

MATH 172: THE FOURIER TRANSFORM – BASIC PROPERTIES AND THE INVERSION FORMULA

ANDRAS VASY

The Fourier transform is the basic and most powerful tool for studying translation invariant analytic problems, such as constant coefficient PDE on \mathbb{R}^n . It is based on the following simple observation: for $\xi \in \mathbb{R}^n$, the functions

$$v_\xi(x) = e^{ix \cdot \xi} = e^{ix_1 \xi_1} \cdots e^{ix_n \xi_n}$$

are joint eigenfunctions of the operators ∂_{x_j} , namely for each j ,

$$(1) \quad \partial_{x_j} v_\xi = i \xi_j v_\xi.$$

It would thus be desirable to decompose an ‘arbitrary’ function u as an (infinite) linear combination of the v_ξ , namely write it as

$$(2) \quad u(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \hat{u}(\xi) e^{ix \cdot \xi} d\xi,$$

where $\hat{u}(\xi)$ is the ‘amplitude’ of the harmonic $e^{ix \cdot \xi}$ in u . (The factor $(2\pi)^{-n}$ is here due to a convention, it could also be moved to other places.) It turns out that this identity, (2), holds provided that we define

$$\hat{u}(\xi) = \int_{\mathbb{R}^n} e^{-ix \cdot \xi} u(x) dx;$$

(2) is then the *Fourier inversion formula*.

Rather than showing this at once, we start with a step-by-step approach. We first *define* the *Fourier transform* as

$$(\mathcal{F}u)(\xi) = \int_{\mathbb{R}^n} e^{-ix \cdot \xi} u(x) dx$$

for $u \in L^1(\mathbb{R}^n)$, thus in particular for for $u \in C(\mathbb{R}^n)$ with $|x|^N |u|$ bounded for some $N > n$ (i.e. $|u(x)| \leq M|x|^{-N}$ for some M in say $|x| > 1$, the point being that in this case u is absolutely integrable as $\int_{|x|>1} M|x|^{-N} dx$ converges). Note that for such functions

$$|(\mathcal{F}u)(\xi)| \leq \int_{\mathbb{R}^n} |e^{-ix \cdot \xi}| |u(x)| dx = \int_{\mathbb{R}^n} |u(x)| dx,$$

so $\mathcal{F}u$ is bounded, and if we have a sequence $\xi_k \rightarrow \xi$ then $(\mathcal{F}u)(\xi) \rightarrow (\mathcal{F}u)(\xi_k)$ by the dominated convergence theorem, so $\mathcal{F}u$ is actually a *bounded continuous* function.

We can similarly define the *inverse Fourier transform*

$$(\mathcal{F}^{-1}\psi)(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} \psi(\xi) d\xi;$$

then \mathcal{F}^{-1} maps $u \in L^1(\mathbb{R}^n)$, and in particular $u \in C(\mathbb{R}^n)$ with $|x|^N |u|$ bounded for some $N > n$ to bounded continuous functions. With these definition it is of course not clear whether \mathcal{F}^{-1} is indeed the inverse of \mathcal{F} , and worse, not even clear whether $\mathcal{F}^{-1}\mathcal{F}\phi$ makes sense for $\phi \in L^1(\mathbb{R}^n)$, since $\mathcal{F}\phi$ is then a bounded

continuous function, which is not sufficient to ensure that the integral defining \mathcal{F}^{-1} actually converges! We thus proceed to study properties of \mathcal{F} and \mathcal{F}^{-1} .

However, first we comment on the normalization. While our normalization is a very common one in analysis/PDE theory, it is by no means the only one. One could normalize the Fourier transform differently in two ways: change the constant 1 in front, and change the exponent $-ix \cdot \xi$. Thus, consider a transform

$$(\mathcal{F}_{\alpha,C}\phi)(\xi) = C \int_{\mathbb{R}^n} e^{-ix \cdot \xi/\alpha} \phi(x) dx = C(\mathcal{F}\phi)(\xi/\alpha),$$

which is thus simply a rescaled (by $\alpha > 0$) version of the Fourier transform, multiplied by a constant ($C > 0$). To see what the analogue of \mathcal{F}^{-1} should be, note that if \mathcal{F}^{-1} is indeed the inverse of \mathcal{F} then the inverse of $\mathcal{F}_{\alpha,C}$, applied to some ψ , is to take the function $\Psi(\xi) = C^{-1}\psi(\alpha\xi)$, and inverse Fourier transform it, since for $\psi = \mathcal{F}_{\alpha,C}\phi$, Ψ is exactly $\mathcal{F}\phi$. Thus, the inverse transform is defined as

$$(\mathcal{F}_{\alpha,C}^{-1}\psi)(x) = C^{-1}(2\pi)^{-n} \int_{\mathbb{R}^n} e^{ix \cdot \tilde{\xi}} \psi(\alpha\tilde{\xi}) d\tilde{\xi} = C^{-1}\alpha^{-n}(2\pi)^{-n} \int_{\mathbb{R}^n} e^{ix \cdot \xi/\alpha} \psi(\xi) d\xi,$$

where in the last step we changed the variable of integration from $\tilde{\xi}$ to $\xi = \alpha\tilde{\xi}$.

Some common choices are $\alpha = 1$, $C = (2\pi)^{-n/2}$ and $\alpha = (2\pi)^{-1}$, $C = 1$. With the former, the formulae look as before except both the Fourier transform and the inverse Fourier transform have a $(2\pi)^{-n/2}$ in front, in a symmetric manner. With the latter, one has

$$\phi \mapsto \int e^{-2\pi ix \cdot \xi} \phi(x) dx$$

as the transform, and

$$\psi \mapsto \int e^{2\pi ix \cdot \xi} \psi(x) dx$$

as the inverse transform, which is also symmetric, though now at the cost of making the exponent a bit longer. The latter is the convention used in our textbook; the former is often used in quantum mechanics.

Returning to properties of \mathcal{F} and \mathcal{F}^{-1} , first we note a property of \mathcal{F} which is the main reason for its usefulness in studying PDE, and which is an immediate consequence of (1). Namely, suppose that $\phi \in C^1(\mathbb{R}^n)$ and both ϕ and all first derivatives $\partial_j \phi$, $j = 1, \dots, n$, decay at infinity in the same sense as above (so $|x|^N \partial_j \phi$ is bounded for some $N > n$). Then integration by parts gives

$$\begin{aligned} (\mathcal{F}(\partial_{x_j} \phi))(\xi) &= \int_{\mathbb{R}^n} e^{-ix \cdot \xi} \partial_{x_j} \phi(x) dx = - \int_{\mathbb{R}^n} \partial_{x_j} (e^{-ix \cdot \xi}) \phi(x) dx \\ &= i\xi_j \int_{\mathbb{R}^n} e^{-ix \cdot \xi} \phi(x) dx = i\xi_j (\mathcal{F}\phi)(\xi). \end{aligned}$$

In other words, the operators \mathcal{F} , ∂_{x_j} and multiplication by ξ_j (usually just written as ξ_j) satisfy

$$\mathcal{F}\partial_{x_j} = i\xi_j \mathcal{F}.$$

In order to remove the factor of i , we let

$$D_{x_j} = \frac{1}{i} \partial_{x_j},$$

so

$$\mathcal{F}D_{x_j} = \xi_j \mathcal{F}.$$

Note, in particular, that this gives that for ϕ as above,

$$\xi_j \mathcal{F}\phi(\xi) = \mathcal{F}D_{x_j} \phi$$

is bounded for all j , so as $\mathcal{F}\phi$ is also bounded so

$$\left(1 + \sum_{j=1}^n \xi_j^2\right) |\mathcal{F}\phi(\xi)|^2$$

is bounded, we deduce that

$$(3) \quad |\mathcal{F}\phi(\xi)| \leq C/(1 + |\xi|^2)^{1/2},$$

i.e. the Fourier transform of ϕ actually decays, and is not merely bounded. This gives us some hope that perhaps under some additional assumptions $\mathcal{F}^{-1}(\mathcal{F}\phi)$ actually makes sense.

