
MATH 172: INNER PRODUCT SPACES, SYMMETRIC

OPERATORS, ORTHOGONALITY

ANDRÁS VASY

When discussing separation of variables, we noted that at the last step we need to
express the inhomogeneous initial or boundary data as a superposition of functions
arising in the process of separation of variables. For instance, for the Dirichlet
problem ∆u = 0, u|∂D = h, we had to express h as

(1) h(θ) = A0 +

∞∑
n=1

Rn(An cos(nθ) +Bn sin(nθ)),

i.e. we had to find constants An and Bn so that this expression holds. The basic
framework for this is inner product spaces, which we now discuss.

Definition 1. An inner product on a complex vector space V is a map

〈., .〉 : V × V → C

such that

(i) 〈., .〉 is linear in the first slot:

〈c1v1 + c2v2, w〉 = c1〈v1, w〉+ c2〈v2, w〉, c1, c2 ∈ C, v1, v2, w ∈ V,
(ii) 〈., .〉 is Hermitian symmetric:

〈v, w〉 = 〈w, v〉,
with the bar denoting complex conjugate,

(iii) 〈., .〉 is positive definite:

v ∈ V ⇒ 〈v, v〉 ≥ 0, and 〈v, v〉 = 0⇔ v = 0.

A vector space with an inner product is also called an inner product space.

While one should write (V, 〈.., .〉) to specify the inner product space, one typically
says merely that V is an inner product space when the inner product is understood.

For real vector spaces, one makes essentially the same definition, except that, as
the complex conjugate does not make sense, one simply has symmetry:

V real vector space ⇒ 〈v, w〉 = 〈w, v〉, v, w ∈ V.
We also introduce the notation for the norm associated to this inner product:

‖v‖ = 〈v, v〉1/2,
where the square root is the unique non-negative square root of a non-negative
number (see (iii)). Thus,

〈v, v〉 = ‖v‖2.
Recall that in general a norm is defined by:

Definition 2. Suppose V is a vector space. A norm on V is a map

‖.‖ : V → R

such that
1
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(i) (positive definiteness) ‖v‖ ≥ 0 for all v ∈ V , and v = 0 if and only if
‖v‖ = 0.

(ii) (absolute homogeneity) ‖cv‖ = |c| ‖v‖, v ∈ V , and c a scalar (so c ∈ R or
c ∈ C, depending on whether V is real or complex),

(iii) (triangle inequality) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V .

Thus, at this point, we do not yet know that our ‘norm’ for the inner product
is a norm in this vector space sense, though it satisfies (i) by property (iii) of the
inner product, and (ii) by properties (i) and (ii) (see (2) below), so the question is
whether the triangle inequality holds. We show this shortly, but first we note some
examples of inner product spaces:

(i) V = Rn, with inner product

〈x, y〉 =

n∑
j=1

xjyj ,

where x = (x1, . . . , xn), y = (y1, . . . , yn). Thus ‖x‖2 =
∑n
j=1 x

2
j .

(ii) V = Cn, with inner product

〈x, y〉 =

n∑
j=1

xjyj ,

where x = (x1, . . . , xn), y = (y1, . . . , yn). Thus ‖x‖2 =
∑n
j=1 |xj |2, which

explains why we need Hermitian symmetry for complex vector spaces.
(iii) V = Rn, with inner product

〈x, y〉 =

n∑
j=1

ajxjyj ,

where x = (x1, . . . , xn), y = (y1, . . . , yn), aj > 0 for all j. Thus ‖x‖2 =∑n
j=1 ajx

2
j .

(iv) V = C0(Ω) (complex valued continuous functions on the closure of Ω),
where Ω is a bounded domain in Rn, with inner product

〈f, g〉 =

∫
Ω

f(x) g(x) dx.

Thus,

‖f‖2 =

∫
Ω

|f(x)|2 dx.

We often write ‖f‖L2 = ‖f‖L2(Ω) for this norm.

(v) V = C0(Ω), Ω as above, with inner product

〈f, g〉 =

∫
Ω

f(x) g(x) a(x) dx,

where a ∈ C0(Ω), a > 0 is fixed. Thus,

‖f‖2 =

∫
Ω

|f(x)|2 a(x) dx.

We may write ‖f‖L2(Ω,a(x) dx) for this norm.

(vi) Let N > n/2, let V = {f ∈ C0(Rn) : (1 + |x|)Nf is bounded}, with the
inner product

〈f, g〉 =

∫
Rn

f(x) g(x) dx.
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Note that the integral converges under this decay assumption. Thus,

‖f‖2 =

∫
Rn

|f(x)|2 dx.

We often write ‖f‖L2 = ‖f‖L2(Rn) for this norm, in accordance with (vii)
below.

