
MATH 172: PROBLEM SET 8

DUE FRIDAY, MARCH 13, 2015, 2:15PM

(BEGINNING OF LECTURE)

Problem 1. Find the Fourier transform on R of the following functions:

(i) f(x) = χ[−a,a], a > 0.

(ii) f(x) = χ[0,∞)e
−ax, where a > 0.

(iii) f(x) = |x|ne−a|x|, where a > 0, and n ≥ 0 integer.
(iv) f(x) = (1 + x2)−1. (Hint: use that if f = F−1g with g ∈ L1(R) then g = Ff by

the Fourier inversion formula. Rewrite (1 + x2)−1 as partial fractions (factor the
denominator).)

Problem 2. Find the Fourier transform on R3 of the function f(x) = |x|ne−a|x|, where
a > 0 and n ≥ −1 integer. (Hint: express the integral in the Fourier transform in polar
coordinates.)

Problem 3.

(i) On R3, find the Fourier transform of the function g(x) = |x|−1. (Hint: to do this
efficiently, consider g(x) as the limit of ga(x) = e−a|x||x|−1, and use your result from
the previous problem.)

(ii) Solve ∆u = f on R3, where f ∈ S(R3), writing your answer as a convolution.

Problem 4. Show that if u ∈ S ′(Rn) then there is an integer m ≥ 0 and C > 0 such that
for all φ ∈ S(Rn),

|u(φ)| ≤ C‖φ‖m
where

‖φ‖m =
∑

|α|+|β|≤m

sup
x∈Rn

|xα∂βxφ|.

Hints: This relies on the continuity of u as a map u : S → C. So suppose for the sake
of contradiction that no such m and C exist; in particular for an integer j > 0, m = j and
C = j do not work, i.e. there exists φj ∈ S such that

|u(φj)| > j‖φj‖j .
Note that φj cannot be 0 (for then u(φj) would vanish by linearity). Let ψj = 1

j‖φj‖j φj , so

ψj ∈ S, ‖ψj‖j = 1
j and

|u(ψj)| > j‖ψj‖j = 1.

Now show that ψj → 0 in S as j →∞, and use this to get a contradiction with the continuity
of u.

Problem 5. Suppose that f ∈ L1(Rn), f ≥ 0, ‖f‖L1 = 1. Show that sup |Ff | = 1, and it
is attained exactly at 0. (Hint: For the ‘only attained at 0’ part, consider first ReFf and
show this is < 1 away from 0; to show the general statement, write Ff(ξ) = reiθ, r ≥ 0,
θ ∈ R, and show that r = Re(e−iθFf(ξ)) < 1 for ξ 6= 0.)

Problem 6. A model of probability theory is the following. One has a non-negative function
f ∈ L1(R) (the probability density) with

∫
f = 1, and one identifies events with measurable

subsets E of R. Thus, one says that the probability of an event E is
∫
E
f ; this is a real

number between 0 and 1. For instance numbers on the real line represent a measurement,
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so
∫
E
f corresponds to the probability that the measured value lies in the set E. If xf ∈ L1

as well, the expected value of the measurement is then x =
∫
R xf(x) dx, also called the first

moment. One can always subtract x from x and recenter to have 0 expectation: x̃ = x− x
satisfies

∫
x̃f(x̃+ x) dx̃ = 0.

(i) If one does N independent measurements, the probability that the ordered collection
of measurements (x1, . . . , xN ) take value in a measurable set E ⊂ RN is∫

E

f(x1) . . . f(xN ) dx1 . . . dxN .

Correspondingly, the probability that the sum sN =
∑N
j=1 xj is in a measurable set

A ⊂ R is, with E = {(x1, . . . , xN ) : x1 + . . .+ xN ∈ A},∫
E

f(x1) . . . f(xN ) dx1 . . . dxN .

Show that ∫
E

f(x1) . . . f(xN ) dx1 . . . dxN =

∫
A

FN (x) dx

where FN = f ∗ f ∗ . . . ∗ f (N factors).
(ii) More generally, we consider FN as a distribution, i.e. we consider

∫
FNφ, φ ∈ S(R).

Using the Fourier transform, show that FN → 0 in tempered distributions, and use
this to show that for A compact,

∫
A
FN → 0. (Hint: dominate 0 ≤

∫
A
FN by

∫
FNφ

for appropriate non-negative φ, using that FN ≥ 0.) This says that for any fixed
compact A the probability of sN being in A goes to 0. (This is expected: the sum
should get larger with N .)

(iii) Let SN = sN/N be the average of the measurements. Show that the probability
of SN being in a measurable set B, which is the same as sN being in A = NB =
{Nx : x ∈ B}, is ∫

B

GN (x) dx, GN (x) = NFN (Nx).

Again, consider GN as a distribution. Assuming f ∈ S(R) for simplicity, and
that

∫
xf(x) dx = 0, using the Fourier transform show that GN → δ0 in tempered

distributions, and use this to show that if B is closed, disjoint from 0, then
∫
B
GN →

0 as N →∞. This is the law of large numbers: the average measurement converges
to 0 in this precise sense. (Hint: use the terms, up to the quadratic one, of the Taylor
series of Ff at 0, but convert your expansion into one in terms of an exponential
(with related Taylor series). Then show the claim first if B is compact, excluding
0, and also that if B = [−R,R], R > 0 then

∫
B
GN → 1.)

(iv) One may wonder precisely how this convergence takes place, still assuming f ∈ S(R)
for simplicity, with

∫
xf(x) dx = 0. In this case, the variance is the second moment,

σ2 =
∫
x2f(x) dx.

To do so, one focuses in what happens near 0 and considers S̃N = sN/
√
N =√

NSN . Show that the probability of S̃N being in a measurable set B is∫
B

HN (x) dx, HN (x) =
√
NFN (

√
Nx).

Show now thatHN converges to the tempered distribution given by Φ(x) = 1
σ
√
2π
e−x

2/(2σ2)

in tempered distributions. (Note that Φ has variance σ2: it is the centered normal-
ized Gaussian with this variance.) This is a version of the central limit theorem.


