MATH 172: CONVERGENCE OF THE FOURIER SERIES

ANDRAS VASY

We now discuss convergence of the Fourier series on compact intervals I. ‘Con-

vergence’ depends on the notion of convergence we use, such as
(i) L?: u; — win L? if ||u; — ullpe — 0 as j — oc.
(ii) uniform, or C%: w; — wuniformly if |u;—ul|co = sup,¢; |uj(x)—u(x)| — 0.

(ili) uniform with all derivatives, or C*°: u; — u in C*° if for all non-negative

integers k, sup,c; |0%u;(x) — 0%u(z)| — 0.
(iv) pointwise: u; — u pointwise if for each z € I, u;(z) — u(x), i.e. for each
z €I, |uj(z) —u(z)| — 0.

Note that pointwise convergence is too weak for most purposes, so e.g. just
because u; — u pointwise, it does not follow that [, u;(z)dx — [wu(z)dz. This
would follow, however, if one assumes uniform convergence, or indeed L? (or L)
convergence, since

| [ wste)do= [ uteyae| =| [ (@) =ute)) do| = lay = D] < o=l o1

Note also that uniform convergence implies L? convergence since

1/2
oty — ull 2 = ( [ - u|2dx)
1/2 1/2
< ( s — s dw) - ( / 1dw) g — ulleo,

so if u; — w uniformly, it also converges in L?. Uniform convergence also implies
pointwise convergence directly from the definition. On the other hand, convergence
in C*° implies uniform convergence directly from the definition.

On the failure of convergence side: the uniform limit of a sequence of continuous
functions is continuous, so in view of the continuity of the complex exponentials,
sines and cosines, the various Fourier series cannot converge uniformly unless the
limit is continuous. On the other hand, even if the limit is continuous, the conver-
gence may not be uniform: understanding conditions, under which it is, is one of
our first tasks.

There are two issues regarding convergence: whether the series in question con-
verges at all (in whatever sense we are interested in), and second whether it con-
verges to the desired limit, in this case the function whose Fourier series we are
considering. The first part is easier to answer: we have already seen that even the
generalized Fourier series converges in L? (but not necessarily to the function!).

Now consider uniform convergence. Recall that the typical way one shows con-
vergence of a series is that to show that each term in absolute value is < M,,, where
M,, is a non-negative constant, such that M, converges. Similarly, one shows
that a series ) u, () converges uniformly by showing that there are non-negative
constants M,, such that sup,c;|un(z)] < M, and such that ) M, converges.
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The Weierstrass M-test is the statement that under these assumptions the series
>, Un(x) converges uniformly. In particular, if one shows that for n # 0 this
boundedness holds with M,, = C/|n|® where C > 0 and s > 1, the Weierstrass
M-test shows that the series converges uniformly. (Since a finite number of terms
do not affect convergence, one can always ignore a finite number of terms if it is
convenient,.)

So suppose that ¢ is a function on [—¢, £] and its 2¢-periodic extension, denoted
by ¢ext, is C*, k > 1 integer. The full Fourier series is

(1) Z Crneinﬂ'a:/é, C, = QE/ ¢ 7zn7r:c/f dz.

n=—oo

This gives us the bound

4
@ (el [ @i L [ owlar< s (o)

z€[—L,0]

so the coefficients are bounded, but it is not clear if they have any decay, hence the
uniform convergence of the Fourier series is unclear.
Now we integrate by parts, putting additional derivatives on ¢. Thus, for n # 0,

1 Y Y |
Cn 2£ (Z’)’Lﬂ-)/ (8LE¢)($) e_’LnTrm/Z dx’

since the boundary terms vanish in view of the fact that ¢y is C*. Note that the
right hand side looks like the original expression for C,,, except that ¢ has been
replaced by 9.¢, and that the factor % appeared in front. Thus, repeating this
argument k£ times, we deduce that

LN 1 —inmz /e
Cn = % (znw) /_é(aﬁb)(x)e dz.

