
MATH 172: THE FOURIER TRANSFORM – BASIC

PROPERTIES AND THE INVERSION FORMULA

ANDRAS VASY

The Fourier transform is the basic and most powerful tool for studying trans-
lation invariant analytic problems, such as constant coefficient PDE on Rn. It is
based on the following simple observation: for ξ ∈ Rn, the functions

vξ(x) = eix·ξ = eix1ξ1 · · · eixnξn

are joint eigenfunctions of the operators ∂xj , namely for each j,

(1) ∂xjvξ = iξjvξ.

It would thus be desirable to decompose an ‘arbitrary’ function u as an (infinite)
linear combination of the vξ, namely write it as

(2) u(x) = (2π)−n
∫
Rn
û(ξ)eix·ξ dξ,

where û(ξ) is the ‘amplitude’ of the harmonic eix·ξ in u. (The factor (2π)−n is here
due to a convention, it could also be moved to other places.) It turns out that this
identity, (2), holds provided that we define

û(ξ) =

∫
Rn
e−ix·ξu(x) dx;

(2) is then the Fourier inversion formula.
Rather than showing this at once, we start with a step-by-step approach. We

first define the Fourier transform as

(Fu)(ξ) =

∫
Rn
e−ix·ξu(x) dx

for u ∈ L1(Rn), thus in particular for for u ∈ C(Rn) with |x|N |u| bounded for some
N > n (i.e. |u(x)| ≤ M |x|−N for some M in say |x| > 1, the point being that in
this case u is absolutely integrable as

∫
|x|>1

M |x|−N dx converges). Note that for

such functions

|(Fu)(ξ)| ≤
∫
Rn
|e−ix·ξ| |u(x)| dx =

∫
Rn
|u(x)| dx,

so Fu is bounded, and if we have a sequence ξk → ξ then (Fu)(ξ) → (Fu)(ξk)
by the dominated convergence theorem, so Fu is actually a bounded continuous
function.

We can similarly define the inverse Fourier transform

(F−1ψ)(x) = (2π)−n
∫
Rn
eix·ξψ(ξ) dξ;

then F−1 maps u ∈ L1(Rn), and in particular u ∈ C(Rn) with |x|N |u| bounded
for some N > n to bounded continuous functions. With these definition it is
of course not clear whether F−1 is indeed the inverse of F , and worse, not even
clear whether F−1Fφ makes sense for φ ∈ L1(Rn), since Fφ is then a bounded
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continuous function, which is not sufficient to ensure that the integral defining F−1
actually converges! We thus proceed to study properties of F and F−1.

However, first we comment on the normalization. While our normalization is a
very common one in analysis/PDE theory, it is by no means the only one. One
could normalize the Fourier transform differently in two ways: change the constant
1 in front, and change the exponent −ix · ξ. Thus, consider a transform

(Fα,Cφ)(ξ) = C

∫
Rn
e−ix·ξ/αφ(x) dx = C(Fφ)(ξ/α),

which is thus simply a rescaled (by α > 0) version of the Fourier transform, multi-
plied by a constant (C > 0). To see what the analogue of F−1 should be, note that
if F−1 is indeed the inverse of F then the inverse of Fα,C , applied to some ψ, is
to take the function Ψ(ξ) = C−1ψ(αξ), and inverse Fourier transform it, since for
ψ = Fα,Cφ, Ψ is exactly Fφ. Thus, the inverse transform is defined as

(F−1α,Cψ)(x) = C−1(2π)−n
∫
Rn
eix·ξ̃ψ(αξ̃) dξ̃ = C−1α−n(2π)−n

∫
Rn
eix·ξ/αψ(ξ) dξ,

where in the last step we changed the variable of integration from ξ̃ to ξ = αξ̃.
Some common choices are α = 1, C = (2π)−n/2 and α = (2π)−1, C = 1. With

the former, the formulae look as before except both the Fourier transform and the
inverse Fourier transform have a (2π)−n/2 in front, in a symmetric manner. With
the latter, one has

φ 7→
∫
e−2πix·ξφ(x) dx

as the transform, and

ψ 7→
∫
e2πix·ξψ(x) dx

as the inverse transform, which is also symmetric, though now at the cost of making
the exponent a bit longer. The latter is the convention used in our textbook; the
former is often used in quantum mechanics.

Returning to properties of F and F−1, first we note a property of F which is
the main reason for its usefulness in studying PDE, and which is an immediate
consequence of (1). Namely, suppose that φ ∈ C1(Rn) and both φ and all first
derivatives ∂jφ, j = 1, . . . , n, decay at infinity in the same sense as above (so
|x|N∂jφ is bounded for some N > n). Then integration by parts gives

(F(∂xjφ))(ξ) =

∫
Rn
e−ix·ξ∂xjφ(x) dx = −

∫
Rn
∂xj (e

−ix·ξ)φ(x) dx

= iξj

∫
Rn
e−ix·ξφ(x) dx = iξj(Fφ)(ξ).

In other words, the operators F , ∂xj and multiplication by ξj (usually just written
as ξj) satisfy

F∂xj = iξjF .
In order to remove the factor of i, we let

Dxj =
1

i
∂xj ,

so

FDxj = ξjF .
Note, in particular, that this gives that for φ as above,

ξjFφ(ξ) = FDxjφ
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is bounded for all j, so as Fφ is also bounded so(
1 +

n∑
j=1

ξ2j

)
|Fφ(ξ)|2

is bounded, we deduce that

(3) |Fφ(ξ)| ≤ C/(1 + |ξ|2)1/2,

i.e. the Fourier transform of φ actually decays, and is not merely bounded. This
gives us some hope that perhaps under some additional assumptions F−1(Fφ)
actually makes sense.

