MATH 172: THE FOURIER TRANSFORM - BASIC
PROPERTIES AND THE INVERSION FORMULA

ANDRAS VASY

The Fourier transform is the basic and most powerful tool for studying trans-
lation invariant analytic problems, such as constant coefficient PDE on R™. It is
based on the following simple observation: for £ € R™, the functions

ve(z) = €€ = 181 ... glTnén
are joint eigenfunctions of the operators d,,, namely for each j,
(1) 8m_7.’l)g = ’ij’[)g.

It would thus be desirable to decompose an ‘arbitrary’ function v as an (infinite)
linear combination of the v, namely write it as

@ u(w) = (20) " [ a(e)e <,

where (€) is the ‘amplitude’ of the harmonic e®¢ in u. (The factor (27)~" is here
due to a convention, it could also be moved to other places.) It turns out that this
identity, (2), holds provided that we define

i(©) = [ e uto) do

(2) is then the Fourier inversion formula.
Rather than showing this at once, we start with a step-by-step approach. We
first define the Fourier transform as

(fu)(f):/ e_m'gu(a:) dx

n

for u € L'(R"), thus in particular for for u € C(R™) with |x|"|u| bounded for some
N > n (ie. |u(z)] < M|z|~ for some M in say |z| > 1, the point being that in
this case u is absolutely integrable as f‘z M |z|=" dx converges). Note that for
such functions

[>1

(Fo©l < [ e u@)lda = [ juta)]do.

so Fu is bounded, and if we have a sequence & — & then (Fu)(&) — (Fu)(&k)
by the dominated convergence theorem, so Fu is actually a bounded continuous
function.

We can similarly define the inverse Fourier transform

(F o)) = n " [ v ds
then 7! maps v € L'(R"), and in particular u € C(R") with |z|™|u| bounded
for some N > n to bounded continuous functions. With these definition it is
of course not clear whether 7! is indeed the inverse of F, and worse, not even
clear whether F~'F¢$ makes sense for ¢ € L'(R"), since F¢ is then a bounded
1
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continuous function, which is not sufficient to ensure that the integral defining F !
actually converges! We thus proceed to study properties of F and F~!.

However, first we comment on the normalization. While our normalization is a
very common one in analysis/PDE theory, it is by no means the only one. One
could normalize the Fourier transform differently in two ways: change the constant
1 in front, and change the exponent —ix - £&. Thus, consider a transform

(Facd) (&) =C [ e %¢(z) dz = C(Fo)(£/a),

Rn
which is thus simply a rescaled (by « > 0) version of the Fourier transform, multi-
plied by a constant (C' > 0). To see what the analogue of 7! should be, note that
if 771 is indeed the inverse of F then the inverse of F, ¢, applied to some 1, is
to take the function ¥(¢) = C~1y(af), and inverse Fourier transform it, since for
Y = Fa,cp, ¥ is exactly F¢. Thus, the inverse transform is defined as

(Foew)(x)=C " 2m)™" / ¢ EP(al) d = C T (2m) " / e/ (€) de,

n n

where in the last step we changed the variable of integration from £ to £ = a&.

Some common choices are o = 1, C' = (27)""/? and o = (27)~!, C = 1. With
the former, the formulae look as before except both the Fourier transform and the
inverse Fourier transform have a (27)~"/2 in front, in a symmetric manner. With
the latter, one has

o /6_2””'%(93) dz
as the transform, and
U /62””'51#@) dx

as the inverse transform, which is also symmetric, though now at the cost of making
the exponent a bit longer. The latter is the convention used in our textbook; the
former is often used in quantum mechanics.

Returning to properties of F and F~!, first we note a property of F which is
the main reason for its usefulness in studying PDE, and which is an immediate
consequence of (1). Namely, suppose that ¢ € C*(R") and both ¢ and all first
derivatives 0;¢, j = 1,...,n, decay at infinity in the same sense as above (so
||V 0;¢ is bounded for some N > n). Then integration by parts gives

(F(02,))(€) = / ¢, g dr = — / 0, (e () de
g / e E () dr = ig;(Fo)(€).

In other words, the operators F, 9, and multiplication by §; (usually just written
as £;) satisfy

FOy; = i&5F.
In order to remove the factor of i, we let
1
ij = 28;16]"
SO
FD,, =& F.

Note, in particular, that this gives that for ¢ as above,

§iF9(§) = FDqyob



is bounded for all j, so as F¢ is also bounded so

(1+ iﬁ-) Fo ()

is bounded, we deduce that

(3) [Fo(€)l < C/(L+ €412,

i.e. the Fourier transform of ¢ actually decays, and is not merely bounded. This
gives us some hope that perhaps under some additional assumptions F~!(F¢)

actually makes sense.

