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(Before class started, I showed that (finite) Chomp is a first-player win, without
showing what the winning strategy is.)

If you’ve seen a lot of this before, try to solve:

“Fun problem” 2. Suppose f1(x1, . . . , xn) = 0, . . . , fr(x1, . . . , xn) = 0 is a
system of r polynomial equations in n unknowns, with integral coefficients, and
suppose this system has a finite number of complex solutions. Show that each
solution is algebraic, i.e. if (x1, . . . , xn) is a solution, then xi ∈ Q for all i.

1. Where we are

We now have seen, in gory detail, the correspondence between radical ideals in
k[x1, . . . , xn], and algebraic subsets of An(k). Inclusions are reversed; in particular,
maximal proper ideals correspond to minimal non-empty subsets, i.e. points. A
key part of this correspondence involves the Nullstellensatz.

Explicitly, if X and Y are two algebraic sets corresponding to ideals IX and
IY (so IX = I(X) and IY = I(Y ), and V (IX) = X, and V (IY ) = Y ), then
I(X ∪ Y ) = IX ∩ IY , and I(X ∩ Y ) =

√
(IX , IY ). That “root” is necessary.

Some of these links required the following theorem, which I promised you I would
prove later:

Theorem. Each algebraic set in An(k) is cut out by a finite number of equations.

This leads us to our next topic:

Date: September 16, 1999.

1



2. Noetherian rings and the Hilbert basis theorem

By our equivalence between algebraic sets and radical ideals, this is equivalent
to:

Each radical ideal of k[x1, . . . , xn] is finitely-generated.

This will follow from:

Theorem. Every ideal of k[x1, . . . , xn] is finitely-generated.

In proving this, we will come across some important ideas.

Definition. A ring is Noetherian if every ascending chain of ideals eventually
stabilizes.

In other words, if you have a chain of ideals

I1 ⊂ I2 ⊂ I3 ⊂ · · · ⊂ R

then for some n0, for n ≥ n0, In = In0 .

This is equivalent to: every ideal I of R is finitely-generated. (This definition
is often much easier to check.) That will be an exercise. This involves Noetherian
induction.

Examples. (a) A field k. There are only two ideals!

(b) The integers Z. The ideals are of the form (0), and (n) n ∈ Z+. It is easy to
check that every ascending chain of ideals eventually stabilizes, but easier to check
the second condition, that every ideal is finitely-generated: they are all generated
by one term. (By this argument, all principal ideal domains are Noetherian.)

(c) The quotient of a Noetherian ring is also Noetherian, i.e. if R is Noetherian,
and I is any ideal, then R/I is Noetherian.

Proof: ideals in R/I correspond precisely to ideals in R containing I.

(d) The localization of a Noetherian ring is Noetherian.

(e) The Hilbert Basis Theorem. If R is Noetherian, then R[x] is Noetherian.
(Proof: soon.) Hence by induction k[x1, . . . , xn] is Noetherian. Combining (a)–(d),
we see that all quotients of finitely-generated rings over a field (or the integers) are
Noetherian.

(f) Fact. Essentially every ring you come across in geometry is Noetherian. This
isn’t so true in number theory / algebraic geometry.
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(g) But!: Not all rings are Noetherian. For example, consider the ring that I’ll
call k[xε], where elements finite sums of the form axb where a ∈ k, and b is a
non-zero real number. It’s clear how to add and multiply them, so they are really
a ring. Also for every ε > 0, (xε) is an ideal. Then

(x1) ⊂ (x1/2) ⊂ (x1/3) ⊂ · · · ⊂ R
is an ascending chain of ideals that doesn’t stabilize.

What we’ll do next: (1) The proof is short, so we’ll prove the Hilbert basis
theorem. (2) For fun, we’ll see the game of Chomp. (3) Finally, I’ll describe a
geometric picture that will make you believe it, and that picture will motivate
some reasonable definitions.

(1) Proof of the Hilbert basis theorem.

Some of your intuition from the geometric picture and from chomp will give you
a proof.

The statement: If R is Noetherian, then the ring of polynomials in one variable
in R, R[x], is Noetherian. In other words, every ideal of R[x] is finitely-generated.

