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Abstract. In this paper we show the small data solvability of suitable semi-

linear wave and Klein-Gordon equations on geometric classes of spaces, which
include so-called asymptotically de Sitter and Kerr-de Sitter spaces, as well as

asymptotically Minkowski spaces. These spaces allow general infinities, called

conformal infinity in the asymptotically de Sitter setting; the Minkowski type
setting is that of non-trapping Lorentzian scattering metrics introduced by

Baskin, Vasy and Wunsch. Our results are obtained by showing the global

Fredholm property, and indeed invertibility, of the underlying linear operator
on suitable L2-based function spaces, which also possess appropriate algebra

or more complicated multiplicative properties. The linear framework is based

on the b-analysis, in the sense of Melrose, introduced in this context by Vasy
to describe the asymptotic behavior of solutions of linear equations. An inter-

esting feature of the analysis is that resonances, namely poles of the inverse
of the Mellin transformed b-normal operator, which are ‘quantum’ (not purely

symbolic) objects, play an important role.

1. Introduction

In this paper we consider semilinear wave equations in contexts such as asymp-
totically de Sitter and Kerr-de Sitter spaces, as well as asymptotically Minkowski
spaces in which recent progress [41] and [2] allows one to set up the analysis of the
associated linear problem globally as a Fredholm problem. This allows one to use
the contraction mapping theorem to solve semilinear equations with small data in
many cases since typically the semilinear terms can be considered perturbations of
the linear problem. That is, as opposed to solving an evolution equation on time
intervals of some length, possibly controlling this length in some manner, and iter-
ating the solution using (almost) conservation laws, we solve the equation globally
in one step. There is a catch, however, namely just as in the context of linear
problems, one needs to consider a symbol or normal operator at infinity, conve-
niently encoded by a compactification of the space, with respect to which lower
order terms in the differential order sense can play an equal role to the principal
symbol terms. One way this can show up is that a zero resonance for the Mellin
transformed normal operator significantly affects the analysis; resonances in the
‘physical half plane’, Imσ > 0, would have an even more pronounced effect, while
resonances in the ‘unphysical half plane’, Imσ < 0, affect the expansion of the so-
lutions of the non-linear equation, just as they affect that for linear equations, see
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[41]. Another way is that trapping in Kerr-de Sitter spaces elevates first order non-
linearities to effectively order 1+ ε, ε > 0, (or at least logarithmically worse), which
is too big of a loss for these to be considered perturbations directly. Yet another
way is that when fitting asymptotically Minkowski spaces, in the weak sense of
Baskin, Vasy and Wunsch (i.e. really non-trapping scattering Lorentzian metrics),
into the framework, weight factors are introduced in the non-linearities, and these
strongly influence which problems can be considered perturbations. In addition to
providing solvability of semilinear problems, our results can also be used to obtain
the asymptotic expansion of the solution. We emphasize that while the way these
spaces fit into it differs somewhat, the underlying linear framework is that of L2-
based b-analysis, on manifolds with boundary, as introduced for these equations
in this form in [41] (previously, Wang [45] in her PhD thesis used the b-structure
on perturbations of Minkowski space to analyze the precise form of solutions of
Einstein’s equation; this was however a non-microlocal approach), except that in
the global view of asymptotically de Sitter spaces one can eliminate the boundary
altogether.1

We thus consider semilinear wave equations of the form

(�g − λ)u = f + q(u, du)

on a manifold M where q is (typically; more general functions are also considered)
a polynomial vanishing at least quadratically at (0, 0) (so contains no constant or
linear terms, which should be included either in f or in the operator on the left
hand side). As weights make a difference, we make du have coefficients which are
well-behaved relative to the metric structure, as specified below. Here g and λ
and the function spaces used fit in one of the following scenarios, which we state
slightly informally, discussing the terminology afterwards, but the reader unfamiliar
with the terms could drop the word ‘asymptotically’ and ‘even’ to obtain specific
examples:

(1) A neighborhood of the backward light cone from future infinity in an asymp-
totically de Sitter space. (This may be called a static region/patch of an
asymptotically de Sitter space, even when there is no time like Killing vec-
tor field.) Due to a zero resonance for the linear problem when λ = 0,
which moves to the lower half plane for λ > 0, in this setting λ > 0 works
in general; λ = 0 works if q depends on du but not on u. The relevant
function spaces are L2-based b-Sobolev spaces on the bordification (partial
compactification) of the space, or analogous spaces plus a finite expansion.
Further, the semilinear terms involving du have coefficients corresponding
to the b-structure, i.e. b-objects are used to create functions from the dif-
ferential forms, or equivalently b-derivatives of u are used.