In particular, using the analogue of the estimate (2) to estimate the integral, we
deduce that

¢ \" . C o\" .
Col S (=) sup [(O70)@)| =7, C=(=] sup [(9:0))]
|7 ze[—4,0) n T ) zel—£4)

In particular, for k > 2, we deduce by the Weierstrass M-test that the Fourier series
converges uniformly.
It is possible to improve this conclusion as follows. Note that

/ k
Cn = <) Ck,n; n 5& 07

mT

where C},, is the Fourier coefficient of 9¥¢. Thus, as long as 9% ¢ is continuous, or
indeed L?, we have from Bessel’s inequality, with X, (z) = e/t that

203 |Chnl® =D [CrnP I Xnll* < 11056172
neZ neEZ

Now, in order to apply the Weierstrass M-test we need that ) _, |C,| converges.
We now use the Cauchy-Schwarz inequality for sequences, with inner product on

the sequences given by
<{an}7 {bn}>22 = Z anby,
neZ
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k
Below by { ( Inﬁﬂ> } we mean the sequence whose n = 0 entry is 0. We thus obtain
using k£ > 1/2 that

()] - (o) (2 ()"

nez n€Z, n#£0
f 2k
< s lokols | 3 (W) ,

nezZ, n#0

1/2

so it indeed converges. We thus deduce by the Weierstrass M-test that the Fourier
series converges uniformly if merely k£ > 1.
Now, the term-by-term m-times differentiated Fourier series is

L
Z c. m7r ei'rmw/fv C, = i/ ¢(x) efinfrw/é dz,
2/,

n=—oo

so for n # 0 its coeflicients satisfy the estimate

inrt\™ 14 k—m C
Ch <|— su oF —_—
| ( ) <|n|w> Lo 0@ = prm

k
c=(£) sw @l
) ze[—¢,)

We thus deduce that the term by term m times differentiated Fourier series con-
verges uniformly for m < k — 2, and thus (by the standard analysis theorem) the
uniform limit of the Fourier series is actually k& — 2-times differentiable, with de-
rivative given by the term-by-term differentiated series. Modifying this argument
as above, using Bessel’s inequality, we in fact get that the Fourier series is actually
k — 1-times differentiable, with derivative given by the term-by-term differentiated
series.

In the extreme case, when the 2¢-periodic extension of ¢ is C*°, this tells us that
in fact the Fourier series converges in C*°. One way of summarizing our results thus
far is that the map

T:¢— Z Crneinﬂ'z/é, C, = 2[/ ¢ 7zn7rz/f dz,

n=—oo

is continuous as a map
T LA([~£,6) — L*([~£, 1)),

and also as

T: Coer([=6,4]) = Cpex([=£, 1)),

per per
as well as

T:C([—¢,0) = Coe (=4, 4).

per per
where the subscript per states that the 2¢-periodic extensions of these functions
must have the stated regularity properties. Note the loss of derivatives as a map
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on C', or more generally C*. We would like to say that this is the identity map
in each case; by the density of Cp¢, ([—/, £]) in these spaces it would suffice to show
this in the last case.

A more systematic way of achieving the same conclusion regarding convergence
is the following. The functions X, (z) = e™™*/* are eigenfunctions of 4 = —i-L
with periodic boundary conditions and with eigenvalue A,, = nw/£. Now, in general,
suppose that X,, are orthogonal eigenfunctions of a symmetric operator A : D — V'
on an inner product space V with eigenvalue A,, (which are thus real), and suppose
that ¢, A¢,...,A*¢ € D. Then for n such that X\, # 0, the generalized Fourier

coefficients

_ (6.X,)
[ X |2
satisfy
{0 Xn) (9 AXG) g (A9 Xn)
Cn:An1<¢, :>\n1 ) :Anl ) )
1 X2 [ X512 1 X2
Repeating k-times, we deduce that
C = )\7’(} <Ak¢’ Xn>

[Xnl?
Thus,
‘Cn| < |)‘n|_k”Ak¢”L2”XnHE21

In the special case X, (z) = €™/ we get the estimate

eNY 1 C 1
< _ 2 — = — 2,

which is almost the same estimate we had beforehand, with a slightly different
constant, and the norm of the derivative we use is weaker, not the uniform (or sup)
norm, but the L2-norm. But now note that this argument works even for instance
for the cosine and sine Fourier series, using that both sine and cosine are bounded
by 1 in absolute value, i.e. we do not have to write down these cases separately.
We have thus shown that under appropriate assumptions, depending on the
notion of convergence, the various kinds of Fourier series all converge. Note that
we may need stronger assumptions than the kind of convergence we would like, for
instance we needed to know something about derivatives of ¢ to conclude uniform
convergence. However, we still need to discuss what the Fourier series converge to!
Note that when the Fourier sine series,