Before proceeding, we note that (1+|ξ|2)1/2
1+|ξ| is bounded from below and above by

positive constants – indeed, it is certainly a positive continuous function, and as
|ξ| → ∞, it converges to 1 (since the summand 1 is negligible in the limit in both
the numerator and the denominator). Thus, (3) is equivalent to, for some C ′ > 0,

|Fφ(ξ)| ≤ C ′/(1 + |ξ|).
There is an analogous formula for F(xjφ) if we instead assume that φ ∈ C(Rn)

and |x|N |φ| is bounded for N > n+ 1, namely

F(xjφ) =

∫
Rn
e−ix·ξxjφ(x) dx =

∫
Rn

(xje
−ix·ξ)φ(x) dx =

∫
Rn

(i∂ξje
−ix·ξ)φ(x) dx

= i∂ξj

(∫
Rn
e−ix·ξφ(x) dx

)
= −Dξj (Fφ)(ξ),

where Dξj = 1
i ∂ξj . In operator notation,

Fxj = −DξjF .

In particular, this tells us that if φ ∈ C(Rn) and |x|N |φ| is bounded for N > n+ 1
then Fφ is continuously differentiable, and its derivatives DξjFφ are bounded.

In summary, the Fourier transform interchanges differentiation and multiplica-
tion by the coordinate functions (up to a − sign), and correspondingly it inter-
changes differentiability and decay at infinity. If we only care about differentiation,
the natural class of ‘very nice’ functions is C∞, since we can differentiate its ele-
ments arbitrary many times. In view of the properties of the Fourier transform, the
relevant class of ‘very nice’ functions consists of functions which are C∞ and decay
rapidly at infinity.

Definition 1. The set S = S(Rn), called the set of Schwartz functions, consists
of functions φ ∈ C∞(Rn) such that for all N ≥ 0 and all multiindices α ∈ Nn,
|x|NDαφ is bounded on Rn.

Here we used the multiindex notation:

Dα = Dα1
x1
. . . Dαn

xn .

The functions φ ∈ S(Rn) decay rapidly at infinity with all derivatives.
We can put this into a more symmetric form by noting that it suffices to consider

N even, and indeed merely ask if (1 + |x|2)NDαφ is bounded for all N and α.
Expanding the first term, using |x|2 = x21 + . . . + x2n, one easily sees that this in
turn is equivalent to the statement that for all multiindices α, β ∈ Nn, xαDβφ is
bounded. Here we wrote

xα = xα1
1 xα2

2 . . . xαnn ,

in analogy with the notation for Dβ . Note that by Leibniz’ rule (i.e. the product
rule for differentiation), one can write Dβxαφ as a finite sum of powers ≤ α of x
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times derivatives of order ≤ β of φ, and conversely, so in fact xαDβφ being bounded
for all multiindices α, β is equivalent to Dβxαφ being bounded for all multiindices
α, β.

With this definition, using the properties above, we conclude that if φ ∈ S(Rn)
then Fφ ∈ S(Rn) as well. Indeed,

ξαDβ
ξFφ = (−1)|β|FDα

xx
βφ,

and Dα
xx

βφ ∈ S(Rn) ⊂ L1(Rn) if φ ∈ S(Rn), so the right hand side is indeed
bounded.

Similar calculations show that the inverse Fourier transform satisfies

(4) F−1Dξjψ = −xjFψ, DxjF−1ψ = F−1(ξjψ),

so

F : S → S, F−1 : S → S.
In particular, FF−1 : S → S and F−1F : S → S; the Fourier inversion formula
states that these are both the identity map on S(Rn).

Of course, we would like to know that S(Rn) is not a trivial vector space! One
example of elements of S(Rn) is

φ(x) = e−〈Ax,x〉, x ∈ Rn,

where A is a positive definite operator on Rn. Indeed, in this case 〈Ax, x〉 ≥ a|x|2
for some a > 0, and one easily checks the membership of φ in S(Rn). (Here 〈·, ·〉 is
the standard inner product on Rn; note that 〈A·, ·〉 is simply another inner product
on Rn.) Note also that S(Rn) is invariant under translations, so for x0 ∈ Rn,

φ(x) = e〈A(x−x0),x−x0〉, x ∈ Rn,

gives another example. These Gaussians play an important role below since their
Fourier transform is easy to compute explicitly. Notice also that in these examples
we could even take a complex linear operator A : Cn → Cn, A = ReA + i ImA,
with ReA positive definite, to obtain examples of Schwartz functions, so e.g. on R
the function φ(x) = e−(a+ib)x

2

, a > 0, is such an example.
Another class of examples is C∞c (Rn), consisting of C∞ functions of compact

support, where the support of a continuous function is the closure of the set where
it takes non-zero values.

Lemma 0.1. For all x0 ∈ Rn and ε > 0 there is a function φ ∈ C∞c (Rn) such that
φ(x0) > 0, φ ≥ 0 and suppφ ⊂ {x : |x− x0| < ε}.

Proof. First one checks that the function χ defined by

χ(t) = e−1/t, t > 0; χ(t) = 0, t ≤ 0,

is in C∞(R). Then we let

φ(x) = χ

(
ε2

2
− |x− x0|2

)
.