(vii) V = L2(Rn) = {f measurable on Rn :
∫
|f |2 < ∞}/ ∼ where ∼ is the

equivalence relation by which two measurable functions are equivalent if
they differ on a set of measure 0, with inner product

〈f, g〉 =

∫
Rn

fg,

so ‖f‖2 =
∫
|f |2. Notice that (vi) gives a subspace of this, on which the

inner product is the restriction of the L2-inner product.
First, note that L2(Rn) is indeed a vector space, namely (as multipli-

cation by constants certainly gives another element of V ) f, g ∈ V implies
f + g ∈ V (note that f + g is well-defined a.e. since

∫
|f |2 <∞ implies that

f is a.e. finite, and similarly with g, and changing both f and g on a set
of measure 0 changes f + g on a set of measure 0 as well). To see this, one
just needs to note that for all x with f(x), g(x) finite,

|(f(x)+g(x))|2 ≤ (|f(x)|+|g(x)|)2 = |f(x)|2+|g(x)|2+2|f(x)||g(x)| ≤ 2(|f(x)|2+|g(x)|2),

so
∫
|f + g|2 ≤ 2

∫
|f |2 + 2

∫
|g|2, giving f + g ∈ L2.

That 〈·, ·〉 is well defined follows from f, g a.e. finite since
∫
|f |2,

∫
|g|2 <

∞, and |f(x)g(x)| ≤ |f(x)|2+|g(x)|2
2 for all x for which f(x), g(x) finite, i.e.

on the complement of a set of measure 0, so by the monotonicity of the
integral |fg| is integrable, so fg is integrable. Further, changing f, g on
sets of measure 0 only changes the product on a set of measure 0, thus
leaves the integral unchanged, so it is indeed well-defined independent of
the choice of the representative of the equivalence class.

In addition, ‖f‖2 = 0 means
∫
|f |2 = 0, thus f(x) = 0 a.e. x, i.e. f is

in the equivalence class of the zero function. All other properties required
in the definition of an inner product follow from the basic properties of C,
and the linearity and monotonicity of the integral.

(viii) Ω ⊂ Rn measurable, V = L2(Ω) = {f measurable on Ω :
∫

Ω
|f |2 <∞}/ ∼,

∼ as in (vii), with inner product

〈f, g〉 =

∫
Ω

fg,

so ‖f‖2 =
∫

Ω
|f |2. Notice that (iv) is a subset of this, on which the inner

product is the restriction of the L2(Ω)-inner product. (This is the trivial
zero dimensional vector space if the measure of Ω is 0!)

A few properties on inner products should be observed immediately. First, the
inner product is conjugate-linear in the second variable (which simply means linear
if the vector space is real):

〈v, c1w1 + c2w2〉 = 〈c1w1 + c2w2, v〉 = c1〈w1, v〉+ c2〈w2, v〉

= c1〈w1, v〉+ c2〈w2, v〉 = c1〈v, w1〉+ c2〈v, w2〉.

A map V × V → C which is linear in the first variable and conjugate-linear in the
second variable is called sesquilinear. Second, by (ii), if v ∈ V then 〈v, v〉 = 〈v, v〉,
so 〈v, v〉 is real. Thus, (iii) is the statement that this real number is non-negative,
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and it is actually positive if v 6= 0. Also, by linearity, denoting the 0 vector in V by
0V (usually we simply denote this by 0, but here this care clarifies the calculation),

〈0V , v〉 = 〈0 · 0V , v〉 = 0〈0V , v〉 = 0, v ∈ V,
and by Hermitian symmetry then

〈v, 0V 〉 = 〈0V , v〉 = 0.

We also note a useful properties of ‖.‖:
(2) ‖cv‖2 = 〈cv, cv〉 = c〈v, cv〉 = cc〈v, v〉 = |c|2‖v‖2, c ∈ C, v ∈ V,
so

‖cv‖ = |c| ‖v‖,
proving the absolute homogeneity of the ‘norm’.

One concept that is tremendously useful in inner product spaces is orthogonality:

Definition 3. Suppose V is an inner product space. For v, w ∈ V we say that v is
orthogonal to w if 〈v, w〉 = 0.

Note that 〈v, w〉 = 0 if and only of 〈w, v〉 = 0, so v is orthogonal to w if and only
if w is orthogonal to v – so we often say simply that v and w are orthogonal.

As an illustration of its use, let’s prove Pythagoras’ theorem:

Lemma 0.1. Suppose V is an inner product space, v, w ∈ V and v and w are
orthogonal. Then

‖v + w‖2 = ‖v‖2 + ‖w‖2 = ‖v − w‖2.