ZB sin (nmz/f), By, @/ ¢(z) sin(nmz /L) dx

converges, as it does say in L2 when ¢ € L?, or uniformly if ¢ is C? and satisfies
the boundary conditions ¢(0) = 0 = ¢(¢), then it converges to an odd 2¢-periodic
function since each term sin(nmx/¢) is such. Similarly, the Fourier cosine series,
when it converges, converges to an even 2¢-periodic function. Moreover, note that



if a function ® is odd on [—£, ¢], its full Fourier series,

Af + Z Al cos (nmz/l) + By, sin (nmx/l) ,

Aj = %/ x)dw, Al = g/ ) cos(nmx/l) dx

Bl = Z/ ®(z) sin(nmzx/l)dz, n > 1,
—t

satisfies ,
Ay =0, A, =0, B, = %/0 O (z) sin(nmz/l) dz,

i.e. if @ is the odd 2¢-periodic extension of ¢ then B!, = B,,, B,, being the Fourier
sine coefficient of ¢ on [0,¢]. In view of an analogous argument for the Fourier
cosine series, convergence issues for both the Fourier sine and cosine series on [0, £]
can be reduced to those for the full Fourier series on [—/,¢], so we only consider
the latter. Moreover, the change of variables of 8 = ”2”” preserves all the notions
of convergence, so it suffices to consider the Fourier series on [—m,7]. (The general
case works directly, by the same arguments, but we have to write less after this
rescaling.)

One way of proving the convergence of the Fourier series is the following modifi-
cation of Hérmander’s proof of the Fourier inversion formula. We write C>(S') =
C([—m, @), and s(Z) for sequences {cn}nez such that [n|¥|c,| is bounded for all
k>0 (s stands for ‘Schwartz sequences’), with notion of convergence that a se-
quence {{cjn}nez}je, converges to {cp}tnez in s(Z) as j — oo if for all k& > 0
integer,

sup [n|"|¢jn — cn| — 0

neZ
as j — oo. Thus, the map
1
FC2(SY) = 8(2), (Fohn=5- | ¢< )= do,
is continuous, and it satisfies
d¢
.7:@ = inFo,
and
F O = 5 [ ole) e = (o),
Similarly, with
F~r:s(Z) —c™(SY), F e, }(0) Z cne'™,
we have
FYine,} = —]-' end,
while

‘Fﬁl{cn—l} = Z Cn—leine = Z Cnei(n+1)9 = eiefil{cn}'

n—=—oo n—=—oo
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Thus, the map T = F~1F : C(S') — C>°(S!) satisfies
d _d i0 _ o
T@ = @T7 T@ =€ T.

‘We have a lemma.:

Lemma 0.1. Suppose T : C=(S') — C>(S!) is linear, and commutes with e and
d%, Then T is a scalar multiple of the identity map, i.e. there exists ¢ € C such
that Tf = cf for all f € C>(S).

Proof. Let w € R. We show first that if ¢(w) = 0 and ¢ € C*°(S!) then (T'¢)(w) = 0.
Indeed, if we let

$1(0) = ¢(0)/(e” — ™)

then by Taylor’s theorem (or L’Hopital’s rule) ¢; is C*°, and it is 2w-periodic as
both the denominator and the numerator are. Thus, ¢ = (e’ — ¢*)¢1, and hence

T = (e —e)(Ten),
where we used that T is linear and commutes with multiplication by e?’. Substi-
tuting in 6 = w yields (T¢)(w) = 0 indeed.
Thus, fix w € R, and let g € C*°(S') be the function g = 1. Let c(w) = (Tg)(w);
thus ¢ € C*°(S!). We claim that for f € C>(S!),

(Tf)(w) = c(w)f ().
Indeed, let ¢(0) = f(0) — f(w)g(0), so ¢p(w) = f(w) — f(w)g(w) = 0. Thus, 0 =
(T¢)(w) = (T'f)(w) = f(w)(Tg)(w) = (Tf)(w) — c(w)f(w), proving our claim.
We have not used that T" commutes with dg so far. But
c(w) (g f)(w) =T(9pf)(w) = 0p(T'f)o=w = Do(c(0)f(0))lo=w
= (0pc)(w) f(w) + c(w)(9p.f)(w).
Comparing the two sides, and taking f such that f never vanishes, yields
(01e)(w) =0

for all w. Thus, ¢ is a constant, proving the lemma. O

The constant ¢ can be evaluated by applying T to a single function, e.g. to f =1,
which yields (Ff), =0if n # 0, (Ff)o = 1, hence T'f = f, so T is indeed the
identity map.