This has all the desired properties. �

It is also useful to have bump functions that are identically 1 near x0, but still
have compact support, with suppφ ⊂ {x : |x − x0| < ε}. There are various
ways of obtaining these. One is the following: let φ, χ be as in the proof of the
lemma. Then φ̃(x) = φ(x0)/2 − φ(x) is ≤ 0 near x0, and is equal to φ(x0)/2 if
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|x − x0| ≥ ε/
√

2. Correspondingly, χ(φ̃(x)) takes the value 0 near x0, and the

constant value χ(φ(x0)/2) > 0 if |x− x0| ≥ ε/
√

2. Now let

ψ(x) = 1− χ(φ(x0)/2)−1χ(φ̃(x));

then ψ ≡ 1 near x0, and vanishes if |x− x0| ≥ ε/
√

2. In summary:

Lemma 0.2. For all x0 ∈ Rn and ε > 0 there is a function ψ ∈ C∞c (Rn) such that
ψ(x) = 1 for x near x0, ψ ≥ 0 and suppψ ⊂ {x : |x− x0| < ε}.

As a first step towards the inversion formula, we calculate the Fourier transform

of the Gaussian φ(x) = e−a|x|
2

, a > 0, on Rn (note that φ ∈ S!) by writing it as

φ̂(ξ) =

(∫
R
e−ax

2
1e−ix1ξ1 dx1

)
. . .

(∫
R
e−ax

2
ne−ixnξn dxn

)
,

hence reducing it to one-dimensional integrals which can be calculated by a change
of variable and shift of contours. We can also proceed as follows. Write x for the
one-dimensional variable, ξ for its Fourier transform variable for simplicity, and

ψ(x) = e−ax
2

,

ψ̂(ξ) =

∫
R
e−ixξe−ax

2

dx = e−ξ
2/4a

∫
R
e−a(x+iξ/(2a))

2

dx,

where we simply completed the square. We wish to show that

f(ξ) =

∫
R
e−a(x+iξ/(2a))

2

dx

is a constant, i.e. is independent of ξ, and in fact it is equal to
√
π/a. But that is

easy: differentiating f , we obtain f ′(ξ) = −i
∫
R(x+ iξ/(2a))e−a(x+iξ/(2a))

2

dx. The

integrand is the derivative of (−1/(2a))e−a(x+iξ/(2a))
2

with respect to x, so by the

fundamental theorem of calculus, f ′(ξ) = (i/(2a))e−a(x+iξ/(2a))
2 |+∞x=−∞ = 0, due to

the rapid decay of the Gaussian at infinity. This says that f is a constant, so for all

ξ, f(ξ) = f(0) =
∫
R e
−ax2

dx which can be evaluated by the usual polar coordinate

trick, giving
√
π/a. Returning to Rn, the final result is thus that

(5) φ̂(ξ) = (π/a)n/2e−|ξ|
2/4a,

which is hence another Gaussian. A similar calculation shows that for such Gaus-
sians F−1φ̂ = φ, i.e. for such Gaussians T = F−1F is the identity map. Indeed

with ψ(ξ) = e−b|ξ|
2

, b > 0,

(6) F−1ψ(x) = (2π)−n(π/b)n/2e−|x|
2/4b = (4πb)−n/2e−|x|

2/4b,

so

F−1(φ̂)(x) = (π/a)n/2(4π/(4a))−n/2e−4a|x|
2/4 = e−a|x|

2

= φ(x).

Before proeeding let’s recall Taylor theorem with an integral remainder formula:
if f is a Ck+1 function then

f(x) =
∑
j≤k

f (j)(x0)

j!
(x− x0)j + (x− x0)k+1

∫ 1

0

(1− s)k

k!
f (k+1)(x0 + s(x− x0)) ds.

Notice that ∫ 1

0

(1− s)k

k!
f (k+1)(x0 + s(x− x0)) ds
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is a continuous function of x; if f was C∞, it is in fact a C∞ function of x.
This formula can be seen in the k = 0 case (which is what we use below) by the
fundamental theorem of calculus:

f(x) = f(x0) +

∫ x

x0

f ′(t) dt = f(x0) + (x− x0)

∫ 1

0

f ′(x0 + s(x− x0)) ds,

where we wrote t = x0 + s(x− x0), and changed variables, so dt = (x− x0) ds. To
continue one writes the integrand as 1 · f ′(x0 + s(x− x0)) and integrates by parts,
making the indefinite integral of 1 to be s− 1 (and after k steps, starting from the
above expression, one gets 1

k! (s− 1)k for this).
Now we can show that T is the identity map on all Schwartz functions using the

following lemma, which is due to Hörmander.

Lemma 0.3. Suppose T : S → S is linear, and commutes with xj and Dxj . Then
T is a scalar multiple of the identity map, i.e. there exists c ∈ C such that Tf = cf
for all f ∈ S.

Proof. Let y ∈ Rn. We show first that if φ(y) = 0 and φ ∈ S then (Tφ)(y) = 0.
Indeed, we can write, essentially by Taylor’s theorem, φ(x) =

∑n
j=1(xj − yj)φj(x),

with φj ∈ S for all j. In one dimension this is just a statement that if φ is Schwartz
and φ(y) = 0, then φ1(x) = φ(x)/(x − y) = (φ(x) − φ(y))/(x − y) is Schwartz:
smoothness near y follows from Taylor’s theorem, while the rapid decay with all
derivatives from φ1(x) = φ(x)/(x − y). For the multi-dimensional version, one
can take φj(x) = (xj − yj)φ(x)/|x − y|2 for |x − y| ≥ 2, say, suitably modified
inside this ball. Namely, let ρ ∈ C∞c (Rn) identically 1 near y, supported in {x :
|x − y| < 2}. Then one has φj,1 ∈ C∞(Rn) from Taylor’s theorem with φ(x) =∑n
j=1(xj − yj)φj,1(x). Letting φj,2(x) = (xj − yj)φ(x)/|x− y|2, we have

φ(x) =

n∑
j=1

(xj − yj)φj(x), φj(x) = ρ(x)φj,1(x) + (1− ρ(x))φj,2(x),

and φj is in S since the first term is C∞ and has compact support, while the second
is in S since the only potential issue is a singularity at x = y, but 1 − ρ vanishes
near there. Thus,

Tφ =

n∑
j=1

(xj − yj)(Tφj),

where we used that T is linear and commutes with multiplication by xj for all j.
Substituting in x = y yields (Tφ)(y) = 0 indeed.

