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Results of microlocal analysis

In this talk | intend to explain how advances in microlocal analysis
helped solve some problems. Some of these problems concern:

@ The Laplacian on asymptotically hyperbolic (conformally
compact) spaces, also related to the asymptotically de Sitter
d'Alembertian. (V. '10)

e Wave propagation on Kerr-de Sitter space (black holes on a
background with a cosmological constant). (V. '10, Nonlinear
results joint with Hintz '13, '14)

@ Meromorphic continuation of the Ruelle zeta function for
Anosov flows. (Dyatlov and Zworski '13)

These are all achieved by placing these problems into a non-elliptic
Fredholm framework using microlocal analysis.



Results of microlocal analysis

Asymptotically hyperbolic spaces are n-dimensional compact
manifolds with boundary Xp, with

@ a preferred boundary defining function x,

@ a complete Riemannian metric gy on the interior of Xp such
that 8o = x2gp is Riemannian on Xj (i.e. up to the boundary)

@ and |dx|g = 1 at 0Xo.

Here Y = 0Xy is metric infinity, but it is useful to encode the
structure near Y via this compactification.

For such metrics the Laplacian is essentially self-adjoint on
C°(Xg), and is positive, and thus the modified resolvent

R(0) = (g — (n—1)2/4—0%) 7"

exists, as a bounded operator on L?(dgp) for Imo > 0,

o¢40,(n—1)/2].
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In a suitable product decomposition [0, €)x x Y near Xy (perhaps
new x), these metrics are of the form

B dx?>+h
8o = 2
where h is a family of metrics on Y = 0Xp. One calls the metric
even if h depends on x in an even manner, i.e. all odd derivatives

of h with respect to x vanish at Y.

Mazzeo and Melrose '87 have proved that, on functions, R(o)
continues from Imo > (n — 1)/2 to C with finite rank Laurent
coefficients at the poles (called resonances), except possibly at
certain potential essential singularities on the imaginary axis, and
Guillarmou '03 has shown that the latter are not present if the
metric is even.
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Such a meromorphic continuation is of interest for a number of
purposes, one of which is the decay of waves. For instance, one
would like to expand solutions to the wave equation

(D2 +(n—1)?/4 — Ag)u=0as t — +00 as

u(t,)~ > e+ 0(e” )

Jjilmo;>—C

in a suitable sense (there may also be some polynomial factors in t,
and with o; the resonances); this can be done via a contour
deformation using the meromorphic continuation of the resolvent
of Ag as long as one also has high energy estimates for R(o) in
strips | Imo| < C'.

Our method, which relies on a conformal, or more precisely
projective, extension of the problem across Y = 0.Xp, yields new
proof of the meromorphic continuation as well as high energy
estimates. We also have a natural extension to differential forms.
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Theorem (A.V. '10, '12)

Let (Xo,80) be an even asymptotically hyperbolic space of
dimension n.

Then, on functions, R(o), continues meromorphically from
Imo > (n—1)/2 to C, and if the geodesic flow on (Xo, go) is
non-trapping, i.e. all geodesics escape to infinity, then in strips
Imo > s, R(o) satisfies non-trapping estimates

IR(0)llzy,x) < Clo|™, Reo > G, for suitable Hilbert spaces
X, ).

Analogous results hold on differential k-forms, with (n —1)?/4
replaced by (n — 2k +1)? /4, with the sign + corresponding to
closed, and — corresponding to coclosed forms.
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The basic idea is to connect a differential operator, P,, on a
manifold without boundary extending Xy to the spectral family of
Ag,.
Change the smooth structure on Xy by declaring that only even
functions of x are smooth, i.e. introducing u = x° as the boundary
defining function. Then after a conjugation and division by a
vanishing factor the resulting operator smoothly and
non-degenerately continues across the boundary, i.e. continues to
X_s, = (—060,0), X Y U Xpeven, Where Xo even is the manifold Xp
with the new smooth structure:
(n—1)? 2
2 o)
=4D,uD, — 40D, + Ay + 2vy(uDy — 0 /2 —+(n — 1) /4).

