
INTRO TO ALGEBRAIC GEOMETRY, PROBLEM SET 8

Due Thursday November 11 at my office (2-271) by noon. You’re strongly en-
couraged to collaborate (although write up solutions separately), and you’re also
strongly encouraged to ask me questions (if you’re stuck, or if the question is vaguely
worded, or if you want to try out an argument).

1. Prove that the valuations of k(t) described in class (corresponding to the
points of P1) are all the non-trivial valuations of k(t) over k.

2. (a) Let m and n be two ideals of R such that there is an integer i such that
mi ⊂ n and ni ⊂ m. Show that the completion of R with respect to m is
isomorphic to the completion of R with respect to n.

Explanation of the word completion: Given a ring R and an ideal m, put
a topology (“the m-adic topology”) on the ring R by declaring subsets of the
form a + mn (a ∈ R, n ∈ Z+) to be open. (In other words, translates of
powers of m form a base of the topology.) Then elements of R̂ correspond to
Cauchy sequences modulo equivalence. (This is analogous to defining R as
the completion of Q with respect to the classical topology.) Seen in this way,
completion depends only on the topology, not on the choice of m. One way of
doing this problem — probably not the way you should choose — is to justify
the argument above, and then show that m and n define the same topology
on R.
(b) Prove that the completion of a discrete valuation ring (R,m) is also a
discrete valuation ring (called a complete discrete valuation ring). (Recall
that a topological space is complete if all Cauchy sequences have limits; this
motivates the terminology.)
(c) Let m be a maximal ideal in a ring R, so mRm is the maximal ideal of the
local ring Rm. If R̂ is the completion of R with respect to m, and R̂m is the
completion of Rm with respect to mRm, prove that R̂ ∼= R̂m.

In the vague and imprecise language of “smaller and smaller neighbor-
hoods”, the construction of Rm from m is analogous to looking at a “small”
neighborhood of the point corresponding to m, and taking completion corre-
sponds to looking at a “smaller” (“formal”) neighborhood of the point. In-
tuitively, this exercise tells you that you can look immediately at the smaller
neighborhood, or you can get there in two jumps (via the small neighborhood),
and you’ll see the same thing.

3. Hensel’s Lemma. Suppose (R,m) is a complete local ring. Let f(X) ∈ R[X].
(For example, R could be Zp, and the coefficients of f could be integers.) Let
x ∈ R, n ∈ Z>0 such that f(x) ≡ 0 (mod mn) and v(f ′(x)) = 0 (i.e. f ′(x) is
invertible in R). Prove that there exists y in R (should that be R̂?) such that
f(y) = 0 and y ≡ x (mod mn). Hence for example you can solve x2 = −1 in
the 5-adics, or yn = 1 + t in k[[t]] in characteristic not dividing n. (This is an
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analogue of Newton’s method in calculus — do you see how? This result can
be made much stronger.)

4. Hensel’s Lemma (another version). Suppose (R,m) is a complete discrete
valuation ring. If e ∈ R, denote its image in the field R/m by e. If f ∈ R[T ]
is a monic polynomial (with coefficients in R) such that f factors as f = g0h0

with g0 and h0 monic and coprime (coprime means the ideal (g, h) is R/m[T ]),
then f itself factors as f = gh with g and h monic and such that g = g0 and
h = h0. In general, any local ring (R,m) for which the conclusion of (this
version of) Hensel’s lemma holds is said to be Henselian.

5. Classification of plane curve singularities of multiplicity 2. Suppose f(x, y) ∈
k[[x, y]], where char k 6= 2, and the multiplicity of f is 2 (i.e. f has a non-zero
degree 2 term, but no degree 0 or degree 1 term). Suppose f(x, y) cuts out a
reduced curve, i.e. k[[x, y]]/(f) has no nilpotent elements. Prove that there
is a change of variables (invertible!) such that f(u, v) is some (invertible)
constant times v2 − un+1 (n ≥ 1). Such a singularity is called an An curve
singularity. When n = 1, this is called a node; when n = 2, it is a cusp; when
n = 3, it is a tacnode. (This was harder than I intended.)

6. Harthshorne Ex. I.6.2 An elliptic curve. Let Y be the curve y2 = x3 − x
in A2, and assume that the characteristic of k is not 2. In this exercise, you
will explicitly see that Y is not rational (i.e. birational to P1), or equivalently
that k(Y ) is not a pure transcendental extension of k. You will use the fact
that if Q is a nonsingular rational (separated) curve not isomorphic to P1,
then Q is isomorphic to an open subset of A1; we will prove this in the next
week or two.
(a) Show that Y is nonsingular, and deduce that A = A(Y ) ∼= k[x, y]/(y2 −
x3 + x) is an integrally closed domain.
(b) Let k[x] be the subring of k(Y ) generated by the image of x in A. Show
that k[x] is a polynomial ring, and that A is the integral closure of k[x] in
k(Y ).
(c) Show that there is an automorphism (which can be thought of as a Galois
group) σ : A → A which sends y to −y and leaves x fixed. For any a ∈ A,
define the norm of a to be N(a) = aσ(a). Show that N(a) ∈ k[x], N(1) = 1,
and N(ab) = N(a)N(b) for any a, b ∈ A.
(d) Using the norm, show that the units in A are precisely the nonzero ele-
ments of k. Show that x and y are irreducible elements of A. Show that A is
not a unique factorization domain.
(e) Prove that Y is not a rational curve.
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