Before proceeding, we note that $\frac{(1+|\xi|^2)^{1/2}}{1+|\xi|}$ is bounded from below and above by positive constants – indeed, it is certainly a positive continuous function, and as $|\xi| \rightarrow \infty$, it converges to 1 (since the summand 1 is negligible in the limit in both the numerator and the denominator). Thus, (3) is equivalent to, for some $C' > 0$,

$$|\mathcal{F}\phi(\xi)| \leq C'/(1 + |\xi|).$$

There is an analogous formula for $\mathcal{F}(x_j\phi)$ if we instead assume that $\phi \in C(\mathbb{R}^n)$ and $|x|^N|\phi|$ is bounded for $N > n + 1$, namely

$$\begin{aligned} \mathcal{F}(x_j\phi) &= \int_{\mathbb{R}^n} e^{-ix \cdot \xi} x_j \phi(x) dx = \int_{\mathbb{R}^n} (x_j e^{-ix \cdot \xi}) \phi(x) dx = \int_{\mathbb{R}^n} (i\partial_{\xi_j} e^{-ix \cdot \xi}) \phi(x) dx \\ &= i\partial_{\xi_j} \left(\int_{\mathbb{R}^n} e^{-ix \cdot \xi} \phi(x) dx \right) = -D_{\xi_j}(\mathcal{F}\phi)(\xi), \end{aligned}$$

where $D_{\xi_j} = \frac{1}{i}\partial_{\xi_j}$. In operator notation,

$$\mathcal{F}x_j = -D_{\xi_j}\mathcal{F}.$$

In particular, this tells us that if $\phi \in C(\mathbb{R}^n)$ and $|x|^N|\phi|$ is bounded for $N > n + 1$ then $\mathcal{F}\phi$ is continuously differentiable, and its derivatives $D_{\xi_j}\mathcal{F}\phi$ are bounded.

In summary, the Fourier transform interchanges differentiation and multiplication by the coordinate functions (up to a – sign), and correspondingly it interchanges differentiability and decay at infinity. If we only care about differentiation, the natural class of ‘very nice’ functions is \mathcal{C}^∞ , since we can differentiate its elements arbitrary many times. In view of the properties of the Fourier transform, the relevant class of ‘very nice’ functions consists of functions which are \mathcal{C}^∞ and decay rapidly at infinity.

Definition 1. The set $\mathcal{S} = \mathcal{S}(\mathbb{R}^n)$, called the set of Schwartz functions, consists of functions $\phi \in \mathcal{C}^\infty(\mathbb{R}^n)$ such that for all $N \geq 0$ and all multiindices $\alpha \in \mathbb{N}^n$, $|x|^N D^\alpha \phi$ is bounded on \mathbb{R}^n .

Here we used the multiindex notation:

$$D^\alpha = D_{x_1}^{\alpha_1} \dots D_{x_n}^{\alpha_n}.$$

The functions $\phi \in \mathcal{S}(\mathbb{R}^n)$ decay rapidly at infinity with all derivatives.

We can put this into a more symmetric form by noting that it suffices to consider N even, and indeed merely ask if $(1 + |x|^2)^N D^\alpha \phi$ is bounded for all N and α . Expanding the first term, using $|x|^2 = x_1^2 + \dots + x_n^2$, one easily sees that this in turn is equivalent to the statement that for all multiindices $\alpha, \beta \in \mathbb{N}^n$, $x^\alpha D^\beta \phi$ is bounded. Here we wrote

$$x^\alpha = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n},$$

in analogy with the notation for D^β . Note that by Leibniz’ rule (i.e. the product rule for differentiation), one can write $D^\beta x^\alpha \phi$ as a finite sum of powers $\leq \alpha$ of x

times derivatives of order $\leq \beta$ of ϕ , and conversely, so in fact $x^\alpha D^\beta \phi$ being bounded for all multiindices α, β is equivalent to $D^\beta x^\alpha \phi$ being bounded for all multiindices α, β .

With this definition, using the properties above, we conclude that if $\phi \in \mathcal{S}(\mathbb{R}^n)$ then $\mathcal{F}\phi \in \mathcal{S}(\mathbb{R}^n)$ as well. Indeed,

$$\xi^\alpha D_\xi^\beta \mathcal{F}\phi = (-1)^{|\beta|} \mathcal{F} D_x^\alpha x^\beta \phi,$$

and $D_x^\alpha x^\beta \phi \in \mathcal{S}(\mathbb{R}^n) \subset L^1(\mathbb{R}^n)$ if $\phi \in \mathcal{S}(\mathbb{R}^n)$, so the right hand side is indeed bounded.

Similar calculations show that the inverse Fourier transform satisfies

$$(4) \quad \mathcal{F}^{-1} D_{\xi_j} \psi = -x_j \mathcal{F}\psi, \quad D_{x_j} \mathcal{F}^{-1} \psi = \mathcal{F}^{-1} (\xi_j \psi),$$

so

$$\mathcal{F} : \mathcal{S} \rightarrow \mathcal{S}, \quad \mathcal{F}^{-1} : \mathcal{S} \rightarrow \mathcal{S}.$$

In particular, $\mathcal{F}\mathcal{F}^{-1} : \mathcal{S} \rightarrow \mathcal{S}$ and $\mathcal{F}^{-1}\mathcal{F} : \mathcal{S} \rightarrow \mathcal{S}$; the Fourier inversion formula states that these are both the identity map on $\mathcal{S}(\mathbb{R}^n)$.

Of course, we would like to know that $\mathcal{S}(\mathbb{R}^n)$ is not a trivial vector space! One example of elements of $\mathcal{S}(\mathbb{R}^n)$ is

$$\phi(x) = e^{-\langle Ax, x \rangle}, \quad x \in \mathbb{R}^n,$$

where A is a positive definite operator on \mathbb{R}^n . Indeed, in this case $\langle Ax, x \rangle \geq a|x|^2$ for some $a > 0$, and one easily checks the membership of ϕ in $\mathcal{S}(\mathbb{R}^n)$. (Here $\langle \cdot, \cdot \rangle$ is the standard inner product on \mathbb{R}^n ; note that $\langle A \cdot, \cdot \rangle$ is simply another inner product on \mathbb{R}^n .) Note also that $\mathcal{S}(\mathbb{R}^n)$ is invariant under translations, so for $x_0 \in \mathbb{R}^n$,

$$\phi(x) = e^{\langle A(x-x_0), x-x_0 \rangle}, \quad x \in \mathbb{R}^n,$$

gives another example. These Gaussians play an important role below since their Fourier transform is easy to compute explicitly. Notice also that in these examples we could even take a complex linear operator $A : \mathbb{C}^n \rightarrow \mathbb{C}^n$, $A = \operatorname{Re} A + i \operatorname{Im} A$, with $\operatorname{Re} A$ positive definite, to obtain examples of Schwartz functions, so e.g. on \mathbb{R} the function $\phi(x) = e^{-(a+ib)x^2}$, $a > 0$, is such an example.

Another class of examples is $\mathcal{C}_c^\infty(\mathbb{R}^n)$, consisting of \mathcal{C}^∞ functions of compact support, where the support of a continuous function is the closure of the set where it takes non-zero values.

