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Correction. Brian pointed out that I goofed when defining gluing data for P™
last class. I'll eventually correct them in the notes.

Suppose we're thinking about P™ with projective coordinates (zq;x1;...;2n),
and we have coordinate patches Uy and Uy, where Uy has coordinates a1, ... , an,
and corresponds to the locus where xg # 0, so

(052153 2n) = (Lia1;. . 5an),
and U; has coordinates by, ba, ... , by, and corresponds to the locus where z1 # 0,

S0

(o515 ... ;2n) = (bo; 15025 ... 5by).
Then the patching data is a; = 1/bg, ag = ba /by, ..., an = b, /by (where you are
gluing together the open set D(a;) on Uy and the open set D(by) on Uj.

Perspective. Everything is defined on 3 levels: (i) on the level of sets, (ii) on
the level of topological spaces, and (iii) on the level of structure sheaves.

(T also went over what the sheaf F'|y means, if F is a sheaf on a topological space
X, and U is an open subset of X.)

1. MORPHISMS OF PREVARIETIES

First, some philosophy. We know what morphisms from one affine open to
another looks like: it’s the same as the maps of rings of regular functions (as rings
over k) in the opposite direction.

So here is how we might like to think of morphisms of one prevariety to another.
(Explain.) This is actually correct, but what gets confusing is showing that this
description is independent of the choice of cover. Reason useful: Start off with map
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of sets, level (i) above. Then levels (ii) and (iii), i.e. continuity and structure sheaf,
come out in the wash.

Thus we’ll define morphisms in another way first, that doesn’t involving covers,
then show that this is the same as the “naive” description I've just given. Then in
real life, we’ll use the “naive” description.

Linking “Morphisms for algebraic sets” and structure sheaves.
The key result:

Theorem. Let X C A™, Y C A™ be irreducible algebraic sets, and let 7 : X —
Y be a continuous map. Then the following are equivalent. (Draw pictures!)

i) m is a morphism of algebraic sets

ii) forall g € Oy (Y) = A(Y), gom € Ox(X) = A(X).

iii) for all open U C Y and g € Oy (U), gow € Ox(r~*(U))
iv) For all z € X and g € Oy (), 9o 7 € Ox o

I talked about what iv) means a bit. Central is the idea that if FX (resp. FY)
is the sheaf of functions on X (resp. Y'), then

OY,w(m) C F}rf(w)

l !

OX,a: C F§

Note added later: part of this essentially follows from NOy (U) = NyecyOyy.

Proof. We’ve already shown that i) < ii). (Explain.) Note that we’ve described
morphisms in a new way: they are continuous maps, where pullback takes regular
functions to regular functions.

Immediately iii) = ii) (just take U =Y).
Also, iv) = iii); that’s how the structure sheaves Ox and Oy were defined.
We'll finish off the proof by showing that ii) = iv).

Let g € Oy r(y) (draw picture). We write g = a/b where a, b € Oy (Y'), where
b(m(z)) #0. By ii), aom, borw € Ox(X). Thus gom = (aom)/(bonw) € Ox 4, since
we have bo w(z) # 0. O

Definition. A morphism f: X — Y of prevarieties is a (continuous) morphism
of topological spaces such that, for all open sets V in Y, g € Oy (V) = go f €
Ox(f~V). (We're using iii) from the Theorem.)
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Note that by that Theorem, our tentative definition of morphisms of irreducible
affine algebraic sets is actually a special case of our new definition.

Immediately we have:
Proposition. The composition of two morphisms is a morphism.

Proof. Continuous is clear. Regular functions on an open pull back to regular
functions on the preimage. O

Let’s link this to our naive definition of morphisms described earlier.

Proposition. Suppose X and Y are prevarieties. Let f : X — Y be any map
of sets (not even assumed a priori to be continuous). Let {V;} be a collection of
open affine subsets covering Y. Suppose {U;} is an open affine covering of X such
that f(U;) C V;, and f* maps Oy (V;) into Ox (U;) (i.e. regular function on V; pull
back to regular functions on U;). Then f is a morphism.