Now, if ¢ € L?([—, 7]), we take ¢,, whose 2m-periodic extensions are C°, which
converge to ¢ in L2 Since T¢, = ¢,, and T : L?([-7,7]) — L%*([-m,7]) is
continuous, we deduce that

n— 0o n— 00

i.e. the Fourier series converges in L? to ¢.

If ¢ € C1(S'), then we have seen that the Fourier series of ¢ converges uniformly
to some function 1, and as C*(S!) c L%(S?), it converges in L? to ¢. But uniform
convergence implies L? convergence, so in fact the Fourier series converges in L? to
1, so ¥ = ¢, and thus we conclude that the Fourier series of ¢ converges uniformly
to ¢.

As we could reduce all the Fourier series we have considered to the full Fourier
series on [—m, 71|, we deduce the following result:
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Theorem 0.2. The following orthogonal sets of functions are complete in the re-
spective vector spaces V', and thus the corresponding Fourier series of any ¢ € V
converges in L? to ¢.

(i) In V = L*([0,4]), with the standard inner product,
fn(x) =sin (?) ,m>1, nez.
(ii) In V = L2([0,4]), with the standard inner product,
folx) =1, fn(x)=cos (n—:x) ,n>1 nelZ.
(iii) In V = L%([-4,¥)), with the standard inner product,
fulz) =M@/t n e 7.

(iv) InV = L*([-4,£)), with the standard inner product,
fol@) =1, ful@) = cos (), n21, ne
gn(x) = sin (?) ,m>1, nez.

Moreover, if the appropriate extension, namely
(i) odd, 2¢-periodic,
(ii) even, 2¢-periodic,
(iii) 2¢-periodic,
(iv) 2€-periodic,
of ¢ is C, then the corresponding Fourier series converges to ¢ uniformly, and if
the appropriate extension is C'°°, then the convergence is in C*°.

We discuss a more traditional proof, using the Dirichlet kernel, in the Appendix.
We also connect these results to solving the Dirichlet problem for the Laplacian
on the disk of radius R,

D=B%={rcR?: |z| <R},
namely
Au=0, z €D,
ulop = h,
with h a given function on 0D. The general separated solution was

(3) u(r,0) = Ag + Z r" (A, cos(nb) + By, sin(nh)),

n=1

and using orthogonality, we have deduced the coefficients must be

1 2
Ay = — h(6) do
0 o 0 ( ) ’
1 2m
A, = h(6) cos(nd) do,
7TRn 0

2m
B, = ! / h(8) sin(nd) de.
0

TR"
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Now, if h is C*, then we have seen that its Fourier series converges uniformly to
h, ie. u(R,0) = h(f). Also, if h is C?, then |A,|,|B,| < C/R"n? for n > 1. This
suffices to conclude that for r < R,

n . 2C rr\m

|r"™ (A, cos(nf) + By, sin(nf))| < > (R) .
By the Weierstrass M-test, the series (3) converges uniformly on the closed disk,
i.e. for r € [0, R], and in addition the term-by-term m-times differentiated series
still converges uniformly in [0, p], for any p < R since the factors of n™ this differ-
entiation gives are counterbalanced by (%)n, and > 7, n™a™ converges whenever
m € R and a € (0,1), so u is a C* function of r and 6 for » € [0, R). A simple
modification of our argument for uniform convergence of the Fourier series of C*
functions would in fact extend this conclusion to h merely C*. As v = r" cos(nf)
and v = r"sin(nf) solve Av = 0 for r € (0, R), u itself satisfies Au = 0 for
r € (0, R) — the origin may a priori be a problem, since polar coordinates are sin-
gular there. That this is not the case follows from r"ei"? = (re?®)" = (z + iy)",
so taking real and imaginary parts shows that r™ cos(nf) and r" sin(nf) are simply
polynomials in D, and in particular the term-by-term differentiated series, differ-
entiated with respect to  or y, actually still converges in |x|? + |y|?> < R, uniformly
in |22+ |y|? < p, p < R, so in fact u is C* at the origin as well, and solves Au =0
for each summand does so.