Lemma 0.1. *For all $x_0 \in \mathbb{R}^n$ and $\epsilon > 0$ there is a function $\phi \in \mathcal{C}_c^\infty(\mathbb{R}^n)$ such that $\phi(x_0) > 0$, $\phi \geq 0$ and $\operatorname{supp} \phi \subset \{x : |x - x_0| < \epsilon\}$.*

Proof. First one checks that the function χ defined by

$$\chi(t) = e^{-1/t}, \quad t > 0; \quad \chi(t) = 0, \quad t \leq 0,$$

is in $\mathcal{C}^\infty(\mathbb{R})$. Then we let

$$\phi(x) = \chi\left(\frac{\epsilon^2}{2} - |x - x_0|^2\right).$$

This has all the desired properties. □

It is also useful to have bump functions that are identically 1 near x_0 , but still have compact support, with $\operatorname{supp} \phi \subset \{x : |x - x_0| < \epsilon\}$. There are various ways of obtaining these. One is the following: let ϕ, χ be as in the proof of the lemma. Then $\tilde{\phi}(x) = \phi(x_0)/2 - \phi(x)$ is ≤ 0 near x_0 , and is equal to $\phi(x_0)/2$ if

$|x - x_0| \geq \epsilon/\sqrt{2}$. Correspondingly, $\chi(\tilde{\phi}(x))$ takes the value 0 near x_0 , and the constant value $\chi(\phi(x_0)/2) > 0$ if $|x - x_0| \geq \epsilon/\sqrt{2}$. Now let

$$\psi(x) = 1 - \chi(\phi(x_0)/2)^{-1} \chi(\tilde{\phi}(x));$$

then $\psi \equiv 1$ near x_0 , and vanishes if $|x - x_0| \geq \epsilon/\sqrt{2}$. In summary:

Lemma 0.2. *For all $x_0 \in \mathbb{R}^n$ and $\epsilon > 0$ there is a function $\psi \in \mathcal{C}_c^\infty(\mathbb{R}^n)$ such that $\psi(x) = 1$ for x near x_0 , $\psi \geq 0$ and $\text{supp } \psi \subset \{x : |x - x_0| < \epsilon\}$.*

As a first step towards the inversion formula, we calculate the Fourier transform of the Gaussian $\phi(x) = e^{-a|x|^2}$, $a > 0$, on \mathbb{R}^n (note that $\phi \in \mathcal{S}!$) by writing it as

$$\hat{\phi}(\xi) = \left(\int_{\mathbb{R}} e^{-ax_1^2} e^{-ix_1 \xi_1} dx_1 \right) \dots \left(\int_{\mathbb{R}} e^{-ax_n^2} e^{-ix_n \xi_n} dx_n \right),$$

hence reducing it to one-dimensional integrals which can be calculated by a change of variable and shift of contours. We can also proceed as follows. Write x for the one-dimensional variable, ξ for its Fourier transform variable for simplicity, and $\psi(x) = e^{-ax^2}$,

$$\hat{\psi}(\xi) = \int_{\mathbb{R}} e^{-ix\xi} e^{-ax^2} dx = e^{-\xi^2/4a} \int_{\mathbb{R}} e^{-a(x+i\xi/(2a))^2} dx,$$

where we simply completed the square. We wish to show that

$$f(\xi) = \int_{\mathbb{R}} e^{-a(x+i\xi/(2a))^2} dx$$

is a constant, i.e. is independent of ξ , and in fact it is equal to $\sqrt{\pi/a}$. But that is easy: differentiating f , we obtain $f'(\xi) = -i \int_{\mathbb{R}} (x+i\xi/(2a)) e^{-a(x+i\xi/(2a))^2} dx$. The integrand is the derivative of $(-1/(2a)) e^{-a(x+i\xi/(2a))^2}$ with respect to x , so by the fundamental theorem of calculus, $f'(\xi) = (i/(2a)) e^{-a(x+i\xi/(2a))^2} \Big|_{x=-\infty}^{x=+\infty} = 0$, due to the rapid decay of the Gaussian at infinity. This says that f is a constant, so for all ξ , $f(\xi) = f(0) = \int_{\mathbb{R}} e^{-ax^2} dx$ which can be evaluated by the usual polar coordinate trick, giving $\sqrt{\pi/a}$. Returning to \mathbb{R}^n , the final result is thus that

$$(5) \quad \hat{\phi}(\xi) = (\pi/a)^{n/2} e^{-|\xi|^2/4a},$$

which is hence another Gaussian. A similar calculation shows that for such Gaussians $\mathcal{F}^{-1}\hat{\phi} = \phi$, i.e. for such Gaussians $T = \mathcal{F}^{-1}\mathcal{F}$ is the identity map. Indeed with $\psi(\xi) = e^{-b|\xi|^2}$, $b > 0$,

$$(6) \quad \mathcal{F}^{-1}\psi(x) = (2\pi)^{-n} (\pi/b)^{n/2} e^{-|x|^2/4b} = (4\pi b)^{-n/2} e^{-|x|^2/4b},$$

so

$$\mathcal{F}^{-1}(\hat{\phi})(x) = (\pi/a)^{n/2} (4\pi/(4a))^{-n/2} e^{-4a|x|^2/4} = e^{-a|x|^2} = \phi(x).$$

Before proceeding let's recall Taylor theorem with an integral remainder formula: if f is a C^{k+1} function then

$$f(x) = \sum_{j \leq k} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j + (x - x_0)^{k+1} \int_0^1 \frac{(1-s)^k}{k!} f^{(k+1)}(x_0 + s(x - x_0)) ds.$$

Notice that

$$\int_0^1 \frac{(1-s)^k}{k!} f^{(k+1)}(x_0 + s(x - x_0)) ds$$

is a continuous function of x ; if f was C^∞ , it is in fact a C^∞ function of x . This formula can be seen in the $k = 0$ case (which is what we use below) by the fundamental theorem of calculus:

$$f(x) = f(x_0) + \int_{x_0}^x f'(t) dt = f(x_0) + (x - x_0) \int_0^1 f'(x_0 + s(x - x_0)) ds,$$

where we wrote $t = x_0 + s(x - x_0)$, and changed variables, so $dt = (x - x_0) ds$. To continue one writes the integrand as $1 \cdot f'(x_0 + s(x - x_0))$ and integrates by parts, making the indefinite integral of 1 to be $s - 1$ (and after k steps, starting from the above expression, one gets $\frac{1}{k!}(s - 1)^k$ for this).

Now we can show that T is the identity map on all Schwartz functions using the following lemma, which is due to Hörmander.

Lemma 0.3. *Suppose $T : \mathcal{S} \rightarrow \mathcal{S}$ is linear, and commutes with x_j and D_{x_j} . Then T is a scalar multiple of the identity map, i.e. there exists $c \in \mathbb{C}$ such that $Tf = cf$ for all $f \in \mathcal{S}$.*

Proof. Let $y \in \mathbb{R}^n$. We show first that if $\phi(y) = 0$ and $\phi \in \mathcal{S}$ then $(T\phi)(y) = 0$. Indeed, we can write, essentially by Taylor's theorem, $\phi(x) = \sum_{j=1}^n (x_j - y_j) \phi_j(x)$, with $\phi_j \in \mathcal{S}$ for all j . In one dimension this is just a statement that if ϕ is Schwartz and $\phi(y) = 0$, then $\phi_1(x) = \phi(x)/(x - y) = (\phi(x) - \phi(y))/(x - y)$ is Schwartz: smoothness near y follows from Taylor's theorem, while the rapid decay with all derivatives from $\phi_1(x) = \phi(x)/(x - y)$. For the multi-dimensional version, one can take $\phi_j(x) = (x_j - y_j) \phi(x)/|x - y|^2$ for $|x - y| \geq 2$, say, suitably modified inside this ball. Namely, let $\rho \in \mathcal{C}_c^\infty(\mathbb{R}^n)$ identically 1 near y , supported in $\{x : |x - y| < 2\}$. Then one has $\phi_{j,1} \in \mathcal{C}^\infty(\mathbb{R}^n)$ from Taylor's theorem with $\phi(x) = \sum_{j=1}^n (x_j - y_j) \phi_{j,1}(x)$. Letting $\phi_{j,2}(x) = (x_j - y_j) \phi(x)/|x - y|^2$, we have

$$\phi(x) = \sum_{j=1}^n (x_j - y_j) \phi_j(x), \quad \phi_j(x) = \rho(x) \phi_{j,1}(x) + (1 - \rho(x)) \phi_{j,2}(x),$$

and ϕ_j is in \mathcal{S} since the first term is \mathcal{C}^∞ and has compact support, while the second is in \mathcal{S} since the only potential issue is a singularity at $x = y$, but $1 - \rho$ vanishes near there. Thus,

$$T\phi = \sum_{j=1}^n (x_j - y_j) (T\phi_j),$$

where we used that T is linear and commutes with multiplication by x_j for all j . Substituting in $x = y$ yields $(T\phi)(y) = 0$ indeed.

