MATH 172: MOTIVATION FOR FOURIER SERIES:
SEPARATION OF VARIABLES

ANDRAS VASY

Separation of variables is a method to solve certain PDEs which have a ‘warped
product’ structure. First, on R™, a linear PDE of order m is of the form

3 aa(@)omu = f(z).
|| <m
where a,, f are given functions on R”, and where we write
0% =907 ..o,
and
o =1 4+ ...+ ay.
Typical examples include

(i) Laplace’s equation on domains € in R™:
Au=f, Au=u+...+ 0%,

where u is the electrostatic potential generated by a charge distribution f,
or the steady state temperature generated by a heat source f,
(ii) the wave equation on Ry x 2, Q a domain in R™,

OPu— P Ayu = f,

where c is the speed of waves, u is the displacement of a membrane from
equilibrium, or a component of the electromagnetic field,
(iii) and the heat equation on (0,00); x Q

Ou — kAzu=f
where k is (essentially) the heat conductivity, and w is the temperature
generated by a heat source distribution f.

In all these cases one needs to impose some boundary conditions if one is working
in proper subdomains, and in the latter two some initial conditions. For instance,
for the heat equation one may impose the Dirichlet boundary condition (DBC)

uloa = 0, resp. ulrxan = 0, resp. ul(,s0)xan = 0,

representing an electrically grounded or thermally insulating boundary for Laplace’s
equation, a fixed membrane edge for the wave equation, and a body whose surface
is kept at 0 temperature for the heat equation. In addition, one would need to
specify the initial temperature

u|{0}><Q = Cb
for the heat equation, ¢ a given function on €2, and the initial position and velocity
for the wave equation

ulroyxa = ¢, (0iu)|foyxa = ¥,
1
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with ¢, given functions on €. Another common boundary condition is the Neu-
mann boundary condition,

ou ou ou
%|3Q = Oa resp. %h}%xaﬂ = 07 resp. %|(0,oo)><89 = 07

representing a thermally insulated boundary for Laplace’s equation, a free mem-
brane edge for the wave equation, and an body whose surface is insulated for the
heat equation. In all these conditions, the 0 on the right hand side can be re-
placed by a specific function, e.g. for Laplace’s equation, u|go = h means that the
boundary is kept at a fixed potential h.

The general idea of separation of variables is the following: suppose we have
a linear PDE Lu = 0 on a space M, x N,. We look for solutions u(z,y) =
X(2)Y (y). In general, there are no non-trivial solutions (the identically 0 function
being trivial), but in special cases we might be able to find some. We cannot expect
even then that all solutions of the PDE are of this form. However, if we have a
family

up (7, y) = Xn(2)Yn(y), n €Z,

of separated solutions, where Z is some index set (e.g. the positive integers), then,
this being a linear PDE,

u(z,y) = Z Cnin (T,y) = Z cn Xn (@)Y (y)

nel ne’l

solves the PDE as well for any constants ¢,, € C, n € Z, provided the sum converges
in some reasonable sense, and we may be able to choose the constants so that this
in fact gives an arbitrary solution of the PDE.

We emphasize that our endeavor, in general, is very unreasonable. Thus, we may
make assumptions as we find it fit — we need to justify our results after we derive
them.

As an example, consider the wave equation

U — 2 Azu =0

on M, x R;, where M is the space — for instance, M is R", or a cube [a,b]”
or a ball B" = {z € R" : |z| < 1}. A separated solution is one of the form
u(x,t) = X (2)T(t). Substituting into the PDE yields

X(2)T"(t) — AT () (A X)(z) = 0.
Rearranging, and assuming 7" and X do not vanish,

(1) _ AX(x)

2T (t) X(x)

Now, the left hand side is a function independent of x, the right hand side is a
function independent of ¢, so they are both equal to a constant, —A, namely pick
your favorite value of zy and ¢y, and then for any x and ¢,

RHS(z) = LHS(t9) = RHS(xo) = LHS(?),
so the constant in question is LHS(#p). Thus, we get two ODEs:

T (t) = =\T (1),
(A, X)(z) = —AX ().
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Now typically one has additional conditions. For instance, one has boundary
conditions at OM:
ulopmxr = 0 (DBC) or

ou
%|8M><R =0 (NBC).

Then X (2)T'(t) has to satisfy these conditions for all x € 9M and all ¢t € R. Taking
some t for which T'(t) does not vanish, we deduce that the analogous boundary
condition is satisfied, namely

X|oar =0 (DBC) or

19,4

— =0 (NBC).