2\1/2
Before proceeding, we note that % is bounded from below and above by

positive constants — indeed, it is certainly a positive continuous function, and as
|€] — oo, it converges to 1 (since the summand 1 is negligible in the limit in both
the numerator and the denominator). Thus, (3) is equivalent to, for some C’ > 0,

IFo(E)l < /(1 + [8])

There is an analogous formula for F(z,¢) if we instead assume that ¢ € C(R")
and |z|"|¢| is bounded for N > n + 1, namely

Flaso) = [ e aoterdo= [ (me o) de = [ (i0ge o) do

n n

= 0k, ( / e (n) dx) = —Dg,;(F9)(£),

where D¢, = %851.. In operator notation,
]:JJj = —ng F.

In particular, this tells us that if ¢ € C(R™) and |z||¢| is bounded for N > n + 1
then F¢ is continuously differentiable, and its derivatives D¢, F¢ are bounded.

In summary, the Fourier transform interchanges differentiation and multiplica-
tion by the coordinate functions (up to a — sign), and correspondingly it inter-
changes differentiability and decay at infinity. If we only care about differentiation,
the natural class of ‘very nice’ functions is C*°, since we can differentiate its ele-
ments arbitrary many times. In view of the properties of the Fourier transform, the
relevant class of ‘very nice’ functions consists of functions which are C*° and decay
rapidly at infinity.

Definition 1. The set S = S(R™), called the set of Schwartz functions, consists
of functions ¢ € C*(R™) such that for all N > 0 and all multiindices o € N,
|z|N D%¢ is bounded on R™.

Here we used the multiindex notation:
D* =Dz} ...Dg.

The functions ¢ € S(R™) decay rapidly at infinity with all derivatives.

We can put this into a more symmetric form by noting that it suffices to consider
N even, and indeed merely ask if (1 + |z|?)N D¢ is bounded for all N and a.
Expanding the first term, using |z|? = 22 + ... + 22, one easily sees that this in
turn is equivalent to the statement that for all multiindices «, 8 € N, z*D?¢ is
bounded. Here we wrote

x =xftag? .o,
in analogy with the notation for D?. Note that by Leibniz’ rule (i.e. the product
rule for differentiation), one can write D?x%¢ as a finite sum of powers < a of z
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times derivatives of order < 3 of ¢, and conversely, so in fact 2% D?¢ being bounded
for all multiindices «, § is equivalent to D?z*¢ being bounded for all multiindices
a, B.

With this definition, using the properties above, we conclude that if ¢ € S(R™)
then F¢ € S(R™) as well. Indeed,

¢ DFp = (-1)PIFDa’,

and D22xP¢ € S(R") C LY(R") if ¢ € S(R"), so the right hand side is indeed
bounded.
Similar calculations show that the inverse Fourier transform satisfies

(4) F ' De b = =, Fp, Doy FHp = F (&),

SO
F: S-S Fl:8§=8.

In particular, FF~!:S - S and F'F : S — S; the Fourier inversion formula
states that these are both the identity map on S(R™).

Of course, we would like to know that S(R™) is not a trivial vector space! One
example of elements of S(R™) is

o(x) = 67<A“”‘”>, r e R",

where A is a positive definite operator on R™. Indeed, in this case (Az,z) > a|z|?
for some a > 0, and one easily checks the membership of ¢ in S(R™). (Here (-, -) is
the standard inner product on R™; note that (A-,-) is simply another inner product
on R™.) Note also that S(R™) is invariant under translations, so for zo € R,

o(z) = 6<A($—%0)7$—$0>’ x e R",

gives another example. These Gaussians play an important role below since their
Fourier transform is easy to compute explicitly. Notice also that in these examples
we could even take a complex linear operator A : C* — C", A = ReA +iIm A,
with Re A positive definite, to obtain examples of Schwartz functions, so e.g. on R
the function ¢(x) = e_(“‘”b)mz, a > 0, is such an example.

Another class of examples is C2°(R™), consisting of C* functions of compact
support, where the support of a continuous function is the closure of the set where
it takes non-zero values.

Lemma 0.1. For all zg € R™ and € > 0 there is a function ¢ € C°(R™) such that
d(x9) >0, » >0 and suppp C {z: |z — zo| < €}.

Proof. First one checks that the function y defined by
x(t)=e ' t>0; x(t) =0, t <0,
is in C*°(R). Then we let

€? 9
ola) =x (5 — e —wol?).
This has all the desired properties. [l

It is also useful to have bump functions that are identically 1 near zq, but still
have compact support, with supp¢ C {x : |z — x| < €}. There are various
ways of obtaining these. One is the following: let ¢, x be as in the proof of the
lemma. Then ¢(z) = ¢(x0)/2 — ¢(x) is < 0 near xo, and is equal to ¢(xg)/2 if
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|z — 20| > €/v/2. Correspondingly, x(¢(x)) takes the value 0 near zy, and the
constant value x(¢(zg)/2) > 0 if |z — x| > €¢/v/2. Now let

Y() =1 = x(¢(x0)/2) "' x(9(2));
then ¢ = 1 near g, and vanishes if |z — zo| > ¢/+/2. In summary:

Lemma 0.2. For all zg € R™ and € > 0 there is a function ¢ € C°(R™) such that
P(x) =1 for x near xg, ¥ > 0 and suppy C {z: |z — xo| < €}.