Proof. Since v−w = v+(−w), the statement about v−w follows from the statement
for v + w and ‖ − w‖ = ‖w‖. Now,

〈v+w, v+w〉 = 〈v, v+w〉+〈w, v+w〉 = 〈v, v〉+〈v, w〉+〈w, v〉+〈w,w〉 = 〈v, v〉+〈w,w〉
by the orthogonality of v and w, proving the result. �

One use of orthogonality is the following:

Lemma 0.2. Suppose v, w ∈ V , w 6= 0. Then there exist unique v‖, v⊥ ∈ V such
that v = v‖ + v⊥, v‖ = cw for some c ∈ C and 〈v⊥, w〉 = 0.

Proof. If v = v‖ + v⊥ then taking the inner product with w and using v‖ = cw we
deduce

〈v, w〉 = 〈cw,w〉+ 〈v⊥, w〉 = c‖w‖2,
so as w 6= 0,

c =
〈v, w〉
‖w‖2

.

Thus, v‖ = cw and v⊥ = v − cw, giving uniqueness.
On the other hand, if we let

c =
〈v, w〉
‖w‖2

, v‖ = cw, v⊥ = v − cw,

then v⊥+v‖ = v and v‖ = cw are satisfied, so we merely need to check 〈v⊥, w〉 = 0.
But

〈v⊥, w〉 = 〈v, w〉 − c〈w,w〉 = 〈v, w〉 − 〈v, w〉
‖w‖2

‖w‖2 = 0,

so the desired vectors v⊥ and v‖ indeed exist. �

One calls v‖ the orthogonal projection of v to the span of w.
The final piece we need to show that our ‘norm’ is indeed a norm is the triangle

inequality. This is achieved by the Cauchy-Schwarz inequality:
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Lemma 0.3. In an inner product space V ,

|〈v, w〉| ≤ ‖v‖‖w‖, v, w ∈ V.

Proof. If w = 0, then both sides vanish, so we may assume w 6= 0. Write v = v‖+v⊥
as in Lemma 0.2, so

v‖ = cw, c =
〈v, w〉
‖w‖2

.

Then by Pythagoras’ theorem, using 〈v‖, v⊥〉 = c〈w, v⊥〉 = 0,

‖v‖2 = ‖v‖‖2 + ‖v⊥‖2 ≥ ‖v‖‖2 = |c|2‖w‖2 =
|〈v, w〉|2

‖w‖2
.

Multiplying through by ‖w‖2 and taking the non-negative square root completes
the proof of the lemma. �

A useful consequence of the Cauchy-Schwarz inequality is the triangle inequality
for the norm:

Lemma 0.4. In an inner product space V ,

‖v + w‖ ≤ ‖v‖+ ‖w‖.

Proof. One only needs to prove the equivalent estimate where one takes the square
of both sides:

‖v + w‖2 ≤ ‖v‖2 + 2‖v‖ ‖w‖+ ‖w‖2.
But

‖v+w‖2 = 〈v+w, v+w〉 = ‖v‖2 +〈v, w〉+〈w, v〉+‖w‖2 ≤ ‖v‖2 +2‖v‖ ‖w‖+‖w‖2,

where the last inequality is the Cauchy-Schwarz inequality. �

As a consequence:

Corollary 0.5. If V is an inner product space, ‖v‖ = 〈v, v〉1/2 defines a norm on
V . Thus d(v, w) = ‖v − w‖ is a metric on V .

In general, when talking about an inner product space, one always takes the
norm and the metric to be those in these corollary, unless otherwise specified. In
particular, convergence, etc., are with respect to this metric.

Some examples of a normed vector space where the norm does not come from
an inner product are:

(i) V = C0(Ω) (complex valued continuous functions on the closure of Ω),
where Ω is a bounded domain in Rn, and

‖f‖C0 = sup
x∈Ω

|f(x)|;

(ii) V = L1(Rn) with norm

‖f‖L1 =

∫
|f |.

Note that in a normed vector space, with convergence defined as for inner product
spaces, the vector space operations are (jointly) continuous:

Lemma 0.6. If V is a normed vector space, vj → v, wj → w in V and cj → c in
the scalars, then cjvj → cv and vj + wj → v + w in V .
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This lemma states that the vector space operations

+ : V × V → V, · : C× V → V or · : R× V → V

are continuous, when one equips the product spaces with the product metric, so
e.g. on V × V one has dV×V ((v, v′), (w,w′)) = dV (v, w) + dV (v′, w′).

Proof. Consider the sequence {vj + wj}∞j=1 first. Then

‖(vj + wj)− (v + w)‖ = ‖(vj − v) + (wj − w)‖ ≤ ‖vj − v‖+ ‖wj − w‖ → 0

as vj → v, wj → w. Similarly,

‖cjvj − cv‖ = ‖(cjvj − cjv) + (cjv − cv)‖ ≤ ‖cjvj − cjv‖+ ‖cjv − cv‖
= ‖cj(vj − v)‖+ ‖(cj − c)v‖ = |cj | ‖vj − v‖+ |cj − c| ‖v‖ → 0

since convergent sequences in R or C are bounded. �

We used in the proof that convergent sequences in the scalars are bounded; this
is also true for convergent sequences in a normed vector space V (indeed, in any
metric space!). Namely, if vj → v in V , then for j sufficiently large, ‖vj − v‖ ≤ 1,
hence

‖vj‖ = ‖(vj − v) + v‖ ≤ ‖vj − v‖+ ‖v‖ ≤ ‖v‖+ 1.