Remark. We don’t even have to assume that the U; are affine. If U, isn’t
affine, then cover it with affines Wy, ..., W, (picture). If the continuous map
induces a map Oy (V;) to Ox (U;), then it induces a map from Oy (V;) to Ox (W;).
And conversely, if you have the latter maps, you can reconstruct the original map
Oy (Vi) — Ox(U;) by gluability and identity.

Intuitively, we have a bunch of morphisms of affine things that we are gluing
together.

Proof. First of all, the restriction f; of f to a map from U; to V; is a morphism
(previous proposition). As f; is continuous, f is continuous too.

So it remains to check that for any open set V, f* always takes a section g €
Oy (V') to some section of Ox (f~1(V)). Now go f is at least a section of Ox over
the sets f~1(V N V;), hence on the sets f~1(V NU;). As Ox is a sheaf, these glue
together to give a section on all of f=1(V). O

Post mortem. The proof went through the 3 steps: sets, topological spaces,
structure sheaf.

2. EXAMPLES OF MORPHISMS

Example 1: open immersions; open subprevarieties. Here’s an easy one,
but an important definition.

Suppose (Y,Oy) is a prevariety, and U is an open subset of Y, so (U,Op :=
Oy |u) is a prevariety.



Then the inclusion morphism U — Y induces a morphism (U, Oy) — (Y, Oy).

This is called an open immersion. One often says that U is an open subprevariety
of Y.

Ezample: There is an open immersion from the affine line to the line with the
doubled origin.

Example 2. A%\ {(0,0)} — PL.
Send (a,b) — (z;y).

Example 3: Projection. The morphism 7 : P2\ (0;0;1) — P! given by
(z;y;2) — (x;y). Note that the left side is a prevariety. Note also why we had to
throw out the point.

I’'m showing it to you for two reasons: this is an important example, and it will
show you how to prove something is a morphism.

First, draw a picture.

Recall that to show something is a morphism, you have to do three things (not
necessarily independently): show there is a map on points, show it is continuous,
and show the pullback property on structure sheaves (usually using affine opens).

First, the map above is a map on points. So we just need to show that it is
continuous, and then the pullback property.

Let U, be the standard open of P? where = # 0, and U, similarly. Note that
U, U Uy is the left side.

Let V, be the standard open of P! where x # 0, and V,, similarly. Note that
V, UV, = P! the right side.

Note that U, maps to V,, and U, maps to V,,. We'll show that both maps are
morphisms of affine varieties; then we’ll have shown that 7 is a morphism.

On Uy, let the coordinates be a and b, so we think of points of U, as (z;y;2) =
(1;a;b). On V,, let the coordinate be ¢, so we think of points of V; as (x;y) = (1;¢).
Then the map is (1;a;b) — (1;a) = (1;¢), so on the level of rings, it is given by
¢ = a, Hence U, — V,, is a morphism of affine varieties, and we’re done (once we
do the same argument with x replaced by y)!

You might not realize we’re done yet, so let me be more explicit. In the definition
of morphism, we required that regular functions on V, (i.e. polynomials in ¢) pull
back to regular functions on U, (i.e. polynomials in a and b). But that map just
sends a polynomial f(c) to the polynomial f(a).



You should think about this at length on your own to convince yourself about
what happened.

More generally, we can define the projection P™\{(0;0;...;0;0;a;b;...;2)} — P*
where there are k 4+ 1 zeros on the left side.

Example 4: Closed immersions.

First: closed immersions of affine varieties. Suppose X C Y C A", X, Y affine
varieties. Then we have a morphism of affine varieties X — Y given by x1 — 1,
etc. This is called a closed immersion of affine varieties.