Thus, for at least h € C? (and as a simple argument shows, h € C! in fact), we
have solved the PDE: we found u € C?(D) N C%(D) solving our problem. It turns
out that one can write the solution in a more explicit form, which enables one to
obtain a better result. Namely, for » < p, where p < R, in view of the absolute
convergence of the series (with plenty of room left, so one could even differentiate
arbitrarily many times and have absolute and uniform convergence),

1 ™
u(r,0) = e h(w) dw

s

+ ; (%)n 1 » h(w) (cos(nw) cos(nf) + sin(nw) sin(nd)) dw

™

1 s

— h(w) (1 +2 Z (%)n (cos(nw) cos(nf) + sin(nw) sin(n@))) dw.
n=1

2 J_,

Now, denoting i times the term in parantheses by K,

2K (r,0,w) =1+2 i (%)n (cos(nw) cos(nd) + sin(nw) sin(nf))
=1+2 i (%)n cos(n(f — w))
=1+ i (%)n (em(0=w) 4 omin(0—w))

= i (%)"em(efw) " i (%)" o—in(0—w)

n=0 n=1



Both sums are those of geometric series, so the summation yields
1 1

1-2 (%) cos(f — w) + (%)2’

where the second equality was bringing the two terms to common denominator.
We thus deduce that for r < R,

1 [7 R% — 2
0) = — h dw.
u(r, ) 27 /,7r @) R? — 2Rrcos(f0 —w) + 12 Y

Rewriting in terms of Euclidean coordinates, if y = Rw, x = 70, then the numerator
is R? — |z|2, while the denominator is |z — y|?, so altogether we have

1 R? — |z?

5 = — h dS(y).
) u) = gop | )T 4Sw)
This is called the Poisson formula. In particular,

1
= — h(y)d

i.e. since the circumference of D is 27 R, the value of u in the center is the average
value of h, which is called the mean value property of solutions of Au = 0.

Now, the Poisson formula would give an independent (i.e. new, not relying on
Lemma 0.1) way of proving that the Fourier series of h sums to h. Namely, one
can show directly, using (5), that for h € C! the Fourier series, which we already
know converges uniformly to some function, converges to h. Indeed, in view of the
uniform convergence of the series (3) on the closed disk, at » = R it converges to

s

lim w(r,d) = lim h(w)Kp(r, 0 —w) dw,

r—R— r—R— | __

1 R? — 2
K S .
P ) = G B R cost 112

We claim that this limit is h(f). Using the series definition of K, (4), and noting
that

K(r,0,w) = Kp(r,0 —w),

SO

Kp(r, ) = %(1 +2 i () costner))

one sees that by the orthogonality of cosines to the constant function 1, for each
r<R,

s

Kp(¥)dy =1,

—T
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and Kp is 2m-periodic in ¥, so

u(r,0) — h() = i Kp(r,0 —w) (h(w) — h(0)) dw

—T
™

= Kp(r,w) (h(0 —w) — h(0)) dw,
where the last equality involved a change of variables, but in view of the 27-
periodicity, the domain of integration did not need to change (i.e. the integral
over [—m, | is the same as that over [0 — m, 0 + 7]). Now, the advantage of the
Poisson kernel, Kp, over the Dirichlet kernel discussed in the Appendix is that for
r < R one has Kp > 0, directly from its definition. Moreover, Kp(r,1)) — 0 as
r — R uniformly outside [—§, d] for any 6 > 0. Thus,

T

Kp(r,w) (h(0 —w) — h(0)) dw

o )
= / Kp(r,w) (h(6 —w) — h(0)) dw + / Kp(r,w) (h(0 —w) — h(0)) dw.
-3 [777171-]\[76’6]

Now even if h is merely continuous, given any € > 0, choosing J sufficiently small,
|h(0 —w) —h(8)] < € for all w with |w| < 4, and thus for any r € (0, R), the absolute
value of the first term is

6 s

Se/ Kp(r,w)dw <e Kp(r,w)dw = e.

-4 -7
On the other hand, by the uniform convergence of Kp(r,w) to 0 outside (—6,0),
the second term also goes to 0 as r — R, in particular is < € in absolute value if
is sufficiently large. Thus, even if just A is continuous, u(r,8) — h(0) uniformly as
r — R—. In particular, if h is C!, the partial sums of the Fourier series converge
to A uniformly, giving the promised proof.