Thus, fix $y \in \mathbb{R}^n$, and some $g \in \mathcal{S}$ such that $g(y) = 1$. Let $c(y) = (Tg)(y)$. We claim that for $f \in \mathcal{S}$, $(Tf)(y) = c(y)f(y)$. Indeed, let $\phi(x) = f(x) - f(y)g(x)$, so $\phi(y) = f(y) - f(y)g(y) = 0$. Thus, $0 = (T\phi)(y) = (Tf)(y) - f(y)(Tg)(y) = (Tf)(y) - c(y)f(y)$, proving our claim.

We have thus shown that there exists $c : \mathbb{R}^n \rightarrow \mathbb{C}$ such that for all $f \in \mathcal{S}$, $y \in \mathbb{R}^n$, $(Tf)(y) = c(y)f(y)$, i.e. $Tf = cf$. Taking $f \in \mathcal{S}$ such that f never vanishes, e.g. a Gaussian as above, shows that $c = Tf/f$ is \mathcal{C}^∞ , since Tf and f are such.

We have not used that T commutes with D_{x_j} so far. But

$$\begin{aligned} c(y)(D_{x_j} f)(y) &= T(D_{x_j} f)(y) = D_{x_j}(Tf)|_{x=y} = D_{x_j}(c(x)f(x))|_{x=y} \\ &= (D_{x_j} c)(y)f(y) + c(y)(D_{x_j} f)(y). \end{aligned}$$

Comparing the two sides, and taking f such that f never vanishes, yields

$$(D_{x_j} c)(y) = 0$$

for all y and for all j . Since all partial derivatives of c vanish, c is a constant, proving the lemma. \square

The actual value of c can be calculated by applying T to a single Schwartz function, e.g. a Gaussian, and then the explicit calculation from above shows that $c = 1$, so $\mathcal{F}^{-1}\mathcal{F} = \text{Id}$ indeed.

Let's see how we can use the Fourier transform to solve a constant coefficient PDE. Suppose that $a_\alpha \in \mathbb{C}$ and

$$P = \sum_{|\alpha| \leq m} a_\alpha D_x^\alpha$$

is an m th order constant coefficient differential operator, and consider the PDE

$$Pu = f, \quad f \in \mathcal{S}(\mathbb{R}^n).$$

Then for $u \in \mathcal{S}$ (for now),

$$\mathcal{F}Pu = \mathcal{F}\left(\sum_{|\alpha| \leq m} a_\alpha D_x^\alpha u\right) = \sum_{|\alpha| \leq m} a_\alpha \xi^\alpha \mathcal{F}u(\xi) = p(\xi) \mathcal{F}u,$$

where we let

$$p(\xi) = \sum_{|\alpha| \leq m} a_\alpha \xi^\alpha$$

the *full symbol* of P . Thus, if p never vanishes, then

$$\mathcal{F}u = \frac{\mathcal{F}f}{p(\xi)},$$

which is in $\mathcal{S}(\mathbb{R}^n)$ provided p has a lower bound like $|p(\xi)| \geq C(1 + |\xi|)^{-N}$ for some N and $C > 0$, hence we get (using the Fourier inversion formula)

$$u = \mathcal{F}^{-1}\left(\frac{\mathcal{F}f}{p(\xi)}\right),$$

solving the PDE. There are some issues we would like to understand better, e.g. the non-vanishing of p and also whether we really need $u, f \in \mathcal{S}$, but before getting further into this we need to investigate the Fourier inversion formula. To give an indication of what we'll see though, note the following examples:

- Laplace's equation: $P = \sum_{j=1}^n \partial_{x_j}^2$. Then $p(\xi) = -|\xi|^2$, so p vanishes at just one point, $\xi = 0$. Note that near infinity (well, for say $|\xi| > 1$), though, $|p(\xi)| > C(1 + |\xi|^2)$, for some $C > 0$.
- Helmholtz equation: $P = \sum_{j=1}^n \partial_{x_j}^2 + \lambda$. Then $p(\xi) = -|\xi|^2 + \lambda$, so if $\lambda < 0$, then p never vanishes, and indeed $|p(\xi)| \geq C(1 + |\xi|^2)$, for some $C > 0$.
- Wave equation: $P = -\sum_{j=1}^{n-1} \partial_{x_j}^2 + \partial_{x_n}^2$. Then $p(\xi) = |\xi'|^2 - \xi_n^2$, where $\xi' = (\xi_1, \dots, \xi_{n-1})$, so p vanishes on the (light) cone $|\xi'| = |\xi_n|$.
- Heat equation: $P = -\sum_{j=1}^{n-1} \partial_{x_j}^2 + \partial_{x_n}$, then $p(\xi) = |\xi'|^2 + i\xi_n$, so p only vanishes at the origin. Moreover, for $|\xi| \geq 1$, $|p(\xi)| > C(1 + |\xi|^2)^{1/2}$, for some $C > 0$ – this is an *weaker* estimate than the one for Laplace's equation.

For local result, i.e. whether you can solve a PDE locally, without regard to the behavior of the solution at infinity, what matters is whether $p(\xi)$ vanishes for large ξ : this is a reflection of the fact that the Fourier transform interchanges differentiability and decay. Thus, elliptic PDE, i.e. PDE of order m such that for sufficiently large $|\xi|$, $|p(\xi)| > C(1 + |\xi|^2)^{m/2}$ for some $C > 0$ are the best behaved PDE; parabolic PDE like the heat equation where a weaker estimate holds are in certain aspects almost as well behaved, while hyperbolic PDE are most interesting!

We already saw a use of the inversion formula in solving $\Delta u - u = f$. For PDEs with initial or boundary conditions, it is often best to use the partial Fourier transform. This is defined as follows. Let $\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^k$, and write $\mathbb{R}^n \ni x = (y, z) \in \mathbb{R}^m \times \mathbb{R}^k$. Suppose that $f \in C^1(\mathbb{R}^m \times \mathbb{R}^k)$ and $|z|^K f, |z|^K \partial_{x_j} f$ are bounded for all $j = 1, \dots, n$, and $K > k$. Define the *partial Fourier transform* of f by

$$(\mathcal{F}_z f)(y, \zeta) = \int_{\mathbb{R}^k} e^{-iz \cdot \zeta} f(y, z) dz, \quad y \in \mathbb{R}^m, \quad \zeta \in \mathbb{R}^k.$$

By arguments as for the (full) Fourier transform, one can show easily (see the problem set) that

- (i) $(\mathcal{F}_z D_{z_j} f)(y, \zeta) = \zeta_j (\mathcal{F}_z f)(y, \zeta)$.
- (ii) $(\mathcal{F}_z D_{y_j} f)(y, \zeta) = (D_{y_j} (\mathcal{F}_z f))(y, \zeta)$.

Similarly, as for the full Fourier transform, we have that if $f \in C^0(\mathbb{R}^m \times \mathbb{R}^k)$ and $|z|^K f$ is bounded for some $K > k + 1$, then

$$\mathcal{F}_z(z_j f) = -D_{\zeta_j} \mathcal{F}_z f, \quad \mathcal{F}_z(y_j f) = y_j \mathcal{F}_z f.$$

Analogous formulae also hold for

$$(\mathcal{F}_\zeta^{-1} \psi)(y, z) = (2\pi)^{-k} \int_{\mathbb{R}^k} e^{iz \cdot \zeta} \psi(y, \zeta) dz.$$

An iterated application of these results also shows that

$$\mathcal{F}_z, \mathcal{F}_\zeta^{-1} : \mathcal{C}^\infty(\mathbb{R}^m; \mathcal{S}(\mathbb{R}^k)) \rightarrow \mathcal{C}^\infty(\mathbb{R}^m; \mathcal{S}(\mathbb{R}^k)),$$

where $\mathcal{C}^\infty(\mathbb{R}^m; \mathcal{S}(\mathbb{R}^k))$ stands for \mathcal{C}^∞ functions on \mathbb{R}^m with values in $\mathcal{S}(\mathbb{R}^k)$, which means that its elements are \mathcal{C}^∞ functions f on $\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^k$ such that locally in y (i.e. for $|y| < R$, $R > 0$ arbitrary), $|z|^N D_x^\alpha f$ is bounded for all $N \geq 0$ and all $\alpha \in \mathbb{N}^n$.