As a first step towards the inversion formula, we calculate the Fourier transform
of the Gaussian ¢(z) = e~ 4 > 0, on R™ (note that ¢ € S!) by writing it as

(5(5) = (/ e—aw?e—iam& dl’1> o (/ e—awie—ixnfn dxn) ’
R R

hence reducing it to one-dimensional integrals which can be calculated by a change
of variable and shift of contours. We can also proceed as follows. Write x for the
one-dimensional variable, ¢ for its Fourier transform variable for simplicity, and

V(@) = e,
h(E) = / e ey = ¢~ /40 / e—ala+ie/(2a)? g,
R R

where we simply completed the square. We wish to show that
G / emaatie/(2a)? gy
R

is a constant, i.e. is independent of £, and in fact it is equal to \/m. But that is
easy: differentiating f, we obtain f/(§) = —i f]R(;lc—i—z‘{/(Qa))e*“(‘/’c“g/@“))2 dz. The
integrand is the derivative of (—1/(2a))e*a("”’f/@a))2 with respect to x, so by the
fundamental theorem of calculus, f(¢) = (i/(2a))e~a@+i€/(20)*|to° — 0 due to
the rapid decay of the Gaussian at infinity. This says that f is a constant, so for all
& f(&)=f(0)= fR e~ dz which can be evaluated by the usual polar coordinate
trick, giving \/7%. Returning to R”, the final result is thus that

(5) (€)= (w/a)"/2em €1 /00,
which is hqnce another Gaussian. A similar calculation shows that for such Gaus-
sians F~1¢ = ¢, i.e. for such Gaussians T = F~LF is the identity map. Indeed
with (&) = e PlE° b > 0,
(6) Fly(x) = (2m) " (m/b)" 27110 = (4b)—n/2ele /20,
SO

F U@ (@) = (r/a)™ (47 (4a)) " 2e 2okl /4 = emalrl” = g(z).

Before proeeding let’s recall Taylor theorem with an integral remainder formula:
if fis a C**1 function then

) (g ) 1] _ gk
Fa) = S o o=t [ O g s — ) s
i<k 0 ‘

Notice that
1 (1 _g)k
/ d-sr o ) FED (2o + s(x — x0)) ds
0 .
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is a continuous function of z; if f was C°°, it is in fact a C'°° function of =z.
This formula can be seen in the & = 0 case (which is what we use below) by the
fundamental theorem of calculus:

f(x) = f(x0) /f T/O)+(fﬂ*$0/f (zo + s(x — 20)) ds,

where we wrote t = xg + s(x — ), and changed variables, so dt = (x — xg) ds. To
continue one writes the integrand as 1- f/(z¢ + s(z — x)) and integrates by parts,
making the indefinite integral of 1 to be s — 1 (and after k steps, starting from the
above expression, one gets 7 (s — 1)* for this).

Now we can show that T is the identity map on all Schwartz functions using the
following lemma, which is due to Hérmander.

Lemma 0.3. Suppose T': S — S is linear, and commutes with x; and D,,. Then
T is a scalar multiple of the identity map, i.e. there exists ¢ € C such that Tf = cf
forall feS.

Proof. Let y € R™. We show first that if ¢(y) = 0 and ¢ € S then (T¢)(y) = 0.
Indeed, we can write, essentially by Taylor’s theorem, ¢(z) = Z;-lzl(xj —y;)0;(z),
with ¢; € S for all j. In one dimension this is just a statement that if ¢ is Schwartz
and ¢(y) = 0, then ¢1(z) = ¢(x)/(x —y) = (¢(x) — ¢(y))/(x — y) is Schwartz:
smoothness near y follows from Taylor’s theorem, while the rapid decay with all
derivatives from ¢1(x) = ¢(x)/(z — y). For the multi-dimensional version, one
can take ¢;(z) = (z; — y;)¢(z)/|x — y|? for |z — y| > 2, say, suitably modified
inside this ball. Namely, let p € C2°(R"™) identically 1 near y, supported in {z :
|z —y| < 2}. Then one has ¢;; € C>°(R") from Taylor’s theorem with ¢(z) =

(@i — )b (2). Letting ¢j2(x) = (v; — y;)o(x)/|x — y|*, we have

n
= (@ —y)oi(x),  bi(x) = pa)dn(x) + (1 - p(x))d;2(x),
j=1
and ¢; is in S since the first term is C*° and has compact support, while the second
is in S since the only potential issue is a singularity at z = y, but 1 — p vanishes
near there. Thus,

T¢= Z ) (Tey),

where we used that 7' is linear and commutes with multiplication by x; for all j.
Substituting in = y yields (T'¢)(y) = 0 indeed.