On the level of rings: I(Y) C I(X), so R/I(Y) — R/I(X), ie. AY) ——
A(X). Conversely, given a surjective morphism of nilpotent-free finitely generated
k-algebras A(Y) — A(X), then this describes a closed immersion of affine varieties:
let x1, ..., x, be generators of A(Y), so Y sits inside A" (with coordinates x1,

, ). Then the image of the z;’s in A(X), which we’ll also call z; if it isn’t too
confusing, also generate A(X), and this reproduces the picture of closed immersions
in the previous paragraph.

Hence: a morphism of affine varieties X — Y is a closed immersion if it induces
a surjective map of rings A(Y) — A(X). In particular, you might have worried
that the definition earlier was dependent on how Y was chosen to be affine, i.e. the
choice of how to put Y in an affine space; this shows that such fears are groundless.

Definition. A morphism of prevarieties (X,Ox) and (Y,Oy) is a closed im-
mersion (of prevarieties) if

(i) X — Y is a homeomorphism between X and a closed subset of Y (with the
induced topology), and
(ii) Y = U,U, of affine opens where

(X NUa, Ox|xnv.,) = (Ua, Oyvlu,)

is a closed immersion of affine varieties.

One often says that X is a closed subprevariety of Y.

Now to the example: Suppose char k # 2 (for technical reasons). In P?, 22 +y? =
22 is a closed subset. It even describes a closed subprevariety. Let U, be the open

where x # 0, and similarly for U, and U..

On U,, the coordinates are (1;a;b), so x? + y?> = 22 translates to 1 + a? —
b? = 0 in A? (coordinates a,b). Irreducible (as polynomial is irreducible). (If the
characteristic were 2, it wouldn’t be irreducible: (14 a + b)? = 0.

On U,, the coordinates are (c;1;d), so 2% + y* = 22 translates to ¢ + 1 = d? in
A? (coordinates ¢, d).
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On U, the coordinates are (e; f;1), so 22 +y? = 22 translates to e + f2 = 1 in
A? (coordinates e, f).

Hence this “describes” a closed subprevariety (a conic in the projective plane).

Note that this argument is quite general; suppose you have an irreducible poly-
nomial of degree d in n + 1 variables zq, ..., x,. Then this describes a closed
subprevariety of P"; it is called a hypersurface of degree d. We will soon see that
this is a special case of projective (pre)varieties.

Example 5: Composing morphisms.

Sometimes it is easier to show things are morphisms by composing with simpler
morphisms.

Let C be the plane curve 22 4+ y? = 22 described above. Then map of sets
7 (z;y;2) € C — (z;y) is a morphism.

Draw a picture.

First note that this morphism makes sense because x and y on the left side can’t
both be zero.

It is a morphism because it is a composition of the closed immersion of Example
4 with the projection of Example 3.

Ezercise. Prove that C is actually isomorphic to P!. (Caution: The map 7 isn’t
an isomorphism. Steps will be given; as a consequence, you will find all solutions
to 2% + y? = 22 over an arbitrary field of characteristic not 2.)

Let me give you the geometric idea behind this. You might have seen this before
if you’ve seen the formula that gives you all pythagorean triples.

First of all, in the affine open U, with coordinates a, b (so (a;b;1) = (z;y; 2)),
we can view the formula as a® + b? = 1, which we might as well draw as a circle.

Consider the P! of lines through the point (1,0). A random such line meets the
circle at two points, one of which is (1,0). For example, if the line has slope —m,
then you can do the algebra and check that the line y = —ma + 1 meets the circle

at (1,0) and another point
2m 1 —m?
14+m2 14+m?)"

(This works even if m = 0; you need a special case if the line is vertical and the slope
is thus infinite.) This basically gives an identification between the lines through
(1,0), parameterized by P!, and the points of the circle. You'll make this much
more precise in the exercise.

Coming in the next few lectures (in some order):
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. Perhaps define schemes.

Projective varieties.
Rational maps (why equivalent to maps of function fields?). Degree of rational
maps. Birationality.