We formalize the properties of Kp for a general purpose result.

Proposition 0.3. Suppose that for each N € N, Ky is a 2w-periodic measurable
function on R, and

(i) Ky € L*([—m, 7)), and there is M > 0 such that || K| p1(j—rx) < M for
all N.
(i) Ji_ . En =1,
(iii) For all 0 > 0, KNX[—rx]\(=5,6) = 0 in L' as N — oo.
Then for h € C°_(R) = CY(St),

per
hn(6) = Kn(0 —w)h(w)dw = (Ky *h)(0)
converges to h uniformly.
A family Ky satisfying (i)-(ii) is called a family of good kernels.

Note that (ii) implies the bound of (i) (with M = 1) if K > 0 pointwise.
Note also that one can replace N € N by another parameter set, such as N €
(0,1], and let N — 0, etc., without any changes to the result.



11

Proof. As before,

+ / Kn(w) (h(0 —w) — h(0)) dw.
[=m,7]\[=6,6]

Now as h is continuous on [—2, 27], it is uniformly continuous there, so given any
€ > 0, choosing ¢ sufficiently small,

h(0 =) = h(6)] < 3=

for all w with |w| < §. Thus for any N, the absolute value of the first term of (6) is

DN

)
€ €
< 57 | BN @] < Sl BNl r <
On the other hand, the absolute value of the second term is

< 2| KNl Lt ((—mm\(~8.6)) SUP | 2,

so by (iii), it goes to 0 as N — oo, so in particular is < ¢/2 if N is sufficiently large,
say N > Ny. Summing up, we see that N > Ny implies that sup |h — hy| < ¢,
proving the uniform convergence. (I

Note that the standard definition of convergence of a series, via partial sums, is
a kind of a regularization. If all terms of a series Y u, are bounded, a different
regularization is to consider Y r™u, for r < 1, when the series converges by the
Weierstrass M-test, and let » — 1. This is a better behaved regularization than the
standard definition, and is called Abel summability. Thus, for h merely continuous,
the Fourier series is Abel summable to h, but it need not converge uniformly to h
(there are actual counterexamples).

APPENDIX A. THE DIRICHLET KERNEL

We now consider a more classical proof of the convergence of the Fourier series.
So suppose now that ¢ is a function on [—m, 7] whose 27w-periodic extension, ®, is
C'. Then the Fourier series of ¢ is given by (1), with £ = 7. We work out partial
sums of the series,

N
) 1 [T .
Sn(O)= > Cne™, Co=o= [ ¢w)e ™ dw.

2
n=—N



12 ANDRAS VASY

Thus,

Sn(0)

Ny g
- in(wa)
Z o / P(w dw

i

1 N

iny
-— (& .
2w
n=—N

Kn(0 —w)p(w) dw, Kn(¥) =

Now, the sum for K is a geometric series, so using the summation formula for a
geometric series,

1 in I _ingl— el (N
Knl) =g 2. ™ =r
m n==v
1 WNH/2Y _ o=i(N+1/2)% 1 gin (N 4 1/2)9)
C2r etW/2 — e~iv/2 27 sin(¥/2)
Note that the right hand side has the form O/O at ¢ = 2km, k € Z, but by L’Hopital’s
rule it is continuous, with value K (0) = 5= (2N + 1), and it is indeed C* at these

points. Moreover, Ky has the additional property, which is clear from the series
formula since €% is orthogonal to 1 in L?([—m,n]) for n # 0,

s

Kn(w)dy = (Ky, 1) = %a, 1) =1

—T

for all N, and, as all the summands in the sum are 27-periodic,

Ky +27) = Kn ().

One calls Ky the Dirichlet kernel. Now, we need to analyze the difference

T s

Sn(0) —o(0) = | Kn(0 —w)p(w)dw—o(0) [ Kn(0—w)dw

—T —T
s

= [ Ex(0—-w)(¢(w) —¢(0)) dw.
It is convenient to rewrite the integral by a change of variables. In view of the
2m-periodicity of the integrand, we do not need to change the limits of the integral:

Sn(0) —¢(0) = | Kn(@)(®(0 — ) — 2(0)) dy.
Note that this integral, much like the one before, is very similar to a convolution
on R; the difference is that we merely integrate over an interval of length 27. Since
the integrand is 2m-periodic, this is best thought of as the convolution of Ky and
the function ug(1)) = ®() — ®(#) on the circle, S!.