P, = Mfl/2M10/2f(n+l)/4(Ag0 o 720/2+(n+1)/4'u71/2
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At the level of the principal symbol, i.e. the dual metric, the
conjugation is irrelevant. Changing to (u,y), 1 = x2, as

X0y = 210,
_ 292 _ 2
Go = 4p~0, + pH = p(4pd, + H),

so u Gy = 4;u93 —+ H. This is a quadratic form that is positive
definite for © > 0, is Lorentzian for ¢+ < 0, and has a transition at
1 = 0 that involves radial points we discuss later.

Similarly, in g < 0, this dual metric is obtained by analogous
manipulations on an even asymptotically de Sitter (Lorentzian)
metric, i.e. of the form X72(d%? — h), with X the boundary defining
function, and h positive definite at X = 0. Then u = —%2 gives
this form of the metric. Here —%2 and x2 are formally the ‘same’,
i.e. X is formally like 2x, which means that this extension across the
boundary is a mathematically precise general realization of a ‘Wick
rotation’.
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Left: the compactification of de Sitter space dS” with the
backward light cone from g4 and forward light cone from q_; Q.
resp. Q_, are the intersection of these light cones with T > 0,
resp. T < 0. Right: the blow up of de Sitter space at g. This
desingularizes the tip of the light cone, and the interior of the light
cone inside the front face ff;, can be identified with a potential
scattering problem on hyperbolic space H"™!. Domain of
dependence properties: can solve the equation only in Q.

T NT =+l Y

4+ ff,

Q. Q.
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Kerr-de Sitter space (M°, go) is a Lorentzian space-time of 1 + 3
dimension, which solves Einstein's equation with a cosmological
constant. It models a rotating (with angular momentum a) black
hole (‘Kerr’) of mass M, in a space-time with cosmological
constant A (‘De Sitter’).

In many ways it naturally generalizes the blown-up de Sitter
picture just shown, with the backward light cone corresponding to
the event horizons.

The second theorem concerns wave propagation on Kerr-de Sitter
spaces. This is particularly interesting since the asymptotic
behavior of waves involves resonances, which are poles of a family
Coow— Pofl, where P, is very similar to an operator in the
asymptotically hyperbolic case; it is an operator on a manifold
without boundary.
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Concretely, Kerr-de Sitter space has a bordification, or partial
compactification, M, with a boundary defining function 7 and P,
is then an operator on OM.

The extra complication is that this operator is trapping, which here
means that some null-geodesics do not escape to the event
horizons, but the trapping is of a relatively weak type, called
normally hyperbolic trapping, which has been analyzed by Wunsch
and Zworski '10, Nonnenmacher and Zworski '13 and by Dyatlov
"13 recently.
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Theorem (A.V. '10, cf. Melrose-S& Barreto-V. '11 for a = 0.)

Let (M,g) be a Kerr-de Sitter type space with normally hyperbolic
trapping. Then there is k > 0 such that solutions of

(Og — A)u = 0 have an asymptotic expansion

u~ Y Zkgkj 7 (log |7|)*aj + @i, where ii € TH5(M); here o}
are resonances of the associated normal operator. For A =0 on
Kerr-de Sitter space, the unique o; with Imo; > 0 is 0, and the
corresponding term is a constant, i.e. waves decay to constants.

Further, this result is stable under b-perturbations of the metric,
with the b-structure understood in the sense of Melrose.

In spatially compact parts of Kerr-de Sitter space, 7 = e~! for the
usual time function t, i.e. this decay is exponential. For Kerr
space-times polynomial decay has been shown by Dafermos,
Rodnianski, Shlapentokh-Rothman ('05,..., '14) and Tataru and
Tohaneanu ('08, '09,...).
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In fact, in a slightly different way, the wave equation for
Minkowski-type metrics, more specifically Lorentzian scattering
metrics, can also be handled by similar techniques for both Cauchy
problems (V. '10, work with Baskin, Wunsch '12, and with Hintz
'13) and for the Feynman propagator. In fact, Klein-Gordon type
equations, even in ultrahyperbolic settings, are also amenable to
this type of analysis — in this case in Melrose's scattering
framework.