(2) Kerr-de Sitter space, including a neighborhood of the event horizon. This
is an extension of (1), i.e. the framework is essentially the same, with the
difference being that there is now trapping corresponding to the ‘photon
sphere’. This makes first order terms in the non-linearity non-perturbative,

1The b-analysis itself originates in Melrose’s work on the propagation of singularities for the

wave equation on manifolds with smooth boundary, and Melrose described a systematic framework

for elliptic b-equations in [32]. Here ‘b’ refers to analysis based on vector fields tangent to the
boundary of the space; we give some details later in the introduction and further details in

Section 2.1, where we recall the setting of [41].
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unless they are well-adapted to the trapping. Thus, we assume λ > 0. The
relevant function spaces are as in the asymptotically de Sitter setting.

(3) Global even asymptotically de Sitter spaces. These are in some sense the
easiest examples as they correspond, via extension across the conformal
boundary, to working on a manifold without boundary. However, in order
to get reasonable results, one needs to measure regularity relatively finely,
using the module of vector fields tangent to what used to be the conformal
boundary in the extension. The relevant function spaces are thus Sobolev
spaces with additional (finite) conormal regularity. Further, du has coeffi-
cients corresponding to the 0-structure of Mazzeo and Melrose, in the same
sense the b-structure was used in (1). The range of λ here is limited by
the process of extension across the boundary; for non-linearities involving
u only, the restriction amounts to (at least very slowly) decaying solutions
for the linear problem (without extension across the conformal boundary).

Another possibility is to view global de Sitter space as a union of static
patches. Here, the b-Sobolev spaces on the static parts translate into 0-
Sobolev spaces on the global space, which have weights that are shifted by a
dimension-dependent amount relative to the weights of the b-spaces. This
approach allows many of the non-linearities that we can deal with on static
parts; however, the resulting decay estimates on u are quite lossy relative
to the decay of the forcing term f .

(4) Non-trapping Lorentzian scattering spaces (generalized asymptotically Min-
kowski spaces), λ = 0. Note that if λ > 0, the type of the equation changes
drastically; it naturally fits into Melrose’s scattering algebra2 rather than
the b-algebra which can be used for λ = 0. While the results here are quite
robust and there are no issues with trapping, they are more involved as
one needs to keep track of regularity relative to the module of vector fields
tangent to the light cone at infinity. The relevant function spaces are b-
Sobolev spaces with additional b-conormal regularity corresponding to the
aforementioned module. Further, du has coefficients corresponding to Mel-
rose’s scattering structure. These spaces, in the special case of Minkowski
space, are related to the spaces used by Klainerman [24], using the infini-
tesimal generators of the Lorentz group, but while Klainerman works in an
L∞L2 setting, we remain purely in a (weighted) L2 based setting, as the
latter is more amenable to the tools of microlocal analysis.

The results in these cases are, roughly stated, with references to the precise
theorems:

(1) ‘Static’ asymptotically de Sitter. If λ > 0, one can allow q an arbitrary
polynomial with quadratic vanishing at the origin, or indeed a more general
function. If λ = 0 and q depends on du only, the same conclusion holds.
Further, in either case, one obtains an expansion of the solution at infinity.
See Theorems 2.24 and 2.35, and Corollary 2.27.

(2) Kerr-de Sitter. In the main part of the section we assume λ > 0, and allow
q = q(u) with quadratic vanishing at the origin. We also obtain an expan-
sion at infinity. See Theorems 3.5 and 3.9, and Corollary 3.8. However, in

2In many ways the scattering algebra is actually much better behaved than the b-algebra, in
particular it is symbolic in the sense of weights/decay. Thus, with numerical modifications, our

methods should extend directly.
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Section 3.3 we briefly discuss non-linearities involving derivatives which are
appropriately behaved at the trapped set.

(3) ‘Global’ asymptotically de Sitter. Here λ = (n− 1)2/4 +σ2. If3 Imσ < 0 is
sufficiently small and the dimension satisfies n ≥ 6, quadratic vanishing of
q suffices; if n ≥ 4 then cubic vanishing is sufficient. If q does not involve
derivatives, Imσ ≥ 0 small also works, and if Imσ > 0, n ≥ 5, or Imσ = 0,
n ≥ 6, then quadratic vanishing of q is sufficient. See Theorems 4.10, 4.12
and 4.15. Using the results from ‘static’ asymptotically de Sitter spaces,
quadratic vanishing of q in fact suffices for all λ > 0, and indeed λ ≥ 0 if
q = q(du), but the decay estimates for solutions are lossy relative to the
decay of the forcing. See Theorem 4.17.