Now, roughly, the K are approximations to dg. However, this is in a weaker
sense than e.g. xn(x) = Nx(z/N), where x > 0 vanishes outside [—1, 1], or indeed
the Poisson kernel Kp above, is such, since ["_|Kn(1)|dy is not bounded by a
fixed constant C' (independent of N): it is the oscillatory nature of K that makes
the analysis more involved.
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Writing out K () as in (7), an orthogonality argument can be used to deduce
the decay of Sy(0) — #(0) as N — oco. Namely, suppose that ® is C1. Then by
Taylor’s theorem, the function

is continuous. Thus,

Sx(0) = 00) = o= [ sin (¥ +1/20) vo(w) o

2 J_,
Now, the functions
Zn(¢) =sin((n+1/2)¢), n >0, n€Z,

are orthogonal to each other on [—7, 7] (and indeed on [0, 7]), since they are eigen-
functions of the symmetric operator —% with Neumann boundary condition at
—¢ and ¢ (as cos((n + 1/2)m) = 0) with distinct eigenvalues (n + 1/2)2. Moreover,

/7r Zn ()2 dip = .

Thus,

_ 1 (vg, Zn)
27 [1Zn 1%

But we have shown that for any orthogonal set {z,}52, in an inner product space

V, and any v € V with generalized Fourier coefficients c,,, > |c,|?||2n||? converges,

and ¢, = Tf;xﬁg . Thus,

Sn(0) — 6(0) 1Zn]lz>-

2 1 2 2 (vg, ZN)
1Sn(0) = ¢(0)]" = —len Il Znlz2, en = 1ZnIEs
But as Yy |en|?[|[Zn |32 converges, its terms go to 0, ie. |en|?||Zn|3. — O as
N — oo, so we deduce that |Sy(0) — ¢(8)] — 0 as N — oo, proving the desired
convergence.

Since we already know that for functions ¢ whose 27-periodic extensions are C!
the Fourier series converges uniformly (and thus pointwise) to some function, and
we just showed pointwise convergence of the series to ¢, we deduce that for such ¢
the Fourier series converges uniformly to ¢.

APPENDIX B. FEJER'S KERNEL

We now discuss another kernel that is better behaved than the Dirichlet kernel.
This is the Fejér kernel, given by averaging the Dirichlet kernel K over N.
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Namely, let

M M i i
_ 1 1 ez(N+1/2)1Z1 _ e—z(N-‘rl/Q)w
Ky (¥) = M1 E , Kn() = E : o cih/2 _ g—inh/2
N=0

N=0
_ 1 ( il = M+1)w J—p 1— e (M+1)w>
(M—i—l)e“/’/Q—e /2 1—e 1—ew
1 1— ez(M-‘,—l)w 1— e—i(M-‘,—l)w
- 21(M + 1) eiv/2 — ¢~iv/2 ( —)2 _ g2 givj2 _ e—iw/z)
_ 1 _ —1 ' (1 MDY 4 —z(M+1)w>
2m(M + 1) (e¥/2 — e~iv/2)2
1 1

= 27 (M + 1) 4sin(4/2) (2 = 2Acos(M + 1)v)

1 sin®(M+3)Y)
S 2n(M+1)  sin(y/2)
Since K, is an average of the Ky, each of which has integral 1, ffﬂ f{M(w) dy =1,

just like the Dirichlet kernel. However, it has the significant advantage that K, > 0
pointwise, and this [ |Kr ()] dp = 1 as well, just like for the Poisson kernel.
Furthermore, for any 6 > 0, Kj; — 0 uniformly on [—m, 7] \ (=4, ), just as for the
Poisson kernel, since 0 < sin®*((M + 2)¢) < 1, sin®(1/2) is bounded away from 0
there, and M — oco. Therefore Proposition 0.3 gives, for h € Cp,.(R) = C°(S!),
the uniform convergence of

= /KM(Q —w)h(w) dw

to h as M — oo.

Note that at the level of the partial sums Sy of the Fourier series, s); =
1\1/1 ]\N4 01 Sy, so what we have shown is that although the partial sums do not
necessarily converge uniformly for a merely continuous h, the averaged partial sums
do. As for Abel summation, this is a better regularization of the sum of an infinite

series than the standard definition; this is called Cesdro summability.