Thus, fix y € R", and some g € S such that g(y) = 1. Let ¢(y) = (T9)(y). We
claim that for f € S, (Tf)(y) = c(y)f(y). Indeed, let ¢(z) = f(z) — f(y)g(x),
s0 6(y) = f(y) — FW)g(y) = 0. Thus, 0 = (Te)(y) = (T)(y) - F(y)(Tg)(y)

(TF)(y) — e(y) f(3), proving our claim,
We have thus shown that there exists ¢ : R™ — C such that for all f € S, y € R",

(THy) = cly)f(y), ie. Tf = cf. Taking f € S such that f never vanishes, e.g. a
Gaussian as above, shows that ¢ =T f/f is C*, since Tf and f are such.
We have not used that T' commutes with D, so far. But
C(y)(Dr,f)(y) = T(Da:jf)(y) =Dy, (TH)la=y = Dy, (c(x) f(2))|a=y
= (Da;0)(y)f(y) + c(y)(Da; )(y)-

Comparing the two sides, and taking f such that f never vanishes, yields

(D:rj c) (y) =0
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for all y and for all j. Since all partial derivatives of ¢ vanish, ¢ is a constant,
proving the lemma. ([

The actual value of ¢ can be calculated by applying T to a single Schwartz
function, e.g. a Gaussian, and then the explicit calculation from above shows that
c=1,s0 F1F =1d indeed.

Let’s see how we can use the Fourier transform to solve a constant coefficient
PDE. Suppose that a, € C and

P= Z oD

lee|<m
is an mth order constant coefficient differential operator, and consider the PDE
Pu=f, feSR").
Then for u € S (for now),

FPu=F(Y_ auDgu)= Y a.&"Fu(§)=p(&)Fu,

lee|<m || <m
where we let
(&) = Z an§”
|| <m
the full symbol of P. Thus, if p never vanishes, then
Fu = —]:f ,
p(§)

which is in S(R™) provided p has a lower bound like [p(&)| > C(1+1£]) =Y for some
N and C > 0, hence we get (using the Fourier inversion formula)

- ()

solving the PDE. There are some issues we would like to understand better, e.g.
the non-vanishing of p and also whether we really need u, f € S, but before getting
further into this we need to investigate the Fourier inversion formula. To give an
indication of what we’ll see though, note the following examples:
e Laplace’s equation: P = 377, 5 . Then p(§) = —[¢[?, so p vanishes at
just one point, £ = 0. Note that near infinity (well, for say |£| > 1), though,
Ip(&)] > C(1+ [¢]?), for some C > 0.
e Helmholtz equation: P =377, 8§j +A. Then p(§) = —|¢|>+ A, so if A < 0,
then p never vanishes, and indeed |p(¢)| > C(1 + [£]?), for some C > 0.
e Wave equation: P = 723:11 5% + 92 . Then p(§) = [¢'|* — &2, where
& =(&,...,€,_1), so p vanishes on the (light) cone |¢'| = |&,].
e Heat equation: P = — Z?;ll c’)ij + Oy, , then p(€&) = |¢'|> + i&,, so p only
vanishes at the origin. Moreover, for [£] > 1, |p(£)] > C(1 + |€|?)1/2, for
some C' > 0 — this is an weaker estimate than the one for Laplace’s equation.

For local result, i.e. whether you can solve a PDE locally, without regard to the
behavior of the solution at infinity, what matters is whether p(§) vanishes for large £:
this is a reflection of the fact that the Fourier transform interchanges differentiability
and decay. Thus, elliptic PDE, i.e. PDE of order m such that for sufficiently large
€], [p(€)] > C(1 + |€]?)™/2 for some C' > 0 are the best behaved PDE; parabolic
PDE like the heat equation where a weaker estimate holds are in certain aspects
almost as well behaved, while hyperbolic PDE are most interesting!
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We already saw a use of the inversion formula in solving Au —u = f. For
PDEs with initial or boundary conditions, it is often best to use the partial Fourier
transform. This is defined as follows. Let R® = R™ x R* and write R” 3 z =
(y,z) € R™ xR, Suppose that f € C'(R™ xR¥) and |2|¥ f, |2/ 9,, f are bounded
forall j =1,...,n, and K > k. Define the partial Fourier transform of f by

EN@QO = [ =2 ye R, (e RE

By arguments as for the (full) Fourier transform, one can show easily (see the
problem set) that