—Joar = 0 (NBC)
We also have initial conditions, such as

u(z,0) = ¢(z), u(z,0) = (),
but as these are not homogeneous, we do not impose these at this point, and hope
that we will have sufficient flexibility from the ¢, to match these.
We start by solving the ODE for T', which is easy:

T(t) = Acos(Vet) + Bsin(vVAct), A # 0,

and
T(t)=A+ Bt
if A =0. (We could have used complex exponentials instead. If A is not positive,
the trigonometric functions should be thought of as given by the corresponding
complex exponentials.)
Now, in general the spatial equation,
—AX = )X,
Xlom =0 (DBC) or
Z%LBM =0 (NBC)
is impossible to solve explicitly. However, we point out that it is an eigenvalue
equation for A: the statement is that X is an eigenfunction of —A with eigenvalue A,
in the strong sense that it also satisfies the boundary condition. If we let X, (x), n €
N, be the eigenfunctions of —A with this boundary condition, with corresponding
eigenvalue \,, then the conclusion is that

u(@,t) =Y Ancos(v/Anct) X (x) + By sin(v/Anct) X, (2)

neN

(1)

is the general separated solution. Note that matching the initial conditions requires

o(x) = Z ApXn(2), ¥(z) = Z \/ECBan(Z‘),
neN neN

i.e. writing the given functions ¢ and 4 as infinite linear combination of the eigen-
functions X,, — of course, in addition to finding some A,, and B,, which should work,
we need to actually prove that these series indeed converges to the desired limit.
Due to the decomposition of u into eigenfunctions of the spatial operator, X, these
methods for solving the PDE are also called spectral methods.

In a simple situation, such as when M = [0, £], we can find the eigenfunctions of
—A explicitly. Namely, for Dirichlet boundary condition, the equation is

2
~EX X, x(0)= 0= x(0),
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the solution of the ODE (without the boundary conditions) is

X(z) = Ccos(VAz) + Dsin(VAz), A # 0,

@) X(z) = C+ Dz, A =0,

Evaluating at = 0 and enforcing X (0) = 0 yields C' = 0 in either case. Evaluating
at ¢ yields D = 0if A = 0, so A = 0 is of no interest (we are only interested in
non-trivial solutions). If A # 0, then evaluation at x = ¢ yields that either D = 0,
which again would give a trivial solution, or sin(v/A\f) = 0, which thus we assume
is the case. But the zeros of sine are at nw, n € Z, so

VA = nm,

2
A= (”i) .
L
Note that n and —n give essentially the same X, (up to an overall minus sign,

which is irrelevant, as we are allowing an arbitrary coefficent D), while n = 0 yields
the trivial solution, so we conclude that

hence

X,Ax):sin(?), Ap = (%)2, n>0,n¢eZ.

Returning to the full problem, we deduce that
ul@,t) = Z An COS(\/ECt) sin (nfgx) + B, sin(\/xct) sin (Zg) .
n=1

It remains to determine the coefficients A,, and B,,, which is a subject of the next
lecture.
Next, we consider the Neumann boundary conditions.
d’X
———=XX, X'(0)=0=X'(4
=X, X(0) (0,
Then (2) still holds. Substituting in X’(0) = 0 yields D = 0 whether A = 0 or
not. If A = 0, the constant C satisfies the boundary condition at £, so 1 is an
eigenfunction with eigenvalue 0. If A # 0, we obtain the requirement (as we want
a non-trivial solution)
Vsin(VAL) =0,
hence
VM =nr, n€Z,
as above. Since A # 0, we in fact have n # 0 in this case. Again, n and —n give
essentially the same eigenfunctions (in fact, exactly!), so our eigenfunctions are

Xn(x):cos(n—gx), )\n:(%y, n>0 nez

X()(l‘) = 17 )\() =0.

Note that n = 0 can be considered simply a special case of the general formula in
this particular situation, and thus we may write our answer as

X, (x) = cos (?), An = (%)2, n>0, n€Z,

hence the general separated solution as

ul@,t) = Ao+ Bot + Y Aucos(y/Aset) cos (“5 ) + Busin(y/Asct) cos (5= )

n=1



Next, consider the heat equation on a space M, i.e.
uy — kAzu=0

with either Dirichlet or Neumann boundary conditions. For separated solutions
u(x,t) = X (2)T(t) we obtain

X(2)T'(t) — kT (t) A, X =0,

SO
T A X
kT X
Again, both sides must be equal to a constant, —A. The ODE for T,
T = —\kT,
is then easy to solve,
T(t) = Ae=
The PDE for X still has boundary conditions, and is
—AX = )X,
3) X|oam =0 (DBC) or
0X

— =0 (NBC

on |6M ( )7
the same as (1). The solution is thus also the same. For instance, for Dirichlet
boundary conditions on [0, ],

nmx

Xn(x):sin(T), An = <%)2, n>0, neZ,

hence the general separated solution is

u(z,t) = i Ape FAntgin (Zg) .
n=1

Similarly, for Neumann boundary conditions we obtain
= nwx
_ —kAnt
u(z,t) = nE_O Aye cos ( 7 ) .