Thus, fix y ∈ Rn, and some g ∈ S such that g(y) = 1. Let c(y) = (Tg)(y). We
claim that for f ∈ S, (Tf)(y) = c(y)f(y). Indeed, let φ(x) = f(x) − f(y)g(x),
so φ(y) = f(y) − f(y)g(y) = 0. Thus, 0 = (Tφ)(y) = (Tf)(y) − f(y)(Tg)(y) =
(Tf)(y)− c(y)f(y), proving our claim.

We have thus shown that there exists c : Rn → C such that for all f ∈ S, y ∈ Rn,
(Tf)(y) = c(y)f(y), i.e. Tf = cf . Taking f ∈ S such that f never vanishes, e.g. a
Gaussian as above, shows that c = Tf/f is C∞, since Tf and f are such.

We have not used that T commutes with Dxj so far. But

c(y)(Dxjf)(y) = T (Dxjf)(y) = Dxj (Tf)|x=y = Dxj (c(x)f(x))|x=y
= (Dxjc)(y)f(y) + c(y)(Dxjf)(y).

Comparing the two sides, and taking f such that f never vanishes, yields

(Dxjc)(y) = 0
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for all y and for all j. Since all partial derivatives of c vanish, c is a constant,
proving the lemma. �

The actual value of c can be calculated by applying T to a single Schwartz
function, e.g. a Gaussian, and then the explicit calculation from above shows that
c = 1, so F−1F = Id indeed.

Let’s see how we can use the Fourier transform to solve a constant coefficient
PDE. Suppose that aα ∈ C and

P =
∑
|α|≤m

aαD
α
x

is an mth order constant coefficient differential operator, and consider the PDE

Pu = f, f ∈ S(Rn).

Then for u ∈ S (for now),

FPu = F(
∑
|α|≤m

aαD
α
xu) =

∑
|α|≤m

aαξ
αFu(ξ) = p(ξ)Fu,

where we let

p(ξ) =
∑
|α|≤m

aαξ
α

the full symbol of P . Thus, if p never vanishes, then

Fu =
Ff
p(ξ)

,

which is in S(Rn) provided p has a lower bound like |p(ξ)| ≥ C(1 + |ξ|)−N for some
N and C > 0, hence we get (using the Fourier inversion formula)

u = F−1
(
Ff
p(ξ)

)
,

solving the PDE. There are some issues we would like to understand better, e.g.
the non-vanishing of p and also whether we really need u, f ∈ S, but before getting
further into this we need to investigate the Fourier inversion formula. To give an
indication of what we’ll see though, note the following examples:

• Laplace’s equation: P =
∑n
j=1 ∂

2
xj . Then p(ξ) = −|ξ|2, so p vanishes at

just one point, ξ = 0. Note that near infinity (well, for say |ξ| > 1), though,
|p(ξ)| > C(1 + |ξ|2), for some C > 0.
• Helmholtz equation: P =

∑n
j=1 ∂

2
xj +λ. Then p(ξ) = −|ξ|2 +λ, so if λ < 0,

then p never vanishes, and indeed |p(ξ)| ≥ C(1 + |ξ|2), for some C > 0.

• Wave equation: P = −
∑n−1
j=1 ∂

2
xj + ∂2xn . Then p(ξ) = |ξ′|2 − ξ2n, where

ξ′ = (ξ1, . . . , ξn−1), so p vanishes on the (light) cone |ξ′| = |ξn|.
• Heat equation: P = −

∑n−1
j=1 ∂

2
xj + ∂xn , then p(ξ) = |ξ′|2 + iξn, so p only

vanishes at the origin. Moreover, for |ξ| ≥ 1, |p(ξ)| > C(1 + |ξ|2)1/2, for
some C > 0 – this is an weaker estimate than the one for Laplace’s equation.

For local result, i.e. whether you can solve a PDE locally, without regard to the
behavior of the solution at infinity, what matters is whether p(ξ) vanishes for large ξ:
this is a reflection of the fact that the Fourier transform interchanges differentiability
and decay. Thus, elliptic PDE, i.e. PDE of order m such that for sufficiently large
|ξ|, |p(ξ)| > C(1 + |ξ|2)m/2 for some C > 0 are the best behaved PDE; parabolic
PDE like the heat equation where a weaker estimate holds are in certain aspects
almost as well behaved, while hyperbolic PDE are most interesting!
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We already saw a use of the inversion formula in solving ∆u − u = f . For
PDEs with initial or boundary conditions, it is often best to use the partial Fourier
transform. This is defined as follows. Let Rn = Rm × Rk, and write Rn 3 x =
(y, z) ∈ Rm×Rk. Suppose that f ∈ C1(Rm×Rk) and |z|Kf , |z|K∂xjf are bounded
for all j = 1, . . . , n, and K > k. Define the partial Fourier transform of f by

(Fzf)(y, ζ) =

∫
Rk
e−iz·ζf(y, z) dz, y ∈ Rm, ζ ∈ Rk.

By arguments as for the (full) Fourier transform, one can show easily (see the
problem set) that

(i) (FzDzjf)(y, ζ) = ζj(Fzf)(y, ζ).
(ii) (FzDyjf)(y, ζ) = (Dyj (Fzf))(y, ζ).

Similarly, as for the full Fourier transform, we have that if f ∈ C0(Rm × Rk) and
|z|Kf is bounded for some K > k + 1, then

Fz(zjf) = −DζjFzf, Fz(yjf) = yjFzf.