As an application of these results, let's solve the heat equation on $(0, \infty)_t \times \mathbb{R}_x^n$:

$$u_t = k \Delta u, \quad u(0, x) = \phi(x),$$

with $\phi \in \mathcal{S}(\mathbb{R}^n)$ given. Taking the partial Fourier transform in x , and writing $\mathcal{F}_x u(t, \xi) = \hat{u}(t, \xi)$, gives

$$\frac{\partial \hat{u}}{\partial t}(t, \xi) = -k|\xi|^2 \hat{u}(t, \xi), \quad \hat{u}(0, \xi) = (\mathcal{F}\phi)(\xi).$$

Solving the ODE for each fixed ξ yields

$$\hat{u}(t, \xi) = e^{-k|\xi|^2 t} (\mathcal{F}\phi)(\xi),$$

hence

$$(7) \quad u(t, x) = \mathcal{F}_\xi^{-1} \left(e^{-k|\xi|^2 t} (\mathcal{F}\phi)(\xi) \right).$$

We would like to rewrite this to have a more explicit expression for u in terms of ϕ . This can be done via convolutions.

Suppose first that $f, g \in L^1(\mathbb{R}^n)$ (so e.g. f, g continuous and $|x|^N f, |x|^N g$ are bounded for some $N > n$.) Then $\mathcal{F}f, \mathcal{F}g$ are bounded continuous functions, hence $(\mathcal{F}f)(\mathcal{F}g)$ is a bounded continuous function as well. We cannot take its inverse Fourier transform (yet) directly, except under stronger assumptions (such as $f, g \in \mathcal{S}(\mathbb{R}^n)$), but we can ask whether $(\mathcal{F}f)(\mathcal{F}g)$ is the Fourier transform of some $\chi \in$

$L^1(\mathbb{R}^n)$). So we compute:

$$\begin{aligned} (\mathcal{F}f)(\xi)(\mathcal{F}g)(\xi) &= \left(\int_{\mathbb{R}^n} e^{-ix \cdot \xi} f(x) dx \right) \left(\int_{\mathbb{R}^n} e^{-iy \cdot \xi} g(y) dy \right) \\ &= \int_{\mathbb{R}^{2n}} e^{-ix \cdot \xi} e^{-iy \cdot \xi} f(x) g(y) dx dy; \end{aligned}$$

where the last equality is Fubini's theorem using that $(x, y) \mapsto f(x)g(y)$ is in $L^1(\mathbb{R}^{2n})$, which in turn follows from the measurability of $(x, y) \mapsto f(x)$, the similar statement for g , hence of their product, and an application of Tonelli's theorem. We now change variables to make the exponent of the form $e^{-iz \cdot \xi}$; we thus let $z = x + y$, while keeping x , so $y = z - x$. Then we deduce

$$\begin{aligned} (8) \quad (\mathcal{F}f)(\xi)(\mathcal{F}g)(\xi) &= \int_{\mathbb{R}^{2n}} e^{-iz \cdot \xi} f(x) g(z - x) dx dz \\ &= \int_{\mathbb{R}^n} e^{-iz \cdot \xi} \left(\int_{\mathbb{R}^n} f(x) g(z - x) dx \right) dz = (\mathcal{F}(f * g))(\xi), \end{aligned}$$

where we let

$$(f * g)(z) = \int_{\mathbb{R}^n} f(x) g(z - x) dx$$

be the *convolution* of f and g . A change of variables shows that $(f * g)(z) = (g * f)(z)$, which is consistent with $(\mathcal{F}f)(\mathcal{F}g) = (\mathcal{F}g)(\mathcal{F}f)$. A simple calculation shows that if $f, g \in \mathcal{S}(\mathbb{R}^n)$ then $f * g \in \mathcal{S}(\mathbb{R}^n)$ as well – again, this is consistent with (and indeed follows from, for here we can use the inverse Fourier transform already) $(\mathcal{F}f)(\mathcal{F}g) \in \mathcal{S}(\mathbb{R}^n)$.

If we write $\mathbb{R}^n \ni x = (x', x'') \in \mathbb{R}^m \times \mathbb{R}^k$ as above, we can talk about partial convolutions, and we still have the analogue of (8): we let

$$(f *_{x''} g)(x', x'') = \int_{\mathbb{R}^n} f(x', y'') g(x', x'' - y'') dy'',$$

and then

$$(9) \quad (\mathcal{F}_{x''} f)(\mathcal{F}_{x''} g) = \mathcal{F}_{x''}(f *_{x''} g).$$

We now use this to rewrite the solution formula for the heat equation. By (7), (9) and the Fourier inversion formula, if we write

$$e^{-k|\xi|^2 t} = (\mathcal{F}_x f)(t, \xi)$$

for some $f \in \mathcal{C}^\infty((0, \infty)_t; \mathcal{S}(\mathbb{R}_x^n))$, then

$$u(t, x) = (f *_x \phi)(t, x) = \int f(t, x - y) \phi(y) dy.$$

But this is straightforward: we have computed the inverse Fourier transform of a Gaussian in (6), so with $b = kt$,

$$f(t, x) = (4\pi kt)^{-n/2} e^{-|x|^2/(4kt)},$$

and hence

$$u(t, x) = (4\pi kt)^{-n/2} \int e^{-|x-y|^2/(4kt)} \phi(y) dy,$$

yielding a more explicit solution formula for the heat equation.

In fact, the heat kernel provides an alternative way of showing the Fourier inversion formula. The point is that

$$K_t(x) = (4\pi kt)^{-n/2} e^{-|x|^2/(4kt)}, \quad t > 0,$$

is a family of good kernels on \mathbb{R}^n , i.e. have integral 1, are uniformly bounded, by a constant M , in $L^1(\mathbb{R}^n)$ for $t > 0$ (which follows immediately from the previous statement and that they are positive functions, so one can take $M = 1$), and finally, for any $\delta > 0$, $K_t(x)\chi_{\mathbb{R}^n \setminus B_\delta(0)} \rightarrow 0$ in $L^1(\mathbb{R}^n)$ as $t \rightarrow 0$. Thus, if h is a bounded continuous function, then for every x , using $*$ simply to denote partial convolution, $(K_t * h)(x) \rightarrow h(x)$, and the convergence is uniform on sets on which h is uniformly continuous (in particular, on compact subsets). To see this, let $A \subset \mathbb{R}^n$ be such that h is uniformly continuous on A , and for $\epsilon > 0$ let $\delta > 0$ be such that $|y| < \delta$ implies $|h(x - y) - h(x)| < \epsilon/(2M)$. Then, using $\int K_t(y) dy = 1$, for $x \in A$,

$$\begin{aligned} (K_t * h)(x) - h(x) &= \int K_t(y)(h(x - y) - h(x)) dy \\ &= \int_{B_0(\delta)} K_t(y)(h(x - y) - h(x)) dy + \int_{\mathbb{R}^n \setminus B_0(\delta)} K_t(y)(h(x - y) - h(x)) dy. \end{aligned}$$

Now, the absolute value of the first integral is

$$\leq \int_{B_0(\delta)} |K_t(y)| |h(x - y) - h(x)| dy \leq \frac{\epsilon}{2M} \int_{B_0(\delta)} |K_t(y)| dy \leq \frac{\epsilon}{2M} \int_{\mathbb{R}^n} |K_t(y)| dy \leq \frac{\epsilon}{2},$$

while that of the second integral is

$$\leq \int_{\mathbb{R}^n \setminus B_0(\delta)} |K_t(y)| (|h(x - y)| + |h(x)|) dy \leq 2 \sup |h| \|K_t\|_{L^1(\mathbb{R}^n \setminus B_0(\delta))},$$

so it goes to 0 as $t \rightarrow 0$, and in particular there is $t_0 > 0$ such that this is $< \epsilon/2$ for $0 < t < t_0$. In summary, $\sup\{|(K_t * h)(x) - h(x)| : x \in A\} \leq \epsilon$ for $0 < t < t_0$, proving the uniform convergence on A .