Thus, for all but finitely many j, ‖vj‖ ≤ ‖v‖+ 1, hence the sequence {‖vj‖}∞j=1 is
bounded.

We can now show that the inner product is jointly continuous with respect to
the notion of convergence we discussed:

Lemma 0.7. Suppose that V is an inner product space. If vj , wj ∈ V , and vj → v,
wj → w in V then 〈vj , wj〉 → 〈v, w〉. Thus,

〈·, ·〉 : V × V → C
is continuous.

Proof. We have

〈vj , wj〉 − 〈v, w〉 = 〈vj , wj〉 − 〈vj , w〉+ 〈vj , w〉 − 〈v, w〉
= 〈vj , wj − w〉+ 〈vj − v, w〉.

Thus,

|〈vj , wj〉−〈v, w〉| ≤ |〈vj , wj−w〉|+ |〈vj−v, w〉| ≤ ‖vj‖ ‖wj−w‖+‖vj−v‖ ‖w‖ → 0

since {‖vj‖}∞j=1 is bounded. �

Suppose now that we have a sequence of orthogonal non-zero vectors {xj}∞j=1 in
an inner product space V , and suppose that

v =

∞∑
j=1

cjxj ,

i.e. this sum converges to v, which, recall, means that with vN =
∑N
j=1 cjxj , vN → v

as N →∞. Then, by the continuity of the inner product, for any w,

〈v, w〉 =

∞∑
j=1

cj〈xj , w〉.

Applying this with w = xk, all inner products on the right hand side but the one
with j = k vanish, and we deduce that

〈v, xk〉 = ck‖xk‖2,
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hence

(3) ck =
〈v, xk〉
‖xk‖2

.

As these orthogonal collections of vectors are so useful, we make a definition.

Definition 4. An orthogonal set S of vectors in an inner product space V is a
subset of V consisting of non-zero vectors such that if x, x′ ∈ S and x 6= x′ then x
is orthogonal to x′.

An orthogonal set is called orthonormal if all of its elements have norm 1.

Now, one could check easily by an explicit computation that the functions we
have considered, in terms of which we would like to express our initial or boundary
data, are orthogonal to each other. Thus, if we can write our data as an infinite
linear combination of these functions, then the coefficients can be determined easily.
For instance, if we want to write

h(θ) = a0 +

∞∑
n=1

an cos(nθ) + bn sin(nθ),

where we consider the inner product on functions on S1 to be given by

〈f, g〉 =

∫ 2π

0

f(θ) g(θ) dθ,

then we must have

a0 =
〈h, 1〉
‖1‖2

=

∫ 2π

0
h(θ) dθ∫ 2π

0
1 dθ

=
1

2π

∫ 2π

0

h(θ) dθ,

an =

∫ 2π

0
h(θ) cos(nθ) dθ∫ 2π

0
cos2(nθ) dθ

=
1

π

∫ 2π

0

h(θ) cos(nθ) dθ,

bn =

∫ 2π

0
h(θ) sin(nθ) dθ∫ 2π

0
sin2(nθ) dθ

=
1

π

∫ 2π

0

h(θ) sin(nθ) dθ.

Here we used the computation cos(2nθ) = 2 cos2(nθ)−1, so cos2(nθ) = 1
2 (cos(2nθ)+

1), and thus∫ 2π

0

cos2(nθ) dθ =
1

2

∫ 2π

0

(cos(2nθ) + 1) dθ =
1

4n
sin(2nθ)|2π0 +

1

2
θ|2π0 = π,

with a similar result with cosine replaced by sine. In particular, returning to (1),
we deduce that

A0 =
1

2π

∫ 2π

0

h(θ) dθ,

An =
1

πRn

∫ 2π

0

h(θ) cos(nθ) dθ,

Bn =
1

πRn

∫ 2π

0

h(θ) sin(nθ) dθ.

We of course need to discuss whether we can indeed write h in this form, but
before this we should give a conceptual reason why the functions we considered
are automatically orthogonal to each other. For this purpose we need to consider
symmetric operators on V . Indeed, the operators A we want to consider are not
defined on all of V (or if we define A on V , it will not map V to itself), so we have
to enlarge our framework.
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So we consider operators defined on a linear subspace D of V . In order to make
this definition well-behaved, we need to assume that D is dense in V , i.e. if v ∈ V
then there exists vj ∈ D such that vj → v.

Definition 5. A linear operator A : D → V is called symmetric if

〈Av,w〉 = 〈v,Aw〉

for all v, w ∈ D.

