
SOME AMUSING PROBLEMS RELATED TO ALGEBRAIC
GEOMETRY

RAVI VAKIL

Here are some problems to pique your interest; we will solve (or mostly solve)
them during the semester. Some are deep, and others are just fun. You won’t
actually need algebraic geometry to solve a fair number of these problems, but if you
solve them (or make progress), you’ll secretly pick up a lot of algebro-geometrical
insight.

1. Infinite Chomp. The game of Chomp is played as follows. Fix non-negative
integers m and n. Cookies are placed in a rectangular array at the points (x, y)
where 0 ≤ x ≤ m and 0 ≤ y ≤ n (x, y are integers). The cookie at (0,0) is poisoned.
Two players alternate moving; a move involves picking a cookie, and eating it and
every cookie above and to the right of it. The player who dies loses. (There’s a neat
proof that if m and n aren’t both zero, the first player has a winning strategy, that
doesn’t reveal what that strategy is.) Clearly the game ends in a finite number of
terms.

Infinite Chomp is the same, except cookies are placed at (x, y) where x and y
run through all non-negative integers. Prove that the game is guaranteed to end in
a finite number of terms. Generalize this to where cookies are placed on (Z+)n for
any n.

(This is secretly related to the Hilbert Basis Theorem.)

2. Suppose f1(x1, . . . , xn) = 0, . . . , fr(x1, . . . , xn) = 0 is a system of r polyno-
mial equations in n unknowns, with integral coefficients, and suppose this system
has a finite number of complex solutions. Show that each solution is algebraic, i.e.
if (x1, . . . , xn) is a solution, then xi ∈ Q for all i.

3. Pascal’s theorem. If a hexagon is inscribed in an irreducible conic, then the
opposite sides meet in collinear points.

4. Pappas’ theorem. Let L1 and L2 be two lines. Let p1, p2, and p3 be distinct
points of L1, and let q1, q2, and q3 be distinct points of L2 (none lying on L1 ∩L2).
Let Lij be the line between Pi and Qj . For each i, j, k with {i, j, k} = {1, 2, 3}, let
Rk = Lij ∩ Lji. Then R1, R2, and R3 are collinear.

5. We’ll see that the integers Z should really be thought of as some weird curve.
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6. Group law on an elliptic curve. We’ll define the group law on an elliptic curve,
and see that it is associative. (We’ll first define elliptic curves, which secretly come
up in the next three problems.)

7. Find all rational solutions to y2 = ax3 + bx2 where a, b ∈ Q.

8. Prove that if p(t) and q(t) are polynomials (with complex coefficients) such
that p(t)2 = q(t)3 + 1, then p(t) and q(t) are both constant.

9. Poncelet’s theorem. Let C and D be two ellipses, with C contained in D.
Pick a point p0 on C, and draw a tangent to D from p0, which meets C again at
some other point p1. Repeat this process (picking the “other” tangent from p1).
Suppose after n repetitions, you return to your starting point, i.e. pn = p0. Prove
that this is true no matter where you start.

10. If f(x) is a polynomial with integer coefficients, of degree d = 2g + 1 or
2g + 2, square-free mod p, then∣∣∣∣∣

p−1∑
i=0

(
f(i)
p

)∣∣∣∣∣ ≤ 2g
√
p+ 1.

(The “fraction” denotes the symbol for quadratic residues.) If g > 1, the proof
uses the Weil conjectures for curves. (In specific cases, an explicit formula can be
given for the left-hand side.)

11. The degree of the discriminant b2 − 4ac of the quadratic ax2 + bx+ c is 2.
Show that the degree of the discriminant of a degree d polynomial is 2(d− 1).

12. Fix a positive integer d, and let σ1, . . . , σn be n transpositions in Sd (i.e.
they swap two elements of {1, . . . , d}). Suppose they generate Sd, and

σ1 . . . σn = e,

where e is the identity. Show that n ≥ 2(d− 1).
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