(1) (F=Dz; )y, ) = G(F=f) (W €)-
(i) (F=Dy, /)y, ) = (Dy, (F2/) (Y, C)-

Similarly, as for the full Fourier transform, we have that if f € CO(R™ x R¥) and
|z|X f is bounded for some K > k + 1, then

]:z(zjf) = _DCJ']:zfv }—z(yjf) = yj‘FZf-

Analogous formulae also hold for

(F o) =@ F [ w0
RE
An iterated application of these results also shows that
Fo, Fo L CO(R™ S(RY)) — C(R™; S(RY)),

where C*°(R™; S(RF)) stands for C> functions on R™ with values in S(R¥), which
means that its elements are C* functions f on R™ = R™ x R* such that locally
in y (i.e. for [y < R, R > 0 arbitrary), [2|V D¢ f is bounded for all N > 0 and all
a e N",

As an application of these results, let’s solve the heat equation on (0, 00); x R

Ut = kA’U/, U(O) 33) = ¢(l‘>7
with ¢ € S(R™) given. Taking the partial Fourier transform in z, and writing
) =a(t,§), gives

O 1.6) = ~klePa(1,€), 4(0,6) = (FO)E).

Solving the ODE for each fixed £ yields

a(t,€) = e FE (Fe)(g),

hence
(7) ul(tx) = Fo (e MU Fg)(6)).

We would like to rewrite this to have a more explicit expression for u in terms of
¢. This can be done via convolutions.

Suppose first that f,g € L'(R") (so e.g. f,g continuous and |z|V f, |z|Ng are
bounded for some N > n.) Then Ff, Fg are bounded continuous functions, hence
(Ff)(Fg) is a bounded continuous function as well. We cannot take its inverse
Fourier transform (yet) directly, except under stronger assumptions (such as f,g €
S(R™)), but we can ask whether (Ff)(Fg) is the Fourier transform of some x €



LY(R™)). So we compute:

e = (/ LT @) dx) (/ e Wig(y) dy)
_ /R e fa)g(y) de dy:

where the last equality is Fubini’s theorem using that (x,y) — f(z)g(y) is in
L'(R?"), which in turn follows from the measurability of (z,y) + f(z), the similar
statement for g, hence of their product, and an application of Tonelli’s theorem.
We now change variables to make the exponent of the form e %*¢; we thus let
z = x + vy, while keeping x, so y = z — x. Then we deduce

FENOFD© = [ =@tz —a) du dz

®) = [ e ([ st —nde) do= F(s o)

where we let
() = [ f@al—a)ds

be the convolution of f and g. A change of variables shows that (fxg)(z) = (g% f)(z),
which is consistent with (Ff)(Fg) = (Fg)(Ff). A simple calculation shows that
if f,g € S(R™) then f xg € S(R™) as well — again, this is consistent with (and
indeed follows from, for here we can use the inverse Fourier transform already)
(F1)(Fg) € S(R™).

If we write R® > 2 = (2/,2”) € R™ x R¥ as above, we can talk about partial
convolutions, and we still have the analogue of (8): we let

(f *I” g)(w/7x//) — f(xl,y//)g(x/,x// _ yl/) dy//7
R

and then
(9) (fx”f)(fz”g) = fm”(f *prt g)'

We now use this to rewrite the solution formula for the heat equation. By (7),
(9) and the Fourier inversion formula, if we write

e = (F(E9)
for some f € C*°((0,00)s; S(RY)), then

u(t, z) = (f %4 6)(t,7) = / F(tx — y)dly) dy.

But this is straightforward: we have computed the inverse Fourier transform of a
Gaussian in (6), so with b = kt,

f(t7 :E) = (471']{7t)_n/ge_lﬁ"'lz/(‘llkt)7
and hence

ult, x) = (drkt) /2 / eyl /R0 () iy

yielding a more explicit solution formula for the heat equation.
In fact, the heat kernel provides an alternative way of showing the Fourier in-
version formula. The point is that

Ky (z) = (drkt)~™/2e~1217/@kD) 4 5
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is a family of good kernels on R™, i.e. have integral 1, are uniformly bounded, by
a constant M, in L'(R™) for ¢t > 0 (which follows immediately from the previous
statement and that they are positive functions, so one can take M = 1), and finally,
for any & > 0, Ky(x)xrm\Bs0) — 0 in L*(R™) as t — 0. Thus, if h is a bounded
continuous function, then for every x, using * simply to denote partial convolution,
(K¢ xh)(x) = h(zx), and the convergence is uniform on sets on which A is uniformly
continuous (in particular, on compact subsets). To see this, let A C R™ be such
that h is uniformly continuous on A, and for € > 0 let § > 0 be such that |y| < §
implies |h(z — y) — h(z)| < €/(2M). Then, using [ K;(y) dy =1, for z € A,