In particular, if $h \in \mathcal{S}(\mathbb{R}^n)$, then h is uniformly continuous on \mathbb{R}^n : first, given $\epsilon > 0$, choose $R > 0$ such that $|h(x)| < \epsilon/2$ for $|x| > R$ (which is possible by the decay of h at infinity), so if $|x| > R + 1$, $|y| < 1$, then $|x - y| > R$ shows $|h(x - y) - h(x)| \leq |h(x - y)| + |h(y)| < \epsilon$. On the other hand, h is continuous, thus uniformly continuous, on the compact set $\{x : |x| \leq R + 1\}$, so there is $\delta' > 0$ such that $|y| < \delta'$ implies $|h(x - y) - h(x)| < \epsilon$. Now simply let $\delta = \min(\delta', 1)$ to conclude the uniform continuity on \mathbb{R}^n . Correspondingly, for Schwartz functions h , $K_t * h \rightarrow h$ uniformly on \mathbb{R}^n .

Now, the Fourier transform satisfies the relation

$$(10) \quad \int \hat{\phi}(\xi) \psi(\xi) d\xi = \int \phi(x) \hat{\psi}(x) dx, \quad \phi, \psi \in \mathcal{S}.$$

(Of course, we could have denoted the variable of integration by x on both sides.) Indeed, explicitly writing out the Fourier transforms,

$$\begin{aligned} \int \left(\int e^{-ix \cdot \xi} \phi(x) dx \right) \psi(\xi) d\xi &= \int_{\mathbb{R}^{2d}} e^{-ix \cdot \xi} \phi(x) \psi(\xi) dx d\xi \\ &= \int \phi(x) \left(\int e^{-ix \cdot \xi} \psi(\xi) d\xi \right) dx, \end{aligned}$$

where the middle integral's integrand is in $L^1(\mathbb{R}^{2n})$, so we can apply Fubini's theorem. Of course, this argument does not really require $\phi, \psi \in \mathcal{S}$, it suffices if $\phi, \psi \in L^1(\mathbb{R}^n)$.

We now apply this result with ψ replaced by the inverse Fourier transform of K_t , which is $\psi(\xi) = (2\pi)^{-n} e^{-k|\xi|^2 t}$ as we have already calculated the Fourier and inverse Fourier transform of Gaussians; this means that $\hat{\psi} = K_t$. Thus,

$$(2\pi)^{-n} \int \hat{\phi}(\xi) e^{-k|\xi|^2 t} d\xi = \int \phi(x) K_t(x) dx,$$

and the right hand side converges to $\phi(0)$ by our previous discussion (it is $K_t * \phi$ evaluated at 0). On the other hand, as $\hat{\phi} \in L^1(\mathbb{R}^n)$ and $0 < e^{-k|\xi|^2 t} \leq 1$, and for each ξ , $e^{-k|\xi|^2 t} \rightarrow 1$ as $t \rightarrow 0$, the dominated convergence theorem shows that the left hand side converges to $(2\pi)^{-n} \int \hat{\phi}(\xi) d\xi$, which is the inverse Fourier transform of $\hat{\phi}$ evaluated at 0. This shows that the Fourier inversion formula holds at 0.

For general $a \in \mathbb{R}^n$, let $\Phi(x) = \phi(x + a)$, so

$$\phi(a) = \Phi(0) = (2\pi)^{-n} \int \hat{\Phi}(\xi) d\xi,$$

but

$$\hat{\Phi}(\xi) = \int e^{-i\xi \cdot x} \phi(x + a) dx = e^{i\xi \cdot a} \int e^{-i\xi \cdot (x+a)} \phi(x + a) dx = e^{i\xi \cdot a} (\mathcal{F}\phi)(\xi),$$

which when substituted in, yields the Fourier inversion formula:

$$\phi(a) = (2\pi)^{-n} \int e^{ix \cdot a} \hat{\phi}(\xi) d\xi.$$

An alternative way of achieving this at once (without reducing to the $a = 0$ case) is using $K_t(x - a)$ in place of $K_t(x)$ in the argument above; then the inverse Fourier transform of $K_t(\cdot - a)$ is $(2\pi)^{-n} e^{i\xi \cdot a} e^{-ik|\xi|^2 t}$, which is still bounded by $(2\pi)^{-n}$ in absolute value, but now converges to $(2\pi)^{-n} e^{i\xi \cdot a}$ pointwise, so the dominated convergence theorem gives

$$\mathcal{F}^{-1} \hat{\phi}(a) = \lim_{t \rightarrow 0} \int \phi(x) K_t(x - a) dx = \lim_{t \rightarrow 0} \int \phi(x) K_t(a - x) = \lim_{t \rightarrow 0} (K_t * \phi)(a),$$

and the proof is finished as above

Notice that our argument only used $\phi \in L^1$ and $\hat{\phi} \in L^1$, plus that $K_t * \phi \rightarrow \phi$ uniformly to get this conclusion. If instead of the last one of these we show that for $\phi \in L^1$, $K_t * \phi \rightarrow \phi$ in L^1 , then we in fact obtain that the inverse Fourier transform of the Fourier transform of such ϕ is ϕ , for there is a sequence of $t_j \rightarrow 0$ then along which the convergence is a.e. pointwise. (Notice that $\mathcal{F}^{-1} \hat{\phi}$ is a continuous function, so under these assumptions ϕ is a.e. equal to a continuous function, so it is certainly *not* a typical L^1 function.)

But

$$(K_t * \phi)(x) - \phi(x) = \int (\phi(x - y) - \phi(x)) K_t(y) dy,$$

so if we denote the function on the left by Φ_t , then, as on the problem set, using Fubini's theorem (plus Tonelli to justify its application, i.e. to show that the middle integral's integrand is in $L^1(\mathbb{R}^{2n})$, being bounded by $|\phi(x - y)| K_t(y) + |\phi(x)| K_t(y)$, with both terms being such),

$$\|\Phi_t\|_{L^1} \leq \int_{\mathbb{R}^{2n}} |\phi(x - y) - \phi(x)| K_t(y) dx dy = \int \|\phi(\cdot - y) - \phi\|_{L^1} K_t(y) dy.$$

But we have already shown that $\phi(\cdot - y) \rightarrow \phi$ in L^1 as $y \rightarrow 0$, i.e. given $\epsilon > 0$ there exists $\delta > 0$ such that $|y| < \delta$ implies $\|\phi(\cdot - y) - \phi\|_{L^1} < \epsilon/2$. Now breaking up the integral into one over $B_\delta(0)$ and one over $\mathbb{R}^n \setminus B_\delta(0)$, much as in the continuous case above, the former is $\leq \epsilon/2$, while the latter is, using $\|\phi(\cdot - y) - \phi\|_{L^1} \leq \|\phi(\cdot - y)\|_{L^1} + \|\phi\|_{L^1}$,

$$\leq 2\|\phi\|_{L^1} \int_{\mathbb{R}^n \setminus B_\delta(0)} K_t,$$

which goes to 0 as $t \rightarrow 0$. Choosing $t_0 > 0$ such that for $0 < t < t_0$ this is $< \epsilon/2$, we deduce that $0 < t < t_0$ implies $\|\Phi_t\|_{L^1} \leq \epsilon$, giving that $K_t * \phi \rightarrow \phi$ in L^1 . This completes the proof that if $\phi, \hat{\phi} \in L^1$, then $\mathcal{F}^{-1} \mathcal{F}\phi = \phi$.