Analogous formulae also hold for

(F−1ζ ψ)(y, z) = (2π)−k
∫
Rk
eiz·ζψ(y, ζ) dz.

An iterated application of these results also shows that

Fz,F−1ζ : C∞(Rm;S(Rk))→ C∞(Rm;S(Rk)),

where C∞(Rm;S(Rk)) stands for C∞ functions on Rm with values in S(Rk), which
means that its elements are C∞ functions f on Rn = Rm × Rk such that locally
in y (i.e. for |y| < R, R > 0 arbitrary), |z|NDα

xf is bounded for all N ≥ 0 and all
α ∈ Nn.

As an application of these results, let’s solve the heat equation on (0,∞)t ×Rnx :

ut = k∆u, u(0, x) = φ(x),

with φ ∈ S(Rn) given. Taking the partial Fourier transform in x, and writing
Fxu(t, ξ) = û(t, ξ), gives

∂û

∂t
(t, ξ) = −k|ξ|2û(t, ξ), û(0, ξ) = (Fφ)(ξ).

Solving the ODE for each fixed ξ yields

û(t, ξ) = e−k|ξ|
2t(Fφ)(ξ),

hence

(7) u(t, x) = F−1ξ
(
e−k|ξ|

2t(Fφ)(ξ)
)
.

We would like to rewrite this to have a more explicit expression for u in terms of
φ. This can be done via convolutions.

Suppose first that f, g ∈ L1(Rn) (so e.g. f, g continuous and |x|Nf , |x|Ng are
bounded for some N > n.) Then Ff,Fg are bounded continuous functions, hence
(Ff)(Fg) is a bounded continuous function as well. We cannot take its inverse
Fourier transform (yet) directly, except under stronger assumptions (such as f, g ∈
S(Rn)), but we can ask whether (Ff)(Fg) is the Fourier transform of some χ ∈
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L1(Rn)). So we compute:

(Ff)(ξ)(Fg)(ξ) =

(∫
Rn
e−ix·ξf(x) dx

)(∫
Rn
e−iy·ξg(y) dy

)
=

∫
R2n

e−ix·ξe−iy·ξf(x)g(y) dx dy;

where the last equality is Fubini’s theorem using that (x, y) 7→ f(x)g(y) is in
L1(R2n), which in turn follows from the measurability of (x, y) 7→ f(x), the similar
statement for g, hence of their product, and an application of Tonelli’s theorem.
We now change variables to make the exponent of the form e−iz·ξ; we thus let
z = x+ y, while keeping x, so y = z − x. Then we deduce

(Ff)(ξ)(Fg)(ξ) =

∫
R2n

e−iz·ξf(x)g(z − x) dx dz

=

∫
Rn
e−iz·ξ

(∫
Rn
f(x)g(z − x) dx

)
dz = (F(f ∗ g))(ξ),

(8)

where we let

(f ∗ g)(z) =

∫
Rn
f(x)g(z − x) dx

be the convolution of f and g. A change of variables shows that (f∗g)(z) = (g∗f)(z),
which is consistent with (Ff)(Fg) = (Fg)(Ff). A simple calculation shows that
if f, g ∈ S(Rn) then f ∗ g ∈ S(Rn) as well – again, this is consistent with (and
indeed follows from, for here we can use the inverse Fourier transform already)
(Ff)(Fg) ∈ S(Rn).

If we write Rn 3 x = (x′, x′′) ∈ Rm × Rk as above, we can talk about partial
convolutions, and we still have the analogue of (8): we let

(f ∗x′′ g)(x′, x′′) =

∫
Rn
f(x′, y′′)g(x′, x′′ − y′′) dy′′,

and then

(9) (Fx′′f)(Fx′′g) = Fx′′(f ∗x′′ g).

We now use this to rewrite the solution formula for the heat equation. By (7),
(9) and the Fourier inversion formula, if we write

e−k|ξ|
2t = (Fxf)(t, ξ)

for some f ∈ C∞((0,∞)t;S(Rnx)), then

u(t, x) = (f ∗x φ)(t, x) =

∫
f(t, x− y)φ(y) dy.

But this is straightforward: we have computed the inverse Fourier transform of a
Gaussian in (6), so with b = kt,

f(t, x) = (4πkt)−n/2e−|x|
2/(4kt),

and hence

u(t, x) = (4πkt)−n/2
∫
e−|x−y|

2/(4kt)φ(y) dy,

yielding a more explicit solution formula for the heat equation.
In fact, the heat kernel provides an alternative way of showing the Fourier in-

version formula. The point is that

Kt(x) = (4πkt)−n/2e−|x|
2/(4kt), t > 0,
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is a family of good kernels on Rn, i.e. have integral 1, are uniformly bounded, by
a constant M , in L1(Rn) for t > 0 (which follows immediately from the previous
statement and that they are positive functions, so one can take M = 1), and finally,
for any δ > 0, Kt(x)χRn\Bδ(0) → 0 in L1(Rn) as t → 0. Thus, if h is a bounded
continuous function, then for every x, using ∗ simply to denote partial convolution,
(Kt ∗h)(x)→ h(x), and the convergence is uniform on sets on which h is uniformly
continuous (in particular, on compact subsets). To see this, let A ⊂ Rn be such
that h is uniformly continuous on A, and for ε > 0 let δ > 0 be such that |y| < δ
implies |h(x− y)− h(x)| < ε/(2M). Then, using

∫
Kt(y) dy = 1, for x ∈ A,

(Kt ∗ h)(x)− h(x) =

∫
Kt(y)(h(x− y)− h(x)) dy

=

∫
B0(δ)

Kt(y)(h(x− y)− h(x)) dy +

∫
Rn\B0(δ)

Kt(y)(h(x− y)− h(x)) dy.