(K *h)( /Kt —y) — h(z))dy

— [ K —y) - h@)dy+ / K, (y)(h(z — y) — h(z)) dy.
By (9) R™\ By (6)

Now, the absolute value of the first integral is

</90<5> Ko (y)l (e —y)—h(z)|dy < 577 /B “ 1K, (y)| dy < — 2M |Kt(y)|dy§ ;

while that of the second intergral is
< / [Ke()[(Ih(z = y)| + |h(2)]) dy < 2sup [h][| K| L1 ge\ Bo(6))
R™\ By (6)

so it goes to 0 as t — 0, and in particular there is ¢y > 0 such that this is < ¢/2
for 0 < t < tg. In summary, sup{|(K; x h)(z) — h(z)] : x € A} <efor 0 <t < t,
proving the uniform convergence on A.

In particular, if h € S(R™), then A is uniformly continuous on R™: first, given
e > 0, choose R > 0 such that |h(z)| < €/2 for |z| > R (which is possible by
the decay of h at infinity), so if |z| > R+ 1, |y| < 1, then |x — y| > R shows
|h(z —y) — h(z)] < |h(z —y)| + |h(y)| < €. On the other hand, h is continuous,
thus uniformly continuous, on the compact set {z : |z| < R+ 1}, so there is § > 0
such that |y| < ¢’ implies |h(x — y) — h(z)| < e. Now simply let 6 = min(d’,1) to
conclude the uniform continuity on R™. Correspondingly, for Schwartz functions h,
K; * h — h uniformly on R".

Now, the Fourier transform satisfies the relation

(10) /és(s) )de = /¢ 2)dr,  é,p€S.

(Of course, we could have denoted the variable of integration by x on both sides.)
Indeed, explicitly writing out the Fourier transforms,

([ ecowar)viers= [ e<otwuie) dnae
= / (@) < / e E(E) d&) da

where the middle integral’s integrand is in L'(R?"), so we can apply Fubini’s the-
orem. Of course, this argument does not really require ¢,v € S, it suffices if
¢, € L'(R™).

We now apply this result with 1 replaced by the inverse Fourier transform of
K, which is ¥(§) = (277)’”6’]“‘5‘% as we have already calculated the Fourier and
inverse Fourier transform of Gaussians; this means that 7,/} = K;. Thus,

(2m)" / d(€)eME g = / o(2) K, (x) de
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and the right hand side converges to ¢(0) by our previous discussion (it is Ky * ¢
evaluated at 0). On the other hand, as ¢ € L'(R") and 0 < eHE’t <1 and for
each &, e HIEP"t 5 1 as ¢ — 0, the dominated convergence theorem shows that the
left hand side converges to (2m)~" [ $(€) d¢, which is the inverse Fourier transform
of qg evaluated at 0. This shows that the Fourier inversion formula holds at 0.

For general a € R", let ®(x) = ¢(z + a), so

o(a) = B(0) = (21) " / B(e) d,

®(&) = /eiig'mqb(x +a)dr = eig'a/efig'(”“)qﬁ(x +a)dz = e U(Fo)(€),

which when substituted in, yields the Fourier inversion formula:
o(a) = (2m) " [ =g e

An alternative way of achieving this at once (without reducing to the a = 0 case)
is using K;(x —a) in place of K;(x) in the argument above; then the inverse Fourier
transform of Ky(. — a) is (2m) e €%~ *IEI*t which is still bounded by (27)~"
in absolute value, but now converges to (27)~"e’'® pointwise, so the dominated
convergence theorem gives

Flé(a) = tli_rf(l)/(b(x)Kt(x —a)dx = }i_r)r(l)/qb(x)Kt(a —x) = }i_I}(l)(Kt * @) (a),

and the proof is finished as above

Notice that our argument only used ¢ € L' and qg € L', plus that K; ¢ — ¢
uniformly to get this conclusion. If instead of the last one of these we show that for
¢ €LY, Ky x¢p — ¢ in L', then we in fact obtain that the inverse Fourier transform
of the Fourier transform of such ¢ is ¢, for there is a sequence of t; — 0 then
along which the convergence is a.e. pointwise. (Notice that F _1$ is a continuous
function, so under these assumptions ¢ is a.e. equal to a continuous function, so it
is certainly not a typical L' function.)