One more topic we discuss is the Poisson summation formula. If we are given a function $\phi \in \mathcal{S}(\mathbb{R})$, we can form a 2π -periodic function by taking $\mathcal{F}^{-1}\phi$ and summing up its translates by multiples of 2π :

$$f(x) = \sum_{m \in \mathbb{Z}} (\mathcal{F}^{-1}\phi)(x + 2\pi m).$$

Note that this sum actually converges, and does so uniformly, hence the limit is continuous: since $|\mathcal{F}^{-1}\phi(y)| \leq C_N(1 + |y|)^{-N}$ for all N , this follows from the uniform convergence of

$$\sum_{m \in \mathbb{Z}} (1 + |x + 2\pi m|^2)^{-1},$$

which in turn can be checked by considering the sum only for $x \in [-\pi, \pi]$, using that for $|m| \geq 2$, the m th term is $\leq \frac{1}{4\pi^2(|m|-1)^2}$. Indeed, since the term-by-term differentiated series still has the same property, it follows that f is \mathcal{C}^∞ .

Another way of producing a 2π -periodic function is to regard the integer values of ϕ as Fourier series coefficients, and consider

$$g(x) = \sum_{m \in \mathbb{Z}} \phi(m) e^{imx}.$$

A natural question is how these two functions are related. To see this, let us find the Fourier coefficients of the 2π -periodic function f . These are

$$\begin{aligned} c_k &= (2\pi)^{-1} \int_0^{2\pi} e^{-ikx} f(x) dx = (2\pi)^{-1} \int_0^{2\pi} \sum_{m \in \mathbb{Z}} e^{-ikx} \mathcal{F}^{-1}\phi(x + 2\pi m) dx \\ &= (2\pi)^{-1} \sum_{m \in \mathbb{Z}} \int_0^{2\pi} e^{-ikx} \mathcal{F}^{-1}\phi(x + 2\pi m) dx \end{aligned}$$

Here the last equality holds by considering the sum as a limit: $\lim_{M \rightarrow \infty} \sum_{|m| \leq M}$, and noting that the limit can be brought through the integral by the dominated convergence theorem since

$$\sum_{|m| \leq M} |\mathcal{F}^{-1}\phi(x + 2\pi m)| \leq \sum_{|m| \leq M} (1 + |x + 2\pi m|^2)^{-1} \leq \sum_{m \in \mathbb{Z}} (1 + |x + 2\pi m|^2)^{-1},$$

which we saw converged uniformly to a continuous 2π -periodic, thus bounded, function, and $[0, 2\pi]$ has finite measure. In order to evaluate this integral, we use the translation invariance of the Lebesgue measure. This gives

$$c_k = (2\pi)^{-1} \sum_{m \in \mathbb{Z}} \int_{2\pi m}^{2\pi(m+1)} e^{-ikx} \mathcal{F}^{-1}\phi(x) dx.$$

Now, this is

$$\begin{aligned} c_k &= (2\pi)^{-1} \lim_{M \rightarrow \infty} \sum_{|m| \leq M} \int_{2\pi m}^{2\pi(m+1)} e^{-ikx} \mathcal{F}^{-1}\phi(x) dx \\ &= (2\pi)^{-1} \lim_{M \rightarrow \infty} \int_{-M}^{(M+1)2\pi} e^{-ikx} \mathcal{F}^{-1}\phi(x) dx = (2\pi)^{-1} \int_{\mathbb{R}} e^{-ikx} \mathcal{F}^{-1}\phi(x) dx \end{aligned}$$

again using the dominated convergence theorem and that $\mathcal{F}^{-1}\phi \in \mathcal{S} \subset L^1$. But this is $(2\pi)^{-1}$ times the Fourier transform of $\mathcal{F}^{-1}\phi$ evaluated at k , thus it is $(2\pi)^{-1}\phi(k)$! Since the Fourier coefficients uniquely determine a 2π -periodic C^1 function thanks

to the Fourier inversion formula for the Fourier series, we conclude that $(2\pi)^{-1}g = f$, i.e. that

$$\sum_{m \in \mathbb{Z}} (\mathcal{F}^{-1}\phi)(x + 2\pi m) = (2\pi)^{-1} \sum_{m \in \mathbb{Z}} \phi(m) e^{imx}.$$

An interesting application is obtained by taking $\phi(\xi) = e^{-k\xi^2 t}(\mathcal{F}\psi)(\xi)$, $\psi \in \mathcal{S}(\mathbb{R})$. Then $\mathcal{F}^{-1}\phi(x) = K_t * \psi(x)$, with $K_t(x) = (4\pi kt)^{-1}e^{-x^2/(4kt)}$ the heat kernel on the real line at time $t > 0$. Summing up the translates produces a 2π -periodic function which still solves the heat equation with initial data given by the 2π -periodicized version of ψ : $\sum_{m \in \mathbb{Z}} \psi(x + 2\pi m)$. On the other hand, $(2\pi)^{-1} \sum_{m \in \mathbb{Z}} e^{-km^2 t} \mathcal{F}\psi(m) e^{imx}$ is the solution of the heat equation on the circle with initial data $(2\pi)^{-1} \sum_{m \in \mathbb{Z}} \mathcal{F}\psi(m) e^{imx}$, which is also $\sum_{m \in \mathbb{Z}} \psi(x + 2\pi m)$. Thus, we have two methods for solving the heat equation on the circle, say for a \mathcal{C}^∞ function ψ on \mathbb{R} which is supported in $(0, 2\pi)$: we can either use the Fourier series, or we can use the solution of the heat equation on \mathbb{R} , and sum the translates. The latter is a version of the method of images. Also notice the nice identity one gets by applying the Poisson summation formula to the heat kernel directly:

$$\sum_{m \in \mathbb{Z}} (4\pi kt)^{-1} e^{-(x+2\pi m)^2/(4kt)} = (2\pi)^{-1} \sum_{m \in \mathbb{Z}} e^{-km^2 t} e^{imx}.$$

We finally show the *Parseval/Plancherel formula*:

Lemma 0.4. *For $\phi, \psi \in \mathcal{S}(\mathbb{R}^n)$,*

$$\int_{\mathbb{R}^n} \phi(x) \overline{\psi(x)} dx = (2\pi)^{-n} \int_{\mathbb{R}^n} (\mathcal{F}\phi)(\xi) \overline{(\mathcal{F}\psi)(\xi)} d\xi.$$

Thus, up to a constant factor, the Fourier transform preserves L^2 -norms:

$$\|\mathcal{F}\phi\|_{L^2(\mathbb{R}^n)} = (2\pi)^{n/2} \|\phi\|_{L^2(\mathbb{R}^n)}.$$

Proof. Before proceeding note that following relationship between \mathcal{F} and \mathcal{F}^{-1} : for $\varphi \in L^1(\mathbb{R}^n)$,

$$(\mathcal{F}^{-1}\overline{\varphi})(x) = (2\pi)^{-n} \int e^{ix \cdot \xi} \varphi(\xi) d\xi = (2\pi)^{-n} \overline{\int e^{-ix \cdot \xi} \varphi(\xi) d\xi} = (2\pi)^{-n} \overline{\mathcal{F}\varphi}(\xi),$$

i.e.

$$(11) \quad \mathcal{F}^{-1}\overline{\varphi} = (2\pi)^{-n} \overline{\mathcal{F}\varphi}.$$

Now, for $\phi, \psi \in \mathcal{S}(\mathbb{R}^n)$,

$$\begin{aligned} \int_{\mathbb{R}^n} \phi(x) \overline{\psi(x)} dx &= \int_{\mathbb{R}^n} \phi(x) (\mathcal{F}(\mathcal{F}^{-1}\overline{\psi}))(x) dx = \int_{\mathbb{R}^n} \mathcal{F}\phi(\xi) (\mathcal{F}^{-1}\overline{\psi})(\xi) d\xi \\ &= \int_{\mathbb{R}^n} \mathcal{F}\phi(\xi) (2\pi)^{-n} \overline{(\mathcal{F}\psi)(\xi)} d\xi = (2\pi)^{-n} \int_{\mathbb{R}^n} (\mathcal{F}\phi)(\xi) \overline{(\mathcal{F}\psi)(\xi)} d\xi, \end{aligned}$$

where the first equality follows from $\mathcal{F}\mathcal{F}^{-1} = \text{Id}$ on $\mathcal{S}(\mathbb{R}^n)$, the second from (10) and the third from (11). Substituting in $\psi = \phi$ yields that

$$\|\mathcal{F}\phi\|_{L^2(\mathbb{R}^n)}^2 = (2\pi)^n \|\phi\|_{L^2(\mathbb{R}^n)}^2,$$

giving the claimed conclusion. \square

We note that $\mathcal{S}(\mathbb{R}^n)$, and indeed compactly supported \mathcal{C}^∞ functions are dense in $L^2(\mathbb{R}^n)$.