Now, the absolute value of the first integral is

≤
∫
B0(δ)

|Kt(y)| |h(x−y)−h(x)| dy ≤ ε

2M

∫
B0(δ)

|Kt(y)| dy ≤ ε

2M

∫
Rn
|Kt(y)| dy ≤ ε

2
,

while that of the second intergral is

≤
∫
Rn\B0(δ)

|Kt(y)|(|h(x− y)|+ |h(x)|) dy ≤ 2 sup |h|‖Kt‖L1(Rn\B0(δ)),

so it goes to 0 as t → 0, and in particular there is t0 > 0 such that this is < ε/2
for 0 < t < t0. In summary, sup{|(Kt ∗ h)(x) − h(x)| : x ∈ A} ≤ ε for 0 < t < t0,
proving the uniform convergence on A.

In particular, if h ∈ S(Rn), then h is uniformly continuous on Rn: first, given
ε > 0, choose R > 0 such that |h(x)| < ε/2 for |x| > R (which is possible by
the decay of h at infinity), so if |x| > R + 1, |y| < 1, then |x − y| > R shows
|h(x − y) − h(x)| ≤ |h(x − y)| + |h(y)| < ε. On the other hand, h is continuous,
thus uniformly continuous, on the compact set {x : |x| ≤ R+ 1}, so there is δ′ > 0
such that |y| < δ′ implies |h(x − y) − h(x)| < ε. Now simply let δ = min(δ′, 1) to
conclude the uniform continuity on Rn. Correspondingly, for Schwartz functions h,
Kt ∗ h→ h uniformly on Rn.

Now, the Fourier transform satisfies the relation

(10)

∫
φ̂(ξ)ψ(ξ) dξ =

∫
φ(x)ψ̂(x) dx, φ, ψ ∈ S.

(Of course, we could have denoted the variable of integration by x on both sides.)
Indeed, explicitly writing out the Fourier transforms,∫ (∫

e−ix·ξφ(x) dx

)
ψ(ξ) dξ =

∫
R2d

e−ix·ξφ(x)ψ(ξ) dx dξ

=

∫
φ(x)

(∫
e−ix·ξψ(ξ) dξ

)
dx,

where the middle integral’s integrand is in L1(R2n), so we can apply Fubini’s the-
orem. Of course, this argument does not really require φ, ψ ∈ S, it suffices if
φ, ψ ∈ L1(Rn).

We now apply this result with ψ replaced by the inverse Fourier transform of

Kt, which is ψ(ξ) = (2π)−ne−k|ξ|
2t as we have already calculated the Fourier and

inverse Fourier transform of Gaussians; this means that ψ̂ = Kt. Thus,

(2π)−n
∫
φ̂(ξ)e−k|ξ|

2t dξ =

∫
φ(x)Kt(x) dx,
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and the right hand side converges to φ(0) by our previous discussion (it is Kt ∗ φ
evaluated at 0). On the other hand, as φ̂ ∈ L1(Rn) and 0 < e−k|ξ|

2t ≤ 1, and for

each ξ, e−k|ξ|
2t → 1 as t → 0, the dominated convergence theorem shows that the

left hand side converges to (2π)−n
∫
φ̂(ξ) dξ, which is the inverse Fourier transform

of φ̂ evaluated at 0. This shows that the Fourier inversion formula holds at 0.
For general a ∈ Rn, let Φ(x) = φ(x+ a), so

φ(a) = Φ(0) = (2π)−n
∫

Φ̂(ξ) dξ,

but

Φ̂(ξ) =

∫
e−iξ·xφ(x+ a) dx = eiξ·a

∫
e−iξ·(x+a)φ(x+ a) dx = eiξ·a(Fφ)(ξ),

which when substituted in, yields the Fourier inversion formula:

φ(a) = (2π)−n
∫
eix·aφ̂(ξ) dξ.

An alternative way of achieving this at once (without reducing to the a = 0 case)
is using Kt(x−a) in place of Kt(x) in the argument above; then the inverse Fourier

transform of Kt(. − a) is (2π)−neiξ·ae−ik|ξ|
2t, which is still bounded by (2π)−n

in absolute value, but now converges to (2π)−neiξ·a pointwise, so the dominated
convergence theorem gives

F−1φ̂(a) = lim
t→0

∫
φ(x)Kt(x− a) dx = lim

t→0

∫
φ(x)Kt(a− x) = lim

t→0
(Kt ∗ φ)(a),

and the proof is finished as above

Notice that our argument only used φ ∈ L1 and φ̂ ∈ L1, plus that Kt ∗ φ → φ
uniformly to get this conclusion. If instead of the last one of these we show that for
φ ∈ L1, Kt ∗φ→ φ in L1, then we in fact obtain that the inverse Fourier transform
of the Fourier transform of such φ is φ, for there is a sequence of tj → 0 then

along which the convergence is a.e. pointwise. (Notice that F−1φ̂ is a continuous
function, so under these assumptions φ is a.e. equal to a continuous function, so it
is certainly not a typical L1 function.)

But

(Kt ∗ φ)(x)− φ(x) =

∫
(φ(x− y)− φ(x))Kt(y) dy,

so if we denote the function on the left by Φt, then, as on the problem set, using
Fubini’s theorem (plus Tonelli to justify its application, i.e. to show that the middle
integral’s integrand is in L1(R2n), being bounded by |φ(x− y)|Kt(y) + |φ(x)|Kt(y),
with both terms being such),

‖Φt‖L1 ≤
∫
R2n

|φ(x− y)− φ(x)|Kt(y) dx dy =

∫
‖φ(· − y)− φ‖L1Kt(y) dy.