But

(K, * 6)(x) — o) = / (6 — ) — $(@)) Kely) dy,

so if we denote the function on the left by ®;, then, as on the problem set, using
Fubini’s theorem (plus Tonelli to justify its application, i.e. to show that the middle
integral’s integrand is in L!(R?"), being bounded by |¢(z — y)| K, (y) +|¢(z)| K (y),
with both terms being such),

ules < [ 106e = 9) = S Kely) dady = [ ol =) = olls ity d

But we have already shown that ¢(- —y) — ¢ in L' as y — 0, i.e. given € > 0 there
exists & > 0 such that |y| < ¢ implies ||¢(- —y) — @||1 < €/2. Now breaking up the
integral into one over Bs(0) and one over R™ \ Bs(0), much as in the continuous
case above, the former is < €/2, while the latter is, using [|¢(- — y) — || <

160 — )z + 1]l
< 2|6l / K.,
R\ B;(0)

which goes to 0 as ¢ — 0. Choosing to > 0 such that for 0 < ¢ < to this is < €/2,
we deduce that 0 < t < to implies ||®; 11 < ¢, giving that K; * ¢ — ¢ in L. This
completes the proof that if ¢, ¢ € L, then F~1F¢ = ¢.
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One more topic we discuss is the Poisson summation formula. If we are given
a function ¢ € S(R), we can form a 27-periodic function by taking F~'¢ and
summing up its translates by multiples of 27:

fl@) = (F'¢)(x + 2mm).

meEZ

Note that this sum actually converges, and does so uniformly, hence the limit is
continuous: since |F~1¢(y)| < Cn(1 + |y|)~» for all N, this follows from the
uniform convergence of

Z (14 |z +2mm|*) 7L,

meZ
which in turn can be checked by considering the sum only for x € [—7, 7], using
that for |m| > 2, the mth term is < W. Indeed, since the term-by-term
differentiated series still has the same property, it follows that f is C*°.

Another way of producing a 27-periodic function is to regard the integer values

of ¢ as Fourier series coefficients, and consider

g(@) = 3 o(meme.
meZ

A natural question is how these two functions are related. To see this, let us find
the Fourier coefficients of the 27-periodic function f. These are

27 27
cp = (2#)_1/ e ke f(2) dx = (271)_1/ Z e~ F1g(x + 2mrm) dx
0 0

meZ
2
=(2n) ! Z / ek Flg(x + 2mrm) da
mez”’0

Here the last equality holds by considering the sum as a limit: limy; Z\m| <M>
and noting that the limit can be brought through the integral by the dominated
convergence theorem since

Z |[F~tp(x + 2mm)| < Z (1+|z+2mm|*)~t < Z(l + |z + 2mm[?) 7,
|m| <M Im|<M mez

which we saw converged uniformly to a continuous 27-periodic, thus bounded,
function, and [0, 27r] has finite measure. In order to evaluate this integral, we use
the translation invariance of the Lebesgue measure. This gives

27 (m—+1) o
cr = (2m) 7! Z / e~ ke Flg(x) da.
2

megz Y =T

Now, this is
27 (m+1) )
ey = (2m)~ lim / e~k Pl (x) da
M—ro00 2mm
|m|<M
(M+1)27 ) ]
= (27)~! lim e~ Flg(x) de = (2m) ! / e~ Flg(x) da
M—o0 -M R

again using the dominated convergence theorem and that F~1¢ € S C L'. But this
is (27r) 7! times the Fourier transform of F~1¢ evaluated at k, thus it is (27) ~¢(k)!
Since the Fourier coefficients uniquely determine a 2w-periodic C' function thanks
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to the Fourier inversion formula for the Fourier series, we conclude that (27r)~1g =

f, i.e. that
S (F o) +2mm) = 20" Y plm)ee.

meZ me7Z

An interesting application is obtained by taking ¢(§) = e*k52t(}'w)(f) P €
S(R). Then F-l¢(z) = K, * ¢(x), with K,(z) = (4mkt)"Le=="/(4%D) the heat
kernel on the real line at time ¢ > 0. Summing up the translates produces a
2m-periodic function which still solves the heat equation with initial data given
by the 27-periodicized version of t: 37 . 4(x 4 27rm). On the other hand,
2m) Y e e Fm*t Fip(m)e'™? is the solution of the heat equation on the cir-
cle with initial data (27)~* >, -, Fu(m)e"™®, which is also Y, ., ¢(z + 27m).
Thus, we have two methods for solving the heat equation on the circle, say for a
C®* function ¢ on R which is supported in (0,27): we can either use the Fourier
series, or we can use the solution of the heat equation on R, and sum the translates.
The latter is a version of the method of images. Also notice the nice identity one
gets by applying the Poisson summation formula to the heat kernel directly:

ke L0 (o)L S et

mEZ meZ
We finally show the Parseval/Plancherel formula:

Lemma 0.4. For ¢, € S(R"),

[ s@P@ =0 [ (Fo©TD@
Thus, up to a constant factor, the Fourier transform preserves L%-norms:
IFlL2@ny = 2m) (6]l L2 gn)-

Proof. Before proceeding note that following relationship between F and F~!: for
¢ € L'(R™),

(F15)(x) = (2m) " / e Ep(E) d = (2m)" / e-in€p(E) de = (2m) "FP)E),

i.e.