There are extensions of this result both to semilinear and
quasilinear PDE, in joint work with Hintz. For instance, one has
global solvability, and a description of the asymptotic behavior, of
certain quasilinear equations on M° of the form

Dg(u,du) =f+ q(u, du)a

where g(0,0) = go, for small data f.
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The third theorem concerns the dynamical zeta function for Anosov
flows: these are flows on compact manifolds with a continuous
stable and unstable distribution transversal to the flow direction.

It was a conjecture of Smale's, proved by Giulietti, Liverani and
Pollicott recently by dynamical systems techniques, but shortly
afterwards Dyatlov and Zworski gave a new short proof.

This new proof uses microlocal analysis, inspired by ideas of Faure
and Sjostrand '10, which are analogous to the setup involved in
proving the above theorems, as well as Guillemin's ('77) approach
to trace formulae.
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Theorem (Giulietti, Liverani and Pollicott '12, and Dyatlov and

Zworski '13)

Let X be a compact manifold and ¢; : X — X a C* Anosov flow
with orientable stable and unstable bundles. Let {y*} denote the
set of primitive orbits of ¢, and TWjj their periods. Then the Ruelle
zeta function (r(A) = [],:(1 — e’/\Tg), which converges for

Im A > 0, extends meromorphically to C.

See also the work of Dyatlov, Faure and Guillarmou '14 on
compact hyperbolic surfaces giving more precise results,
Guillarmou 14 on invariant distributions and the X-ray transform,
and Faure and Tsujii '13 on the distribution of resonances.



The Fredholm setup

All of these problems reduce to Fredholm properties of partial
differential operators P. Thus, we work with Hilbert spaces X, Y
of distributions on a manifold M, with or without boundary or
corners, such that

@ P: X — Y continuously,
@ Ran P closed
e Ker P, Y/Ran P are finite dimensional.

The last two are guaranteed by the Fredholm estimates
lullx < C([[Pully + [|ullz)

and
[vliv+ < CUIP*vIx+ + [lullz),

where the inclusion maps X — Z; and Y* — Z> are compact.

One often wants actual invertibility; another interesting question is
the computation of the index of P.



The Fredholm setup

e Typically this problem is considered in elliptic/Riemannian

settings.

@ However, one does solve e.g. wave equations as well — if the
spaces are set up correctly, these should give a Fredholm
statement.

@ In this talk | discuss such non-elliptic problems on manifolds
with or without boundary.

@ In fact, due to the lack of time, the boundary setting
(Melrose's b-analysis) will be ignored except for the already
stated results. The main novelty is the appearance of
resonances even in the statement of Fredholm properties: one
needs to work on weighted Sobolev spaces in which the weight
(decay order) is not the negative of the imaginary part of any
resonance (see the lecture notes for more details).
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Microlocal analysis is local in phase space, T*M \ o, modulo
dilations in the fibers, i.e. in S*M = (T*M \ 0)/R™. This is done
via pseudodifferential operators, P € W™(M); in local coordinates
these are essentially quantizations,

(Pu)(x) = (27)" / e p(x, €)u(y) de dy

of symbols p. Example: p which are asymptotically (as || — o)
homogeneous of degree m.

The basic examples of structures related to this are
e the principal symbol, o,(P), which is a(n equivalence class
of) function(s) on T*M, capturing P modulo W™~ (M), and
o the wave front set, WF’(P) which is a subset of $*M
describing where P is not trivial, i.e. in not W~°°(M).

For P € Diff (M), m € N, 0,,(P) captures the leading terms. If
P = Z\a|§m aOé(X)D)?' O-m(P)(ng) = Z|a\:m aa(x)ﬁa.
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The simplest example is elliptic (pseudo)differential operators on
compact manifolds without boundary M, acting between sections
of vector bundles E, F, with basic geometric examples being the
Laplacian on differential forms, and Dirac operators.

e P e WM(M) elliptic (at least principally classical), i.e.
om(P): T*M\ o — Hom(E, F) invertible,

o X = Hs = H5(M;E), Y = H"™(M; F), s € R,

o so X* = H=S(M; E¥), Y* = H-s*m(M; F*),

o Zy = HN(M; E), Zo = H"N(M; F*), N large.

The Fredholm property follows from the elliptic estimate

[16llHr < CAILN pr—m + @l 5-n),

with L =P, r = s, resp. L = P*, r = —s + m. Note that the
choice of s is irrelevant here (elliptic regularity).
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The non-elliptic problems we consider are problems in which the
elliptic estimate is replaced by estimates of the form

lulls < C(lIPull ps=msr + [Jull g-n),
i.e. with a loss of one derivative relative to the elliptic setting, and
IVl g < CUP VI g —mar + V] =),
with s = —s + m — 1 being the case of interest.
Such estimates imply that P : X — Y is Fredholm if
X={ueH: Pugc H ™1y =H—m

Here X is a first order coisotropic space associated to the
characteristic set of P.
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A complication for non-elliptic Fredholm theory is that H*® is often
a variable order Sobolev space (see e.g. Unterberger '71,
Duistermaat '72), i.e. s is a real-valued function on S*M. This
space is defined by:
o Let sp =infs, and let A € W5(M) C Wi"P*(M), 6 € (0,1/2),
be elliptic,

HS ={uec H®: Auc [?},

o for instance if g is a Riemannian metric, one can take the
principal symbol of A to be [{[3.

Then P € W™ maps P : H® — H*~™ continuously still.
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The most basic non-elliptic phenomenon, when P € W' has real
scalar principal symbol p Id, is propagation of singularities along
the bicharacteristics, i.e. integral curves of H, (due to Hormander
'71):

e WF?*(u) C $*M measures where u is microlocally not in H®,
i.e. a point a € S*M is not in WF*(u) if there is A € WO(M)
such that A is elliptic at « and Au € H°.

e Away from Char(P) = {p = 0}, one has microlocal elliptic
regularity, i.e. the Sobolev wave front set, WF*(u), satisfies
WEF*(u) \ Char(P) C WF*~"(Pu).

o In Char(P)\ WF*~™*1(Py), WF(u), is a union of
maximally extended bicharacteristics.
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This gives an estimate
|Brullns < C([|B2ullps + [|BsPul| gs=mr + || ul[ y-n),

B; € WO, provided WF’'(By) C ElI(B3), and all bicharacteristics
from points in WEF’(By) N Char(P) reach the elliptic set Ell(By) of
B> while remaining in Ell(Bs).

//(BZN
WE'(B) N A,
WE'(Bs) _

The same estimate is valid if s is variable, provided one either
restricts to forward bicharacteristics and requires H,s > 0, or to
backward bicharacteristics and requires H,s < 0.
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The basic problem with this estimate is the term ||Byu||ys on the
right hand side — how does one control this?

One option is complex absorption, this allows the use of constant
order Sobolev spaces. The point is then that bicharacteristics
reach the elliptic set of an operator @ with real principal symbol,
and one works with P — iQ.

A more natural option is to have some structure of the
bicharacteristic flow: we need that there are submanifolds L of
S$*M which act as sources/sinks in the normal direction.
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L
%///L_A/m

The most natural place these arise is radial sets, i.e. points in
T*M where H, is tangent to the dilation orbits. Note that
Hormander's theorem provides no information here.

In non-degenerate settings, i.e. when H, is non-zero, the
biggest possible dimension of a radial set is that of M, in
which case it is a conic Lagrangian submanifold of T*M.

In this case, they act as source or sink within Char(P); in the
source case Hp, flows to the zero section within A, in the sink
case from the zero section.

This also arises in scattering theory, where it was studied by
Melrose '94.
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Let p be the principal symbol of (P — P*) € W1, and define f3
by

L aHpp
p‘/\ :/Bi7
P

where p is an elliptic homogeneous degree 1 function, which is
independent of choices (even that of the metric defining the
adjoint!).

In this case there is an analogue of the propagation of singularity
theorem, but there is a threshold, (m —1)/2 — :
@ if the Sobolev order is higher than this, one can propagate
estimates from L = A/R™, without needing a priori control
like Bou,

@ if the Sobolev order is below this, one can propagate estimates
to L, needing control in a punctured neighborhood of L.
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o If s>s5>(m—1)/2— 5, then
[Brullns < C([|BsPul|ps—mer + [[ul| o),

B; € WO elliptic on L, provided WF'(B;) C ElI(Bs), and all
bicharacteristics from points in WF/(B;) N Char(P) tend to L
while remaining in Ell(Bs).

o If s < (m—1)/2— 3 then
[Brullns < C([|B2ullns + [|BsPul| ps=ms1 + [|ul[ =),

B; € WO elliptic on L, provided WF'(B;) C ElI(Bs), and all
bicharacteristics from points in (WF’(By) N Char(P)) \ L
reach the elliptic set Ell(B;) of B, while remaining in Ell(Bs).

Replacing P by P* changes the sign of /3, and it naturally leads to
estimates on the required dual spaces.
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As a consequence, if there are radial sets L1, L, such that all
bicharacteristics in Char(P) \ (L1 U Ly) escape to Ly in one of the
directions along the bicharacteristics and to Ly in the other, one
has the required Fredholm estimate provided one can arrange the
Sobolev spaces so that

@ at L; the Sobolev order is above the threshold for P,
@ at L, the Sobolev order is above the threshold for P*,

@ the Sobolev order is monotone decreasing from Ly to L.

Namely,
ullws < C([|Pull pgs—mer + [lully-n),

VIl < CUP VI -men + VI )

with s’ = —s+m — 1.
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As an example, in the asymptotically hyperbolic setting, the
cosphere bundle, i.e. the quotient of the cotangent bundle by
dilations, $*X_;, of X_s, near S = {y = 0} is shown.

S$*X_s, is the surface of the cylinder shown. ¥ are the
components of the (classical) characteristic set containing L.
They lie in ;4 < 0, only meeting S¢X_s, at L+. Here we need to

add complex absorption (or a boundary) near ;1 = —dp.
L
N
TiX s,
-
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A different way to look at this, which also explains the projective
relation, and has no complex absorption, is as follows:

o Let M = R with the Minkowski metric and [J be the wave
operator.

@ Let p be a homogeneous degree 1 positive function, e.g. a
Euclidean distance from the origin.

@ The conjugate of p20 by the Mellin transform along the
dilation orbits gives a family of operators P, o the Mellin dual
parameter, on S” (smooth transversal to the dilation orbits).

@ P, is elliptic inside the light cone, but are Lorentzian outside
the light cone.

@ The conormal bundle of the light cone consists of radial
points.

@ The characteristic set has two components, and there are four

components of the radial set: a future and a past component
within each component of the characteristic set.
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Rn+1 H"

ds”

Hn
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In one component ¥ of the characteristic set, the
bicharacteristics go from the past component of the radial set Ly _
to the future one L ; in the other component ¥ _ they go from
the future component of the radial set L_ to the past one L__.
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Reasonable choices of Fredholm problems:

@ Make the Sobolev spaces high regularity at the past radial sets
and low at the future radial sets: this is the forward
propagator.

@ Make the Sobolev spaces low regularity at the past radial sets
and high at the future radial sets: this is the backward
propagator.

@ Make the Sobolev spaces high regularity at the sources L _
and L_, and low regularity at the sinks, or vice versa. These
are the Feynman propagators, and they propagate estimates
for P, in the direction of the Hamilton flow in the first case,
and against the Hamilton flow in the second.

@ Note that none of these problems are self-adjoint: the adjoint
always propagates estimates in the opposite direction as the
operator itself.
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In this case the interior of the light cone is naturally identified with
hyperbolic space, while the exterior with de Sitter space.

It is easy to see that the backward propagator gives rise to the
resolvent of the hyperbolic Laplacian in the future copy of the
hyperbolic space, while the forward propagator does so in the past
copy of hyperbolic space.

This gives rise to the new, Fredholm, construction of the analytic
continuation of the resolvent on hyperbolic space.

There is a completely analogous construction for general
asymptotically hyperbolic spaces.
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