But we have already shown that φ(· − y)→ φ in L1 as y → 0, i.e. given ε > 0 there
exists δ > 0 such that |y| < δ implies ‖φ(· − y)− φ‖L1 < ε/2. Now breaking up the
integral into one over Bδ(0) and one over Rn \ Bδ(0), much as in the continuous
case above, the former is ≤ ε/2, while the latter is, using ‖φ(· − y) − φ‖L1 ≤
‖φ(· − y)‖L1 + ‖φ‖L1 ,

≤ 2‖φ‖L1

∫
Rn\Bδ(0)

Kt,

which goes to 0 as t → 0. Choosing t0 > 0 such that for 0 < t < t0 this is < ε/2,
we deduce that 0 < t < t0 implies ‖Φt‖L1 ≤ ε, giving that Kt ∗ φ→ φ in L1. This

completes the proof that if φ, φ̂ ∈ L1, then F−1Fφ = φ.
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One more topic we discuss is the Poisson summation formula. If we are given
a function φ ∈ S(R), we can form a 2π-periodic function by taking F−1φ and
summing up its translates by multiples of 2π:

f(x) =
∑
m∈Z

(F−1φ)(x+ 2πm).

Note that this sum actually converges, and does so uniformly, hence the limit is
continuous: since |F−1φ(y)| ≤ CN (1 + |y|)−N for all N , this follows from the
uniform convergence of ∑

m∈Z
(1 + |x+ 2πm|2)−1,

which in turn can be checked by considering the sum only for x ∈ [−π, π], using
that for |m| ≥ 2, the mth term is ≤ 1

4π2(|m|−1)2 . Indeed, since the term-by-term

differentiated series still has the same property, it follows that f is C∞.
Another way of producing a 2π-periodic function is to regard the integer values

of φ as Fourier series coefficients, and consider

g(x) =
∑
m∈Z

φ(m)eimx.

A natural question is how these two functions are related. To see this, let us find
the Fourier coefficients of the 2π-periodic function f . These are

ck = (2π)−1
∫ 2π

0

e−ikxf(x) dx = (2π)−1
∫ 2π

0

∑
m∈Z

e−ikxF−1φ(x+ 2πm) dx

= (2π)−1
∑
m∈Z

∫ 2π

0

e−ikxF−1φ(x+ 2πm) dx

Here the last equality holds by considering the sum as a limit: limM→∞
∑
|m|≤M ,

and noting that the limit can be brought through the integral by the dominated
convergence theorem since∑
|m|≤M

|F−1φ(x+ 2πm)| ≤
∑
|m|≤M

(1 + |x+ 2πm|2)−1 ≤
∑
m∈Z

(1 + |x+ 2πm|2)−1,

which we saw converged uniformly to a continuous 2π-periodic, thus bounded,
function, and [0, 2π] has finite measure. In order to evaluate this integral, we use
the translation invariance of the Lebesgue measure. This gives

ck = (2π)−1
∑
m∈Z

∫ 2π(m+1)

2πm

e−ikxF−1φ(x) dx.

Now, this is

ck = (2π)−1 lim
M→∞

∑
|m|≤M

∫ 2π(m+1)

2πm

e−ikxF−1φ(x) dx

= (2π)−1 lim
M→∞

∫ (M+1)2π

−M
e−ikxF−1φ(x) dx = (2π)−1

∫
R
e−ikxF−1φ(x) dx

again using the dominated convergence theorem and that F−1φ ∈ S ⊂ L1. But this
is (2π)−1 times the Fourier transform of F−1φ evaluated at k, thus it is (2π)−1φ(k)!
Since the Fourier coefficients uniquely determine a 2π-periodic C1 function thanks
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to the Fourier inversion formula for the Fourier series, we conclude that (2π)−1g =
f , i.e. that ∑

m∈Z
(F−1φ)(x+ 2πm) = (2π)−1

∑
m∈Z

φ(m)eimx.

An interesting application is obtained by taking φ(ξ) = e−kξ
2t(Fψ)(ξ), ψ ∈

S(R). Then F−1φ(x) = Kt ∗ ψ(x), with Kt(x) = (4πkt)−1e−x
2/(4kt) the heat

kernel on the real line at time t > 0. Summing up the translates produces a
2π-periodic function which still solves the heat equation with initial data given
by the 2π-periodicized version of ψ:

∑
m∈Z ψ(x + 2πm). On the other hand,

(2π)−1
∑
m∈Z e

−km2tFψ(m)eimx is the solution of the heat equation on the cir-

cle with initial data (2π)−1
∑
m∈Z Fψ(m)eimx, which is also

∑
m∈Z ψ(x + 2πm).

Thus, we have two methods for solving the heat equation on the circle, say for a
C∞ function ψ on R which is supported in (0, 2π): we can either use the Fourier
series, or we can use the solution of the heat equation on R, and sum the translates.
The latter is a version of the method of images. Also notice the nice identity one
gets by applying the Poisson summation formula to the heat kernel directly:∑

m∈Z
(4πkt)−1e−(x+2πm)2/(4kt) = (2π)−1

∑
m∈Z

e−km
2teimx.

We finally show the Parseval/Plancherel formula:

Lemma 0.4. For φ, ψ ∈ S(Rn),∫
Rn
φ(x)ψ(x) dx = (2π)−n

∫
Rn

(Fφ)(ξ) (Fψ)(ξ) dξ.

Thus, up to a constant factor, the Fourier transform preserves L2-norms:

‖Fφ‖L2(Rn) = (2π)n/2‖φ‖L2(Rn).