Recall that an eigenvector of A is an element v 6= 0 of D such that Av = λv for
some λ ∈ C; λ is then an eigenvalue of A.

Lemma 0.8. Suppose A : D → V is symmetric. Then all eigenvalues of A are
real, and eigenvectors corresponding to distinct eigenvalues are orthogonal to each
other.

Proof. Suppose that λ is an eigenvalue of A, so for some v ∈ D, v 6= 0, Av = λv.
Then

λ‖v‖2 = 〈λv, v〉 = 〈Av, v〉 = 〈v,Av〉 = 〈v, λv〉 = λ‖v‖2,
so dividing through by ‖v‖2 we deduce that λ = λ, so λ is real.

Now suppose that λ and µ are eigenvalues of A (so they are both real), and
Av = λv, Aw = µw. Then

λ〈v, w〉 = 〈λv,w〉 = 〈Av,w〉 = 〈v,Aw〉 = 〈v, µw〉 = µ〈v, w〉.

If λ 6= µ then rearranging and dividing by λ− µ gives 〈v, w〉 = 0, as claimed. �

Now, the operator A = − d2

dθ2 defined for functions f ∈ C2(S1) (which, recall,
can be identified with 2π-periodic functions on R), is symmetric, since

〈Af, g〉 =

∫ 2π

0

−f ′′(θ)g(θ) dθ = −f ′(θ)g(θ)|2π0 +

∫ 2π

0

f ′(θ)g′(θ) dθ

= f(θ)g′(θ)|2π0 −
∫ 2π

0

f(θ)g′′(θ) dθ = 〈f,Ag〉,

where the boundary terms vanishes due to periodicity. A similar computation for

the operator A = − d2

dx2 defined for functions f ∈ C2([0, `]) gives

〈Af, g〉 =

∫ `

0

−f ′′(x)g(x) dx = −f ′(x)g(x)|`0 +

∫ `

0

f ′(x)g′(x) dx

= −f ′(x)g(x)|`0 + f(x)g′(x)|`0 −
∫ `

0

f(x)g′′(x) dx

=
(
f(x)g′(x)− f ′(x)g(x)

)
|`0 + 〈f,Ag〉

Thus, the operator A is symmetric provided we restrict it to a domain D so that
the boundary terms vanish. For instance,

(i) A = − d2

dx2 defined for functions f ∈ C2([0, `]) such that f(0) = 0 = f(`)
(Dirichlet boundary condition) is symmetric,

(ii) A = − d2

dx2 defined for functions f ∈ C2([0, `]) such that f ′(0) = 0 = f ′(`)
(Neumann boundary condition) is symmetric,

(iii) A = − d2

dx2 defined for functions f ∈ C2([0, `]) such that f ′(0) − af(0) = 0
and f ′(`) − bf(`) = 0 for some given a, b ∈ R (Robin boundary condition)
is symmetric.
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As another example, the operator A = −i ddx defined on C1 functions which are

2`-periodic, mapping into C0([0, 2`]) with the standard inner product, is symmetric
since

〈Af, g〉 =

∫ 2`

0

−if ′(x)g(x) dx = −if(x)g(x)|2`0 + i

∫ 2`

0

f(x)g′(x) dx = 〈f,Ag〉.

As a consequence, we deduce:

Corollary 0.9. The following sets of functions are all orthogonal to each other in
the respective vector spaces.

(i) In V = C0([0, `]), with the standard inner product,

fn(x) = sin
(nπx

`

)
, n ≥ 1, n ∈ Z.

(ii) In V = C0([0, `]), with the standard inner product,

f0(x) = 1, fn(x) = cos
(nπx

`

)
, n ≥ 1, n ∈ Z.

(iii) In V = C0([0, 2`]), with the standard inner product,

fn(x) = einπx/`, n ∈ Z.

(iv) In V = C0([0, 2`]), with the standard inner product,

f0(x) = 1, fn(x) = cos
(nπx

`

)
, n ≥ 1, n ∈ Z, gn(x) = sin

(nπx
`

)
, n ≥ 1, n ∈ Z.

Proof. These are all consequences of being eigenfunctions of symmetric operators,
namely:

(i) A = − d2

dx2 , with Dirichlet boundary condition, the eigenvalue of fn is λn =
n2π2

`2 ,

(ii) A = − d2

dx2 , with Neumann boundary condition, the eigenvalue of fn is

λn = n2π2

`2 ,

(iii) A = −i ddx , on 2`-periodic C1 functions, the eigenvalue of fn is λn = nπ
` ,

(iv) A = − d2

dx2 , on 2`-periodic C2 functions, the eigenvalue of fn is λn = n2π2

`2

which is also the eigenvalue of gn.