(11) F1g = (2n) " Fe.
Now, for ¢, 1 € S(R™),

$@) T de = [ ola) (FF D)) do = [ Fol) FIDE) de

— [ Fo© o TD@ d = 20 | (FONOTINE de

where the first equality follows from FF~! = Id on S(R"), the second from (10)
and the third from (11). Substituting in ¢ = ¢ yields that

IF T2y = 2m)" 6172 gy
giving the claimed conclusion. O

We note that S(R™), and indeed compactly supported C* functions are dense
in L2(R").

Lemma 0.5. For all f € L?*(R™) and € > 0 there exists ¢ € C2°(R™) such that
If = ¢ll2 <e.
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Proof. Since continuous functions of compact support are dense in L?(R"), there
exists g € C(R™), of compact support, say supp g C Bgr(0) such that ||g — f||zz <
€/2. So it suffices to find ¢ € C(R™), supported say in Bpry1(0), such that
¢ —gllr> < €/2. But

|6 —gllz2 < m(Br+1(0))sup|o — g,

so it suffices to find ¢ € C°(R™), supported in Bgry1(0), that is close to g in the
uniform norm.

For this purpose, let x € C>°(R™), supported in B;(0), x > 0, x(0) > 0. Mul-
tiplying x by a positive constant we may assume that [ x = 1. Now for § > 0 let
Xs(x) = 6 "x(x/0). Then the family x5, 6 € (0,1), is a family of good kernels as
d — 0, so it follows that xs * g — ¢ uniformly. Further, x5 € C*(R"™) for 6 > 0.
Note also that the convolution (xs * ¢g)(z) vanishes for x with || > R+ 1, for in
this case |z — y| + |y| > |z| > R+ 1 shows that either |y| > 1 or |z — y| > R,
and thus the integrand of [ g(z — y)xs(y) dy vanishes identically. Hence, for § > 0
small, ¢ = s * g satisfies all requirements, completing the proof. (]

An immediate corollary is the following:

Theorem 0.6. The Fourier transform, defined a priori on S(R™), has a unique
continuous extension to a map F : L?(R™) — L*(R™) which still satisfies

(12) IFllze@n) = 2m)" 2|l 2@n, ¢ € LAR™).
The corresponding statement also holds for F~1, with
(13) 1F 7 bl c2qeny = 2m)7?[ ¢l L2@n), ¢ € LA(R™).

Finally, F and F~' are inverses of each other on L*(R™).

Proof. We first show the unique extendability of F to L?; the argument for F~! is
completely analogous.
The linear map F : S(R") — S(R™) satisfies

(14) | Foll L2mny < Cll|l L2 mm)

for ¢ € S(R™) (indeed, equality, with C' = (27)"/?), and thus it has a unique
continuous extension to the closure of S(R™) in the Hilbert space L?(R") as stated.
Since the maps ¢ + || Fo||r2rn) and (2m)"/2||¢|| p2(rn) are continuous on L*(R™),
and they agree on the dense subset S(R™), the identity (13) is valid on all of L2(R™).
For the sake of completeness of details, recall that a continuous map is deter-
mined by values on a dense subset, so the uniqueness statement of the theorem fol-
lows just by the density of S(R™) in L?(R"). To get the existence, one shows that F
maps sequences {¢;}52, in S(R™) which are Cauchy sequences in the L*(R") norm
to L?-Cauchy sequences (which is immediate from (14)), and thus to L2-convergent
sequences (which is where the completeness of the target L? is used). Moreover,
equivalent Cauchy sequences can be combined by alternating the elements into a
single Cauchy sequence, showing that the images are also equivalent (since the al-
ternated version is still Cauchy). Thus, for f € L?(R"), taking ¢; € S(R™), ¢; — f
in L?, and letting Ff = lim;_,o, F¢p; means that F : L*(R") — L*(R") is well-
defined. As F is linear on S, so e.g. F(¢; + ;) = F¢; + F;, the linearity of F
on L?(R™) also follows by taking limits. Finally, we need to establish the bound

I Ffllzzmny < ClfllL2@my

even for f € L?, since this gives the continuity of F : L? — L2. But this is easy: if
¢; — fin L?, then F¢; — Ff in L? by the definition of Ff. Since the norm is a
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continuous map on any normed space, ||¢;||r2 — ||fllr2 and || Fo;|lr2 — [|FfllL2.
Since || Fojllr2 < Cll¢;llL2, letting j — oo gives the desired conclusion.

It remains to show FF ! =1d = F~'F on L?. But FF !, F'F,Id are all
continuous maps on L2, they all agree on the dense subset S, thus on all on L2. O