If f = anx
n + · · · + a0 is a polynomial in R (so the ai’s are in R), we say the

initial term of f is anxn, and the initial co-efficient of f is an.

Proof. Let I be an ideal of R[x]; we’ll show that it is finitely generated. Choose
a sequence f1, f2, · · · ⊂ I as follows: let f1 be a non-zero element of least degree in
I. For i ≥ 1, if (f1, . . . , fi) 6= I, then choose fi+1 to be an element of least degree
among those in I but not in (f1, . . . , fi). (If (f1, . . . , fi) = I, then we’ve shown I is
finitely generated, so stop choosing elements.)

Let aj be the initial coefficient of fj . Since R is Noetherian, the ideal J =
(a1, a2, . . . ) of the ai produced is finitely generated. Let m be an integer such that
a1, . . . , am generate J . We claim that I = (f1, . . . , fm).

Otherwise, consider fm+1. am+1 ∈ J , so we can write am+1 =
∑m
j=1 ujaj for

some uj ∈ R. Define

g =
m∑
j=1

ujfjx
deg fm+1−deg fj ∈ (f1, . . . , fm)

and notice that this is of the same degree as fm+1, with the same initial term. The
difference fm+1− g is in I but not in (f1, . . . , fm), and has degree strictly less than
that of fm+1. But fm+1 was something of minimal degree with this property, so
we have a contradiction.

Fact. We won’t need this any time soon, but it is worth mentioning. If R is a
ring, and M is a module, then M is said to be Noetherian if every ascending chain
of submodules of M eventually stabilizes. Then it isn’t hard to prove that if R is a
Noetherian ring, and M is a finitely-generated R module, then M is a Noetherian
module.
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(2) The game of Chomp.

Show that infinite chomp is a finite game, and how this follows from the fact
that k[x1, . . . , xn] is Noetherian.

(3) A geometric picture.

We now know that every ascending chain of ideals of k[x1, . . . , xn] must even-
tually stabilize, so every ascending chain of radical ideals of k[x1, . . . , xn] must
eventually stabilize, so by our identification of radical ideals with algebraic sets,
every descending chain of algebraic sets in An must eventually stabilize. Let me
do an example to convince you that this is reasonable, and then you can tell me
why you find it reasonable; these ideas will turn up in the proof of the Hilbert basis
theorem.

(Do that, and see what ideas come up.)

This leads us to our next topic.

3. Fundamental definitions: Zariski topology, irreducible, affine

variety, dimension, component, etc.

We’ve now defined our objects of study. We now make some more fundamental
definitions; see e.g. Hartshorne I.1.

Definition / way of thinking. The regular functions on an algebraic set X =
V (I) ⊂ k[x1, . . . , xn] (where I is radical) is the ring k[x1, . . . , xn]/I. Call this the
ring of regular functions, or the affine coordinate ring of X, denoted A(X). (We’ll
later see how to reconstruct the algebraic set from the ring of regular functions; if
you’ve seen much of this before, then you can think about this.)

Elements of this ring are called regular functions.

Example: consider the algebraic set in A2 defined by the equation y2 = x3 + x
(which I should draw as a real cubic, with two components). Then the polynomial
x is a function on that curve. But the polynomial y2 − x3 is too, and it’s the same
function.

Definition. Define the Zariski topology on an algebraic set X as follows. Closed
sets are defined to be algebraic subsets of X.

This is an extremely unusual topology. But it is a topology. I’ll check the axioms
(which, although usually stated for open sets, I’ll state for closed sets). The empty
sets is closed. All of X is closed. The finite union of closed sets is closed:

V (I1) ∪ · · · ∪ V (In) = V (I1 ∩ · · · ∩ In).
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Any intersection of closed sets is closed:

∩a∈AV (Ia) = V ((
∑

Ia)).

As an example, consider the affine line A1, corresponding to the polynomials
in one variable k[x]. The closed subsets are zero-sets of a single polynomial, so a
closed subset is either A1(k), or a finite union of points. The open sets are all huge.
In particular, this is not a Hausdorff topology. So be careful; your intuition can
lead you astray. The proper way to think of open subsets is to imagine throwing
away a union of algebraic sets. For example, if X is a plane union a line...

