊂ Pl, and n+1 polynomials of the same degree m: s0, . . . , sn, such that
they don’t have a common zero on X, then they define a morphism X → Pn. Just
apply this construction with the line bundle OPl(m), pulled back to X.

Proposition. Under this morphism π, there is a natural isomorphism L ∼=
π−1O(1).

This isn’t too hard to prove. It’s harder than an exercise, but certainly something
I could explain to you reasonably quickly (using the remark before teh first section
of today’s lecture). But we won’t be using it later in the course, so I’ll omit the
proof in the interests of time.

2. The class group

Let C be a nonsingular curve. (What I say will work, with relatively simple
modification, for any nonsingular variety, so experts might want to make these
modifications as I explain things.) Our goal is to descibe the Picard group (the
group of line bundles or invertible sheaves) in a different, hopefully more tractable
way.

Definition. The Weil divisor group Div(C) is the free group generated by
the points of C. Elements of Div(C) are called Weil divisors (or informally, just
divisors) of C.

In other words, elements of Div(C) can be written in the form∑
p∈C

npp

where the np are integers, and only finitely many of them are zero. It’s clear how
these objects form a group.

Definition. Elements of Div(C) where all np are non-negative are called effective
(Weil) divisors on C.
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Definition. Suppose s is a non-zero rational section of an invertible sheaf L on
C, so s ∈ L(C). Let (s) be the “divisors of poles and zeros of s”.

In other words, if (s) =
∑
p∈C npp, then np is zero if p is neither a zero nor a

pole; if p is a zero, then np is the order of the zero of s at p; if p is a pole, then np
is the negative of the order of the pole.

For example, let C = P1, L be the structure sheaf, and s the rational function
x0(x0 − x1)/x2

1. Then (s) = [0; 1] + [1; 1]− 2[1; 0].

Definition/Proposition. The divisors associated to non-zero rational func-
tions (i.e. the case when L is the trivial bundle) is a subgroup of the divisor group,
called the subgroup of divisors linearly equivalent to 0, denoted Div0(C).

Proof. We just need to check that this forms a group. If f and g are rational
functions, then (f) + (g) = (fg) (explain), and −(f) = (1/f).

Definition. Define the divisor class group of C Cl(C) as the quotient Div(C)/Lin(C).

Proposition. LinP1 = {
∑
npp where

∑
np = 0}.

Here’s why. Choose some standard affine A1 with coordinate t, so that no p is
at∞. Then

(∏
p∈A1(t− p)np

)
=
∑
npp (explain). Thus the right side is contained

in the left side. Conversely, we’ve seen that the sums of the orders of vanishing of
any rational function on P1 is 0, showing that the left side is contained in the right
side.

Corollary. Cl(P1) ∼= Z.

Theorem. Cl(C) is naturally isomorphic to Pic(C).

In the course of the proof, we’ll see the identification quite clearly.

Corollary. Pic(P1) ∼= Z.

The map Pic(C)→ Cl(C). First of all, I mentioned earlier that we have a map
as sets from data (L, s) (where s is a non-zero rational section of L) to Div(C).
Note that those ordered pairs form a group: (L, s)(M, t) = (L⊗M, st), (L, s)−1 =
(L∨, s−1). Note also that this is a group homomorphism; call it φ.

Next, if s and t are two rational sections of L. Then (L, s)(L, t)−1 = (OX , st−1).
Hence φ(L, s) ≡ φ(L, t) (mod Lin(C)). Hence we get a map Pic(C)→ Cl(C).

The map Cl(C) → Pic(C). Similarly, we’ll construct a map Div(C) → Pic(C),
and show that Lin(C) goes to the identity in Pic(C), i.e. the invertible sheaf OC .
Given a divisor D, we construct an invertible sheaf OC(D).
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Define a sheaf as follows. Recall that the sections of the structure sheaf were
defined as

OC(U) = ∩p∈UOC,p = {x ∈ k(C)|vp(x) ≥ 0 for all p ∈ U}.
Remember why it was easy to check that this was a sheaf. Define

OC(
∑

npp)(U) = ∩p∈UOC,p = {x ∈ k(C)|vp(x) + np ≥ 0 for all p ∈ U}.

Example. Suppose C = P1, with coordinates [x0;x1], and D = [1; 0]. Then let’s
find the global sections of OC(D). These are rational functions, whose valuations
are non-negative everywhere, except possibly -1 at [1; 0]. One such function is 1.
Another is x0/x1, which has a simple pole at [1; 0]. Hence OC([1; 0]) has at least 2
global sections.

Exercise. O(p) on P1 is O(1). (Hence we’ve found all the global sections; any
global section is a linear combination of these 2.) Another consequence: all invert-
ible sheaves on P1 are of the form O(m). (For the experts: you can jack of this
proof to show the same result for Pn. I can give you the details in a minute or two
at some other time if you like.) Addition to problem on problem set: the section
corresponding to 1 in the previous paragraph actually has a zero (despite what you
think) — find it!

Now we’ve gotten this sheaf; I’ll now show that it is invertible, by giving a
trivializing cover.

Suppose p1, . . . , pn are the points appearing in D (i.e. where np 6= 0).

Let U0 be the open set C \{p1, . . . , pn}. Then the restriction of the sheaf OC(D)
to this open U0 is (isomorphic to) the trivial sheaf visibly: For U ⊂ U0, the sections
of OC(D)|U0 over U are ∩p∈UOC,p = {x ∈ k(C)|vp(x) ≥ 0 for all p ∈ U}, which is
precisely OC |U0 .

Now define Ui (1 ≤ i ≤ n) as follows. Choose any rational function fi ∈ k(C)
such that vpi(fi) = ni. Then (fi) = nipi+ other stuff. Let Ui be C minus the other
pj minus the other stuff. Hence the “part of the divisor (fi) on Ui” is just nipi.
Note that the Ui’s and U0 cover all of C; so we just need to show that the sheaf
OC(D) is trivial on Ui (1 ≤ i ≤ n). For U ⊂ Ui, the sections of OC(D)|Ui over
U are ∩p∈UOC,p = {x ∈ k(C)|vp(x/f) ≥ 0 for all p ∈ U}. This is isomorphic to
∩p∈UOC,p = {y ∈ k(C)|vp(y) ≥ 0 for all p ∈ U} (just take y = x/f), which in turn
is precisely OC |Ui .

So at this point we have a map Div(C)→ Pic(C). To construct the desired map
Cl(C)→ Pic(C), we just need to show that the image of Lin(C)→ Pic(C) is 0. (I
didn’t do this in class.) Suppose D ∈ Lin(C). Let s be a rational function such
that (s) = D. Then

OC(D)(U) = ∩p∈UOC,p = {x ∈ k(C)|vp(x) + np ≥ 0 for all p ∈ U}
= ∩p∈UOC,p = {x ∈ k(C)|vp(sx) ≥ 0 for all p ∈ U}

= ∩p∈UOC,p = {y ∈ k(C)|vp(y) ≥ 0 for all p ∈ U} = OC(U).
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Notice that this identification commutes with restriction maps. Hence OC(D) ∼=
OC .

Both of these maps Pic(C)→ Cl(C) and Cl(C)→ Pic(C) commute.

I didn’t explain this in class. I’ll just sketch both directions. There’s a lot
of content packed into a few sentences; ask me about any steps you’re suspicious
about.

Start with a divisor D on C. Consider OC(D) as just defined. Choose the section
s corresponding to the rational function 1 ∈ k(C). You can check that the divisor
of zeros of s is precisely D. Hence the composition Cl(C) → Pic(C) → Cl(C) is
the identity.

For the other direction, suppose you have an invertible sheaf L. Let s′ be any
rational section, so we get a divisor (s′) = D. We wish to show that L ∼= OC(D).
Construct the section s of OC(D) as in the previous paragraph (corresponding to
the rational function 1 ∈ k(C)). You can check that (s′) = D as well. Hence s/s′

is a rational section of L ⊗ OC(D)∨; this rational section has associated divisor
D − D = 0, hence has no zeros or poles. Hence this is a regular section (as
it has no poles) that is invertible (as it has no zeros). But we’ve seen earlier
that any invertible sheaf with a nowhere vanishing section is the trivial sheaf, so
L⊗OC(D)∨ ∼= OC , so L ∼= OC(D) as desired.

This completes the proof of the theorem.

Coming up in the last two classes: Degree of a line bundle/invertible sheaf.
The sheaf of differentials (= the canonical sheaf) of a nonsingular curve. The
celebrated Riemann-Roch theorem, with applications but no proof.
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