Thus, in all cases but the last the functions are eigenfunctions of a symmetric
operator with distinct eigenvalues, hence are orthogonal. In the last case, we have
all of the claimed orthogonality by the same argument, except the orthogonality of
fn to gn. This can be seen easily, however, as the cosines are even around x = `,
while the sines are odd around x = `, so the product is odd, hence its integral over
the interval [0, 2`], which is symmetric around `, vanishes. �

We also have the following general symmetry result for the Laplacian:

Proposition 0.10. Let Ω be a bounded domain with smooth boundary, V = C0(Ω̄).
The Laplacian ∆, defined on any one of the following domains:

(i) (Dirichlet) D = {f ∈ C2(Ω) : f |∂Ω = 0},
(ii) (Neumann) D = {f ∈ C2(Ω) : ∂f

∂n |∂Ω = 0},
(iii) (Robin) D = {f ∈ C2(Ω) :

(
∂f
∂n − af

)
|∂Ω = 0},

is symmetric. Here, in case (iii), a is a given continuous function on ∂Ω.
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Proof. We recall Green’s identity,∫
Ω

(f∆g − (∆f)g) dx =

∫
∂Ω

(
f
∂g

∂n
− ∂f

∂n
g

)
dS(x).

Replacing g by g, we have∫
Ω

(f∆g − (∆f)g) dx =

∫
∂Ω

(
f
∂g

∂n
− ∂f

∂n
g

)
dS(x).

Under each of the conditions listed above, the right hand side vanishes. Thus,∫
Ω

f∆g dx =

∫
Ω

(∆f)g dx,

so ∆ is symmetric.
We recall how Green’s identity is proved: consider the vector field f∇g. By the

divergence theorem,∫
Ω

div(f∇g) dx =

∫
∂Ω

fn̂ · ∇g dS(x) =

∫
∂Ω

f
∂g

∂n
dS(x),

and similarly ∫
Ω

div(g∇f) dx =

∫
∂Ω

g
∂f

∂n
dS(x).

Subtracting these two yields∫
∂Ω

(
f
∂g

∂n
− ∂f

∂n
g

)
dS(x) =

∫
Ω

(div(f∇g)− div(g∇f)) dx

=

∫
Ω

(f∆g +∇f · ∇g − g∆f −∇g · ∇f) dx =

∫
Ω

(f∆g − (∆f)g) dx,

as claimed. �

We still need to discuss whether ‘any’ v in V can be written as a stated linear
combination. This is in general not the case: for instance, if V = R2, and x1 =
(1, 0), then {x1} is an orthogonal set of non-zero vectors, but not every element of
V can be written as a linear combination of {x1} (i.e. is not, in general, a multiple
of x1): we need another vector, such as x2 = (0, 1).

We thus make the following definition.

Definition 6. Suppose V is an inner product space. We say that an orthogonal
set {xn}∞n=1 is complete if for every v ∈ V there exist scalars cn such that v =∑∞
n=1 cnxn.
A complete orthogonal set is also called an orthogonal basis.
If all of its elements have norm 1, an orthogonal basis is called an orthonormal

basis.

Note that, as discussed before, if the cn exist, they are automatically unique:
they are determined by (3). In fact, we can always define a series by the formula
(3): given v ∈ V , let

(4) vn =

n∑
k=1

ckxk, ck =
〈v, xk〉
‖xk‖2

;

the question is whether vn → v. The coefficients ck in (4) may be called the
generalized Fourier coefficients of v. Note that vn has the useful property that
v − vn is orthogonal to xj for 1 ≤ j ≤ n. Indeed,

〈v − vn, xj〉 = 〈v, xj〉 −
n∑
k=1

ck〈xk, xj〉 = cj − cj = 0, j ≤ n,
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hence v−vn is also orthogonal to any vector of the form
∑n
k=1 bkxk, i.e. to the linear

span of {x1, . . . , xn}, in particular to vn itself. Thus, by Pythagoras’ theorem, we
have

‖v‖2 = ‖v − vn‖2 + ‖vn‖2 ≥ ‖vn‖2 =

n∑
j,k=1

cjck〈xj , xk〉 =

n∑
k=1

|ck|2‖xk‖2.

This is Bessel’s inequality. Thus, we deduce that for any v ∈ V , the generalized
Fourier coefficients satisfy

n∑
k=1

|ck|2 ‖xk‖2 ≤ ‖v‖2,

hence, as these partial sums form a bounded monotone increasing (which, recall,
means non-decreasing) sequence,

∑∞
k=1 |ck|2 ‖xk‖2 converges, and as ‖v‖2 is an

upper bound for the partial sums, the limit is ≤ ‖v‖2. If this limit is ‖v‖2, then we
deduce that ‖v− vn‖ → 0 as n→∞, so with the converse being clear we conclude
the following:

Lemma 0.11. Suppose V is an inner product space. An orthogonal set {xn}∞n=1 is
complete if and only if for every v ∈ V the generalized Fourier coefficients satisfy

∞∑
k=1

|ck|2‖xk‖2 = ‖v‖2.