Definition. A non-empty topological space Y is irreducible if it cannot be ex-
pressed as the union of Y1 ∪ Y2 of two proper subsets, each closed.

E.g. A1, point, not plane union line.

Exercise (on next Tues. problem set). Any non-empty open subset of an irre-
ducible space is irreducible and dense.

Warning: At this point in the class, I gave a definition of algebraic
variety. That definition was only tentative; the real definition will come
up in a class or 2.

Important exercise. Irreducible algebraic subsets of An(k) correspond (under
the bijection radical ideals ⇔ algebraic sets) to prime ideals.

(You can just look this up in any introductory book on algebraic geometry, but
you’ll really want to think this through.)

Example: line union a plane. Recall that this has ideal I = (xz, yz). Then R/I
isn’t prime, which you can see in two ways. Here’s the geometric way, it “clearly”
isn’t irreducible. (We’ll find a function f1 that vanishes on one component but not
the other. And we’ll find f2, and we’ll see that f1f2 = 0 in the ring of regular
function.)

Definition. A topological space is noetherian if it satisfies the descending chain
condition for closed subsets: for any sequence Y1 ⊃ Y2 ⊃ . . . of closed subsets, there
is an integer r such that Yr = Yr+1 = . . . . Example: as k[x1, . . . , xn] is noetherian,
An is a Noetherian space.

Important exercise. If Y is a Noetherian topological space, it can be expressed
as a finite union Y = Y1∪· · ·∪Yr of irreducible closed subsets Yi. If we require that
Yi is not contained in any Yj for any i 6= j, then the Yi are uniquely determined.
(Proof: “Noetherian induction.”)

These are the irreducible components of Y .

So every algebraic set in An can be uniquely expressed as a finite union of
irreducible algebraic sets (without redundancies).
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Definition. The dimension of a topological space is the supremum of all integers
n such that there is a chain ∅ = Z0 ⊂ Z1 ⊂ · · · ⊂ Zn of distinct irreducible closed
subsets of X.

E.g. dimA1(k) = 1, but it already isn’t obvious why dimA2(k) = 2.

Definition. If p is a prime ideal of a ring R, then its height is the supremum of
all integers n such that there exists a chain p0 ⊂ p1 ⊂ · · · ⊂ pn = p of distinct
prime ideals. The Krull dimension of R is the supremum of the heights of all prime
ideals.

Check: If Y is an algebraic set in An, then dimY is the Krull dimension of its
affine coordinate ring A(Y ).

Commutative Algebra Fact. If k is a field, and B is an integral domain which
is a finitely-generated k-algebra. Then dimB = tr.degkK(B) (where K(B) is the
quotient field of B), and for any prime ideal p in B,

htp + dimB/p = dimB.

Hence (i) dimAn n, as the transcendence degree of k(x1, . . . , xn) over k is n, and
(ii) you should think of the height as codimension.

Example. The twisted cubic in A3. On the problem set, you show that the subset
Y of points of the form (t, t2, t3) of A3 is algebraic. It turns out to be irreducible,
not surprisingly. So this corresponds to a prime ideal p. What is its height in
k[x1, x2, x3]?

Exercise. (a) Show that A(Y ) is isomorphic to k[x], i.e. the ring of polynomials
in one variable. Think about what this might mean.

(b) Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to k[t].

Exercise. Let Y be the algebraic set in A3 defined by the two polynomials x2−yz
and xz − x. Show that Y is the union of three irreducible components. Describe
them, and find their prime ideals. (Not on problem set.)

Exercise. Show that a k-algebra B is isomorphic to the affine coordinate ring
of some algebraic set in An(k) for some n if and only if B is a finitely generated
k-algebra with no nilpotent elements. (We’ll basically prove this next week; not on
problem set.)

Next to do: we’ve described the objects we’re interested in, algebraic sets. We’ll
define morphism. This is even more important than it sounds. For example, we
want to say that the line in A2 and A1 are really the same thing, and we can’t say
that unless we know what “same” means.
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Then we’ll recover affine algebraic sets from their coordinate rings, and we’ll
define general varieties by gluing together irreducible affine algebraic sets.
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