Proof. Before proceeding note that following relationship between F and F−1: for
ϕ ∈ L1(Rn),

(F−1ϕ)(x) = (2π)−n
∫
eix·ξϕ(ξ) dξ = (2π)−n

∫
e−ix·ξϕ(ξ) dξ = (2π)−nFϕ)(ξ),

i.e.

(11) F−1ϕ = (2π)−nFϕ.
Now, for φ, ψ ∈ S(Rn),∫

Rn
φ(x)ψ(x) dx =

∫
Rn
φ(x) (F(F−1ψ))(x) dx =

∫
Rn
Fφ(ξ) (F−1ψ))(ξ) dξ

=

∫
Rn
Fφ(ξ) (2π)−n(Fψ)(ξ) dξ = (2π)−n

∫
Rn

(Fφ)(ξ) (Fψ)(ξ) dξ,

where the first equality follows from FF−1 = Id on S(Rn), the second from (10)
and the third from (11). Substituting in ψ = φ yields that

‖Fφ‖2L2(Rn) = (2π)n‖φ‖2L2(Rn),

giving the claimed conclusion. �

We note that S(Rn), and indeed compactly supported C∞ functions are dense
in L2(Rn).

Lemma 0.5. For all f ∈ L2(Rn) and ε > 0 there exists φ ∈ C∞c (Rn) such that
‖f − φ‖L2 < ε.
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Proof. Since continuous functions of compact support are dense in L2(Rn), there
exists g ∈ C(Rn), of compact support, say supp g ⊂ BR(0) such that ‖g − f‖L2 <
ε/2. So it suffices to find φ ∈ C∞c (Rn), supported say in BR+1(0), such that
‖φ− g‖L2 < ε/2. But

‖φ− g‖L2 ≤ m(BR+1(0)) sup |φ− g|,
so it suffices to find φ ∈ C∞c (Rn), supported in BR+1(0), that is close to g in the
uniform norm.

For this purpose, let χ ∈ C∞c (Rn), supported in B1(0), χ ≥ 0, χ(0) > 0. Mul-
tiplying χ by a positive constant we may assume that

∫
χ = 1. Now for δ > 0 let

χδ(x) = δ−nχ(x/δ). Then the family χδ, δ ∈ (0, 1), is a family of good kernels as
δ → 0, so it follows that χδ ∗ g → g uniformly. Further, χδ ∈ C∞(Rn) for δ > 0.
Note also that the convolution (χδ ∗ g)(x) vanishes for x with |x| ≥ R + 1, for in
this case |x − y| + |y| ≥ |x| ≥ R + 1 shows that either |y| ≥ 1 or |x − y| ≥ R,
and thus the integrand of

∫
g(x− y)χδ(y) dy vanishes identically. Hence, for δ > 0

small, φ = χδ ∗ g satisfies all requirements, completing the proof. �

An immediate corollary is the following:

Theorem 0.6. The Fourier transform, defined a priori on S(Rn), has a unique
continuous extension to a map F : L2(Rn)→ L2(Rn) which still satisfies

(12) ‖Fφ‖L2(Rn) = (2π)n/2‖φ‖L2(Rn), φ ∈ L2(Rn).

The corresponding statement also holds for F−1, with

(13) ‖F−1φ‖L2(Rn) = (2π)−n/2‖φ‖L2(Rn), φ ∈ L2(Rn).

Finally, F and F−1 are inverses of each other on L2(Rn).

Proof. We first show the unique extendability of F to L2; the argument for F−1 is
completely analogous.

The linear map F : S(Rn)→ S(Rn) satisfies

(14) ‖Fφ‖L2(Rn) ≤ C‖φ‖L2(Rn)

for φ ∈ S(Rn) (indeed, equality, with C = (2π)n/2), and thus it has a unique
continuous extension to the closure of S(Rn) in the Hilbert space L2(Rn) as stated.
Since the maps φ 7→ ‖Fφ‖L2(Rn) and (2π)n/2‖φ‖L2(Rn) are continuous on L2(Rn),

and they agree on the dense subset S(Rn), the identity (13) is valid on all of L2(Rn).
For the sake of completeness of details, recall that a continuous map is deter-

mined by values on a dense subset, so the uniqueness statement of the theorem fol-
lows just by the density of S(Rn) in L2(Rn). To get the existence, one shows that F
maps sequences {φj}∞j=1 in S(Rn) which are Cauchy sequences in the L2(Rn) norm

to L2-Cauchy sequences (which is immediate from (14)), and thus to L2-convergent
sequences (which is where the completeness of the target L2 is used). Moreover,
equivalent Cauchy sequences can be combined by alternating the elements into a
single Cauchy sequence, showing that the images are also equivalent (since the al-
ternated version is still Cauchy). Thus, for f ∈ L2(Rn), taking φj ∈ S(Rn), φj → f
in L2, and letting Ff = limj→∞ Fφj means that F : L2(Rn) → L2(Rn) is well-
defined. As F is linear on S, so e.g. F(φj + ψj) = Fφj + Fψj , the linearity of F
on L2(Rn) also follows by taking limits. Finally, we need to establish the bound

‖Ff‖L2(Rn) ≤ C‖f‖L2(Rn)

even for f ∈ L2, since this gives the continuity of F : L2 → L2. But this is easy: if
φj → f in L2, then Fφj → Ff in L2 by the definition of Ff . Since the norm is a



15

continuous map on any normed space, ‖φj‖L2 → ‖f‖L2 and ‖Fφj‖L2 → ‖Ff‖L2 .
Since ‖Fφj‖L2 ≤ C‖φj‖L2 , letting j →∞ gives the desired conclusion.

It remains to show FF−1 = Id = F−1F on L2. But FF−1,F−1F , Id are all
continuous maps on L2, they all agree on the dense subset S, thus on all on L2. �


