
INTRO TO ALGEBRAIC GEOMETRY, PROBLEM SET 12

Due Monday December 13 by noon at my office. Read all of the problem set, and
hand in six of them, including one from each section. You’re strongly encouraged
to collaborate (although write up solutions separately), and you’re also strongly
encouraged to ask me questions (if you’re stuck, or if the question is vaguely worded,
or if you want to try out an argument).

Line bundles.

1. Suppose C is a nonsingular curve, p is a point of C, and L is an invertible
sheaf on C. Describe a natural identification of global sections of L⊗OC(−p)
(denoted L(−p) for short) with the global sections of L vanishing at p. If C
is a projective nonsingular curve, prove that h0(C,L)− h0(C,L(−p)) is 0 or
1.

Differentials.

2. Suppose U is an affine variety, and r ∈ A(U) is a regular function. Show
d(rn) = nrn−1dr if n is a non-negative integer. If r is an invertible regular
function (i.e. r ∈ A(U)∗) show that drn = nrn−1dr for any integer n.

3. The canonical sheaf of projective space. For some m, ∧nΩ1
Pn
∼= OPn(m). Find

m as a function of n. (We haven’t actually defined the canonical sheaf of a
higher-dimensional nonsingular variety, but think of sections on each affine
open with as being of the form fdx1 ∧ · · · ∧ dxn, where f and xi are regular
functions on the open. Make whatever assumptions you need.)

4. Suppose X is a nonsingular curve, and p a point on X. Let U be an affine
neighborhood of p, and let m be the maximal ideal of A(U) corresponding
to p. Then we earlier identified the cotangent space to X at p with m/m2.
As Ω1 is the “cotangent sheaf”, there should be a natural surjective map (of
A(U)-modules) from Ω1(U) → m/m2. Describe this map explicitly. (Hence
there is a natural map from the stalk Ω1

p to m/m2.)
5. Pullback of differentials. Suppose π : X → Y is a morphism of nonsingular

curves. Show that there is a natural map from global differentials on Y (i.e.
global sections of Ω1

Y ) to global differentials on X. The naturality of your
construction will show that there is a natural morphism of invertible sheaves
on X, π−1Ω1

Y → Ω1
X . (Equivalently, there is a natural morphism of sheaves

on Y , Ω1
Y → π∗Ω1

X ; but π∗Ω1
X isn’t an invertible sheaf, so we don’t yet have

the language to effectively discuss it.)
6. Residues. In complex analysis, a differential on a one-dimensional complex

manifold with a simple pole at a point p has a naturally-defined residue at
that point: in any analytic coordinate z at p (i.e. p corresponds to z = 0), if
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the differential is of the form (a−1/z + f(z))dz where f(z) is analytic, then
the residue is a−1, and this is independent of the choice of analytic coordinate.
Show that the same is true in algebraic geometry: suppose X is a nonsingular
curve, p a point of X, and s a differential on X with simple pole at p; define
the residue of s at p (and show that it is well-defined, i.e. that it doesn’t
depend on any choice).

Genus.

7. Suppose C is a nonsingular projective curve, and L an invertible sheaf on C
with degree 1, and h0(C,L) = 2. Show that C has genus 0.

8. Hyperelliptic curves. Assume char k 6= 2. Suppose f(x0, x1) is a polynomial
of homogeneous degree n with no double zeros, where n is even. Let C0 be
the affine plane curve given by y2 = f(1, x1), with the (generically 2-to-1)
morphism C0 → U0. Let C1 be the affine plane curve given by z2 = f(x0, 1),
with the morphism C1 → U1. Check that C0 and C1 are nonsingular. Show
that you can glue together C0 and C1 (and the double covers) so as to give a
double cover C → P1. (For computational convenience, you may assume that
neither [0; 1] nor [1; 0] are zeros of f .) What goes wrong if n is odd? Show
that the genus of C is n/2−1. (This is a special case of the Riemann-Hurwitz
formula.) This provides examples of curves of any genus. (Not for credit:
What goes wrong if char k = 2?)

9. Hyperelliptic curves take 2. Again, assume chark 6= 2. Suppose C is a
projective nonsingular curve of positive genus, and L is a line bundle of degree
2. Prove that h0(C,L) ≤ 2. If equality holds, prove that |L| gives a morphism
C → P1. (It is a fact that all such morphisms are of the form described in
the previous question, and vice versa.)

10. Nonsingular plane curves. Suppose C is a nonsingular degree d curve in P2.
Then Ω1

C
∼= OC(d− 3). Hence prove that the genus of C is

(
d−1

2

)
.

The Riemann-Roch formula.

11. Genus 1 and 2 curves. Prove that all projective nonsingular genus 1 curves
are hyperelliptic in the sense of Problem 9. Prove that all projective non-
singular genus 2 curves are hyperelliptic (use L = Ω1). Hence (modulo the
parenthetical fact in Problem 9 you have now seen explicit descriptions of all
genus 2 curves (see Problem 8).

12. Genus 3 curves. Suppose C is a genus 3 projective nonsingular curve. Suppose
furthermore that C is not hyperelliptic (see above), i.e. that for each degree
2 invertible sheaf L, h0(C,L) < 2. Prove that C can be expressed as a
nonsingular plane quartic. (Hint: Consider |Ω1

C |.) (A mild addition to your
argument will show that C can be expressed as a nonsingular plane quartic
in essentially only one way.) Hence you can describe what all genus 3 curves
look like.

13. Dimension of the Picard variety. The set of degree d line bundles on an
nonsingular projective algebraic curve C of genus g can also be given the
structure of an algebraic variety X. Here’s a calculation that will convince
you that the dimension of X should be g. Suppose d > 2g− 2. Calculate the
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number of sections any degree d line bundle must have (or, more precisely, the
dimension of the vector space of sections). Each section (up to multiple by
non-zero constant) gives a degree d divisor on C, and distinct degree d divisors
on C give rise to distinct sections of degree d line bundles (up to non-zero
constant). Explain why the degree d divisors on C should be parametrized
by a dimension d variety. You now know the dimension of the “space of
degree d divisors”, and you know the dimension of the “space of degree d
divisors corresponding to a fixed degree d line bundle”; use this to calculate
the dimension of the “space of degree d line bundles”.

Now if d′ is any integer, show that the space of degree d′ line bundles is
isomorphic to the space of degree d line bundles. (Hint: let L be any line
bundle of degree d− d′; tensoring by L will give the isomorphism.)

3