This may be called Bessel’s equality, but is usually called Parseval’s identity.
Now, let’s compute ‖v −

∑n
k=1 akxk‖2, where ak ∈ C. This is best done by

writing v = v‖ + v⊥, where

v‖ =

n∑
k=1

ckxk,

the ck being the generalized Fourier coefficients, for then v⊥ is orthogonal to all xk,
and hence

‖v −
n∑
k=1

akxk‖2 = ‖v⊥ +

n∑
k=1

(ck − ak)xk‖2 = ‖v⊥‖2 +

n∑
k=1

|ck − ak|2‖xk‖2.

In particular,

‖v −
n∑
k=1

akxk‖2 ≥ ‖v⊥‖2,

and equality holds if and only of ak = ck for k = 1, . . . , n. This is the least squares
approximation:

Proposition 0.12. Given v ∈ V , and an orthogonal set {x1, . . . , xn}, the choice
of ak that minimizes the error ‖v −

∑n
k=1 akxk‖2 of the approximation of v by∑n

k=1 akxk is given by the generalized Fourier coefficients, ck.

Thus, even if the generalized Fourier series
∑∞
k=1 ckxk does not converge to the

function, its partial sums give the best possible approximations of v in the precise
sense of this Proposition.

We now actually turn to completeness statements. We prove in the next lecture
that all of the orthogonal sets listed in Corollary 0.9 are complete. Moreover, for
the Laplacian we have the following result, which is beyond our tools in this class:
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Theorem 0.13. Suppose Ω is a bounded domain in Rn with smooth boundary.
For the Laplacian, defined on the subspace D of C0(Ω) given by (i), (ii) or (iii) of
Proposition 0.10, the eigenspace for each eigenvalue λ ∈ R is finite dimensional,
the eigenvalues can be arranged in an increasing sequence, tending to infinity, λ1 ≤
λ2 ≤ . . ., and choosing an orthogonal basis xk,j, j = 1, . . . , Nk, of the λj-eigenspace,
the orthogonal set

{xk,j : k ∈ Z, k ≥ 1, j = 1, . . . , Nk}

is complete.

The analogue of this theorem for variable coefficient symmetric so-called elliptic
second order differential operators with appropriate boundary conditions is also
valid.

There is one more issue that should be observed. For the generalized Fourier
series of v as in (4), and for n < m,

(5) ‖vn − vm‖2 =

m∑
k=n+1

|ck|2 ‖xk‖2.

Since
∑∞
k=1 |ck|2 ‖xk‖2 converges, the differences of the partial sums, on the right

hand side of (5), go to 0 as n,m → ∞. Thus, by (5), the same holds for the
differences of the partial sums of

∑∞
k=1 ckxk, i.e. the partial sums form a Cauchy

sequence. In an ideal world, this ought to imply that the series
∑∞
k=1 ckxk converges,

but this only holds if our inner product space is complete.
Thus, we see that for any inner product space and any orthogonal set inside it,

the generalized Fourier series for any v ∈ V is Cauchy. If V is complete, it will thus
converge to some v′ ∈ V (not necessarily to v though: recall the R2 example).

Now, an example of a complete normed vector space is, for Ω as above, V =
C0(Ω) with the C0-norm:

‖f‖C0 = sup
x∈Ω

|f(x)|.

Unfortunately, an example of an incomplete normed vector space is V = C0(Ω)
with the L2-norm, i.e. our inner product space. On the other hand, L2(Rn) and
L2(Ω) are complete, where Ω is measurable.

Theorem 0.14. The inner product space L2(Rn) is complete, as is L2(Ω).

Proof. The L2(Ω) completeness follows from the L2(Rn) case by regarding elements
of L2(Ω) as equivalence classes of functions on Rn which vanish outside Ω. (Alter-
natively, the proof given below goes through for L2(Ω) directly.)

The proof of L2(Rn) being complete is completely analogous to the proof of
the completeness of L1(Rn). Thus, suppose that {fk}∞k=1 is a Cauchy sequence
in L2(Rn). It suffices to show that it has a subsequence converging to some f ∈
L2(Rn), for then the convergence of the full Cauchy sequence follows. As in the case
of L1(Rn), we may pick a subsequence {fkj}∞j=1 such that ‖fkj+1

− fkj‖L2 < 2−j

for j ≥ 1. We claim that this subsequence converges pointwise almost everywhere
to a function f , f ∈ L2, and ‖f − fkj‖L2 → 0 as j → ∞, completing the proof of
the theorem.

To see the claim, let

sN (x) = fk1(x) +

N−1∑
j=1

(fkj+1
(x)− fkj (x)),
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and

σN (x) = |fk1(x)|+
N−1∑
j=1

|fkj+1(x)− fkj (x)|.