Similar techniques also work for some other problems with less product-type
behavior. Thus, consider Laplace’s equation on the disk of radius R,

D =B%={zcR?: |z| <R},
namely
Au=0, z €D,
ulop = h,
with h a given function on 0D. We again ignore the inhomogeneous conditions, so
we are left with the PDE. Now, we need to think of the disk as a product space.

This is not the case in Cartesian coordinates. However, in polar coordinates, we
can identify D with

[0, R), x S,

where S! is the unit circle. The Laplacian in polar coordinates is

A=0%+r710, +r203.
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Note that polar coordinates are singular at » = 0 (the whole circle at r = 0 is
squashed into a single point), and A has coefficients which are not smooth at
r = 0. We again consider separated solutions,

u(r,0) = R(r)©(0).
Substituting into the PDE yields
R'©+7r'RO+1r7°0"R =0.
Dividing by ©R and multiplying by r2:
r?R"+rR Q"
R e’

and as before both sides must be equal to a constant, —A\.
Thus, the ©® ODE is

0" =-\O,

where © is a function on the circle S'. A function on S' can be thought of as
a function on [0, 27] such that the values at 0 and 27 agree (since they represent
the same point on S'). However, a better way of thinking of it as a 27-periodic
function on R: the points 6 + 2nm, n € Z, correspond to the same point in the
circle. Explicitly, if the circle is considered the unit circle in R?, as usual, the map
R — St is
R > 6~ (cosf,sinf) € S,

making the 27-periodicity clear. Thus, we want solutions of the © ODE, considered
as an ODE on the real line, which are 2m-periodic. Now, without the periodicity
condition, the solution of the ODE is, as before (when this was the ODE for T'),

0(0) = Acos(VA0) + Bsin(VAG), A #0,

and
O(0)=A+ Bo

if A = 0. Adding the 27 periodicity condition we need that VA =n € Z if X # 0,
and B = 0if A = 0. If A # 0, then this gives A = n%. As positive and negative
values of n give rise to the same eigenfunctions, we can restrict to n > 0 (note
n # 0 if A #0). Thus, in summary, the solutions are

0,,(0) = A, cos(nd) + By, sin(nd), n >0, n € Z,
O0(0) = Ap.
It remains to deal with the R ODE which is
r*R" +rR — AR =0.

Note that the coefficient of the highest derivative, R?, vanishes at » = 0, so this
ODE is degenerate, or singular, there. However, note that each derivative comes
with a factor of r, thus R’ (one derivative falling on R) has a factor of r in the
coefficient, R” (two derivatives falling on R) has a factor of 72. A slightly better
way to rewrite it is
r(rR) — AR =0,

then explicitly you can see that each time you differentiate, you multiply by 7.
Such an ODE is called a regular singular ODE (in general, one could multiply by a
smooth function times r each times one differentiates), and can (usually) be solved
in a power series (in general with non-integer powers) around r = 0, with possible
logarithmic terms. Our ODE is a particularly simple regular singular ODE. This
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can be seen by changing variables t = logr, writing T'(r) = logr, so % =71 for
then for a function f on R,
d(foT) af . \dT _df
S e (Eer) ==
o T\a ) e T a

or informally,
g
dr — dtdr dt’
so the ODE for F(t) = R(e') becomes
d2
—F - \F =
dt? 0,

SO
F(t) = Ae¥™ + Be V™, X #0,
F(t)=A+Bt, A=0.
Using t = logr, we get for the original function R,
R(r) = ArY> 4+ BrY2 A 20,
R(r)= A+ Blogr, A=0.
Recalling that v/\ is a non-negative integer from the © ODE, we conclude that
R(r)y=Ar"+Br ", n>0, n€Z,
R(r)= A+ Blogr, n =0.
Now, there is nothing special about the origin: it is just a point in the interior of
the disk, and we know by elliptic regularity that the solution of Laplace’s equation

should be C*° in the disk, so in particular it should be bounded, hence we throw
out the exponents that would yield unbounded terms to get

R,(r)=71", n>0, n€Z,
Ro(r)=1, n=0,

and the n = 0 case could be simply included in the n > 0 one by letting n > 0
there. Note that the ‘badly behaved’ solutions ™ and log r arose because we used
badly behaved ‘coordinates’ on D: recall that these themselves were singular at the
origin.

Combining this with our results for ©, we obtain the general separated solution

o0
u(r,0) = Ag + Z " (A, cos(nb) + By, sin(nh)).
n=1
Again, the question is whether we can determine the coefficients to match the
boundary conditions. Explicitly, the boundary condition is

o0
h(0) = Ao + Z R™(A,, cos(nd) + B, sin(nh)),
n=1
so we need to write the given function h as an infinite linear combinations of the
sines and cosines, and discuss convergence of the result. This is the topic of the
next lectures.