Lemma 0.5. *For all $f \in L^2(\mathbb{R}^n)$ and $\epsilon > 0$ there exists $\phi \in \mathcal{C}_c^\infty(\mathbb{R}^n)$ such that $\|f - \phi\|_{L^2} < \epsilon$.*

Proof. Since continuous functions of compact support are dense in $L^2(\mathbb{R}^n)$, there exists $g \in C(\mathbb{R}^n)$, of compact support, say $\text{supp } g \subset B_R(0)$ such that $\|g - f\|_{L^2} < \epsilon/2$. So it suffices to find $\phi \in \mathcal{C}_c^\infty(\mathbb{R}^n)$, supported say in $B_{R+1}(0)$, such that $\|\phi - g\|_{L^2} < \epsilon/2$. But

$$\|\phi - g\|_{L^2} \leq m(B_{R+1}(0)) \sup |\phi - g|,$$

so it suffices to find $\phi \in \mathcal{C}_c^\infty(\mathbb{R}^n)$, supported in $B_{R+1}(0)$, that is close to g in the uniform norm.

For this purpose, let $\chi \in \mathcal{C}_c^\infty(\mathbb{R}^n)$, supported in $B_1(0)$, $\chi \geq 0$, $\chi(0) > 0$. Multiplying χ by a positive constant we may assume that $\int \chi = 1$. Now for $\delta > 0$ let $\chi_\delta(x) = \delta^{-n} \chi(x/\delta)$. Then the family χ_δ , $\delta \in (0, 1)$, is a family of good kernels as $\delta \rightarrow 0$, so it follows that $\chi_\delta * g \rightarrow g$ uniformly. Further, $\chi_\delta \in \mathcal{C}^\infty(\mathbb{R}^n)$ for $\delta > 0$. Note also that the convolution $(\chi_\delta * g)(x)$ vanishes for x with $|x| \geq R+1$, for in this case $|x-y| + |y| \geq |x| \geq R+1$ shows that either $|y| \geq 1$ or $|x-y| \geq R$, and thus the integrand of $\int g(x-y) \chi_\delta(y) dy$ vanishes identically. Hence, for $\delta > 0$ small, $\phi = \chi_\delta * g$ satisfies all requirements, completing the proof. \square

An immediate corollary is the following:

Theorem 0.6. *The Fourier transform, defined a priori on $\mathcal{S}(\mathbb{R}^n)$, has a unique continuous extension to a map $\mathcal{F} : L^2(\mathbb{R}^n) \rightarrow L^2(\mathbb{R}^n)$ which still satisfies*

$$(12) \quad \|\mathcal{F}\phi\|_{L^2(\mathbb{R}^n)} = (2\pi)^{n/2} \|\phi\|_{L^2(\mathbb{R}^n)}, \quad \phi \in L^2(\mathbb{R}^n).$$

The corresponding statement also holds for \mathcal{F}^{-1} , with

$$(13) \quad \|\mathcal{F}^{-1}\phi\|_{L^2(\mathbb{R}^n)} = (2\pi)^{-n/2} \|\phi\|_{L^2(\mathbb{R}^n)}, \quad \phi \in L^2(\mathbb{R}^n).$$

Finally, \mathcal{F} and \mathcal{F}^{-1} are inverses of each other on $L^2(\mathbb{R}^n)$.

Proof. We first show the unique extendability of \mathcal{F} to L^2 ; the argument for \mathcal{F}^{-1} is completely analogous.

The linear map $\mathcal{F} : \mathcal{S}(\mathbb{R}^n) \rightarrow \mathcal{S}(\mathbb{R}^n)$ satisfies

$$(14) \quad \|\mathcal{F}\phi\|_{L^2(\mathbb{R}^n)} \leq C \|\phi\|_{L^2(\mathbb{R}^n)}$$

for $\phi \in \mathcal{S}(\mathbb{R}^n)$ (indeed, equality, with $C = (2\pi)^{n/2}$), and thus it has a unique continuous extension to the closure of $\mathcal{S}(\mathbb{R}^n)$ in the Hilbert space $L^2(\mathbb{R}^n)$ as stated. Since the maps $\phi \mapsto \|\mathcal{F}\phi\|_{L^2(\mathbb{R}^n)}$ and $(2\pi)^{n/2} \|\phi\|_{L^2(\mathbb{R}^n)}$ are continuous on $L^2(\mathbb{R}^n)$, and they agree on the dense subset $\mathcal{S}(\mathbb{R}^n)$, the identity (13) is valid on all of $L^2(\mathbb{R}^n)$.

For the sake of completeness of details, recall that a continuous map is determined by values on a dense subset, so the uniqueness statement of the theorem follows just by the density of $\mathcal{S}(\mathbb{R}^n)$ in $L^2(\mathbb{R}^n)$. To get the existence, one shows that \mathcal{F} maps sequences $\{\phi_j\}_{j=1}^\infty$ in $\mathcal{S}(\mathbb{R}^n)$ which are Cauchy sequences in the $L^2(\mathbb{R}^n)$ norm to L^2 -Cauchy sequences (which is immediate from (14)), and thus to L^2 -convergent sequences (which is where the completeness of the target L^2 is used). Moreover, equivalent Cauchy sequences can be combined by alternating the elements into a single Cauchy sequence, showing that the images are also equivalent (since the alternated version is still Cauchy). Thus, for $f \in L^2(\mathbb{R}^n)$, taking $\phi_j \in \mathcal{S}(\mathbb{R}^n)$, $\phi_j \rightarrow f$ in L^2 , and letting $\mathcal{F}f = \lim_{j \rightarrow \infty} \mathcal{F}\phi_j$ means that $\mathcal{F} : L^2(\mathbb{R}^n) \rightarrow L^2(\mathbb{R}^n)$ is well-defined. As \mathcal{F} is linear on \mathcal{S} , so e.g. $\mathcal{F}(\phi_j + \psi_j) = \mathcal{F}\phi_j + \mathcal{F}\psi_j$, the linearity of \mathcal{F} on $L^2(\mathbb{R}^n)$ also follows by taking limits. Finally, we need to establish the bound

$$\|\mathcal{F}f\|_{L^2(\mathbb{R}^n)} \leq C \|f\|_{L^2(\mathbb{R}^n)}$$

even for $f \in L^2$, since this gives the continuity of $\mathcal{F} : L^2 \rightarrow L^2$. But this is easy: if $\phi_j \rightarrow f$ in L^2 , then $\mathcal{F}\phi_j \rightarrow \mathcal{F}f$ in L^2 by the definition of $\mathcal{F}f$. Since the norm is a

continuous map on any normed space, $\|\phi_j\|_{L^2} \rightarrow \|f\|_{L^2}$ and $\|\mathcal{F}\phi_j\|_{L^2} \rightarrow \|\mathcal{F}f\|_{L^2}$. Since $\|\mathcal{F}\phi_j\|_{L^2} \leq C\|\phi_j\|_{L^2}$, letting $j \rightarrow \infty$ gives the desired conclusion.

It remains to show $\mathcal{F}\mathcal{F}^{-1} = \text{Id} = \mathcal{F}^{-1}\mathcal{F}$ on L^2 . But $\mathcal{F}\mathcal{F}^{-1}, \mathcal{F}^{-1}\mathcal{F}, \text{Id}$ are all continuous maps on L^2 , they all agree on the dense subset \mathcal{S} , thus on all on L^2 . \square