Notice that the sum defining sN (x) actually telescopes, so sN (x) = fkN (x) for all
x. Now, as σN is monotone increasing in N , the pointwise limits

g(x) = lim
N→∞

σN (x)

exist as extended non-negative real numbers, and
∫
σ2
N →

∫
g2. Further, by the

triangle inequality

‖σN‖L2 ≤ ‖fk1‖L2 +

N−1∑
j=1

‖fkj+1
− fkj‖L2 ≤ ‖fk1‖L2 +

N−1∑
j=1

2−j ≤ ‖fk1‖L2 + 1

for all N , so the limit ‖g‖L2 satisfies the same inequality:

‖g‖L2 ≤ ‖fk1‖L2 + 1.

In particular, g is finite a.e., so the series fk1(x) +
∑∞
j=1(fkj+1

(x)− fkj (x)), whose
partial sums are the sN , converges absolutely for a.e. x, and thus itself converges
for a.e. x. We let

f(x) = lim
N→∞

sN (x) = fk1(x) +

∞∑
j=1

(fkj+1(x)− fkj (x)),

defined a.e. x. Now

‖sN‖L2 ≤ ‖fk1‖L2 +

N−1∑
j=1

‖fkj+1
− fkj‖L2 ≤ ‖fk1‖L2 + 1

again by the triangle inequality (applied to the sum defining sN ). Since |sN (x)| ≤
|σN (x)| ≤ g(x) for a.e. x, the dominated convergence theorem implies

∫
|sN |2 →∫

|f |2, and thus
∫
|f |2 ≤ (‖fk1‖L2 + 1)2, so f ∈ L2.

Finally, for N ≥ m,

‖fkN − fkm‖L2 ≤
N−1∑
j=m

‖fkj+1
− fkj‖L2 ≤

N−1∑
j=m

2−j ≤ 2−m+1,

and

|fkN (x)− fkm(x)| ≤
N−1∑
j=m

|fkj+1
(x)− fkj (x)| ≤ σN (x) ≤ g(x)

for a.e. x, so by the dominated convergence theorem
∫
|fkN − fkm |2 →

∫
|f −

fkm |2 as N → ∞. Correspondingly, as ‖fkN − fkm‖L2 ≤ 2−m+1 for all N , ‖f −
fkm‖L2 ≤ 2−m+1 as well, showing that fkm → f in L2, finishing the proof of the
completeness. �

We use this opportunity to make a definition:

Definition 7. A complete inner product space is called a Hilbert space.

Moreover, we also have:

Theorem 0.15. The set of compactly supported continuous functions on Rn is
dense in L2(Rn).
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Proof. This theorem reduces to the density of simple functions in L2(Rn), for then
one can approximate the characteristic functions of measurable sets by step func-
tions, and then in turn by continuous functions of compact support, exactly as in
the case of L1.

To see the density of simple functions, decompose f into real and imaginary
parts, so one may assume f is real, and then further write f = f+ − f−, f+ =
max(f, 0), f− = −min(f, 0), and note f± ∈ L2 since f+(x)2 + f−(x)2 = f(x)2 for
all x. Then take φk,± ≥ 0 simple functions such that φk,± ↗ f± pointwise; then∫
|f± − φk,±|2 → 0 since |f±(x) − φk,±(x)|2 → 0 for all x, and |f± − φk,±|2 ≤ f2

±,
so by the dominated convergence theorem

∫
|f± − φk,±|2 → 0 indeed. �

Now, recall that every incomplete normed vector space V can be completed, i.e.
there is a complete normed vector space V̂ and an inclusion map ι : V → V̂ which
is linear such that for v ∈ V , ‖ι(v)‖V̂ = ‖v‖V , and such that for any v ∈ V̂ , there

is a sequence {vn}∞n=1 in V such that ι(vn) → v in V̂ (i.e. the image of V under ι

is dense in V̂ ).
This completion is (essentially) unique. Note that if {vn}∞n=1 is Cauchy in V ,

then {ι(vn)}∞n=1 is Cauchy in V̂ , so it converges. Moreover, ι is one-to-one, so one

can simply think of elements of V as elements of V̂ . It is also useful to note that if
V is an inner product space, then so is V̂ .

We thus conclude:

Corollary 0.16. The completion of V = Cc(Rn) with the inner product 〈f, g〉 =∫
fg is L2(Rn).

The same applies if one takes V as in Example (vi).
We also remark that if V is an inner product space, and {xn}∞n=1 is a complete

orthogonal set in V , then it is also complete in the completion V̂ of V : this follows
immediately since for v ∈ V we can take a sequence vn ∈ V such that vn → v, and
use that the generalized Fourier series of vn converges to vn, as well as the fact that
the generalized Fourier series of v converges to some v′ to show that v′ = v.