(4) Non-trapping Lorentzian scattering (generalized asymptotically Minkowski).
If q = q(du), we allow q with quadratic vanishing at 0 if n ≥ 5; cubic if
n ≥ 4. If q = q(u), we allow q with quadratic vanishing if n ≥ 6; cubic if
n ≥ 4. Further, for q = q(du) quadratic satisfying a null-condition, n = 4
also works. See Theorems 5.10, 5.12 and 5.18.

In order to underline the generality of the method, we emphasize that, corre-
sponding to cases (1) and (2), in b-settings in which one can work on standard
b-Sobolev spaces, which means that one propagates singularities away from ra-
dial sets, the restrictions on the solvability of the semilinear equations are simply
given by the presence of resonances for the Mellin-transformed normal operator in
Imσ ≥ 0, which would allow growing solutions4 to the equation, making the non-
linearity non-perturbative, and the losses at high energy estimates for this Mellin-
transformed operator and the closely related b-principal symbol estimates when one
has trapping.5 In particular, the results are necessarily optimal in the non-trapping
setting of (1), as shown even by an ODE, see Remark 2.29. In the trapping set-
ting it is not clear precisely what improvements are possible for non-linearities with
derivatives, though when there are no derivatives in the non-linearity, we already
have no restrictions on the non-linearity and to this extent the result is optimal.

On Lorentzian scattering spaces more general function spaces are used6, and it is
not in principle clear whether the results are optimal, but at least comparison with
the work of Klainerman and Christodoulou for perturbations of Minkowski space [7,

3The equation is unchanged if one replaces σ by −σ. The process of extending across the

boundary, however, breaks this symmetry, and in Section 4 we mostly consider Imσ ≤ 0.
4With an exception if Imσ = 0, in which case the non-linear iterative arguments produce

growth unless the non-linearity has a special structure.
5These losses cause the difference in the trapping setting for non-linearities with or without

derivatives.
6There are two basic properties of spaces of functions on manifolds with boundaries: differen-

tiability and decay. Whether one can have both at the same time for the linear analysis depends on
the (Hamiltonian) dynamical nature of radial points: when defining functions of the correspond-

ing boundaries of the compactified cotangent bundle have opposite character (stable vs. unstable)
one can have both at the same time, otherwise not; see Propositions 2.1 and 5.1 for details. For
non-linear purposes, the most convenient setting, in which we are in (1), is if one can work with

spaces of arbitrarily high regularity and fast decay, and corresponds to saddle points of the flow in

the above sense. In (4) however, working in higher regularity spaces, which is necessary in order
to be able to make sense of the non-linearity, requires using faster growing (or at least less de-

caying) weights, which is problematic when dealing with non-linearities (e.g., polynomials) since
multiplication gives even worse growth properties then. Thus, to make the non-linear analysis
work, the function spaces we use need to have more structure; it is a module regularity that is

used to capture some weaker regularity in order to enable work in spaces with acceptable weights.
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24, 23] gives consistent results; see the comments below. On global asymptotically
de Sitter spaces, the framework of [41] and [39] is very convenient for the linear
analysis, but it is not clear to what extent it gives optimal results in the non-linear
setting, though see the comments below.

While all results are stated for the scalar equation, analogous results hold in
many cases for operators on natural vector bundles, such as the d’Alembertian (or
Klein-Gordon operator) on differential forms, since the linear arguments work in
general for operators with scalar principal symbol whose subprincipal symbol satis-
fies appropriate estimates at radial sets, see [41, Remark 2.1], though of course for
semilinear applications the presence of resonances in the closed upper half plane has
to be checked. This already suffices to obtain the well-posedness of the semilinear
equations on asymptotically de Sitter spaces that we consider in this paper.7 On
asymptotically Minkowski spaces, the absence of poles of an asymptotically hyper-
bolic resolvent has to be checked in addition,8 see Theorem 5.2, and the numerology
depends crucially on the delicate balance of weights and regularity, see Footnote 6.

The degree to which these non-linear problems have been studied differ, with
the Minkowski problem (on perturbations of Minkowski space, as opposed to our
more general setting) being the most studied. There semilinear and indeed even
quasilinear equations are well understood due to the work of Christodoulou [7] and
Klainerman [24, 23], with their book on the global stability of Einstein’s equation
[8] being one of the main achievements. (We also refer to the work of Lindblad
and Rodnianski [26, 27] simplifying some of the arguments, of Bieri [4, 5] relaxing
some of the decay conditions, of Wang [45] obtaining asymptotic expansions, and
of Lindblad [25] for results on a class of quasilinear equations. Hörmander’s book
[22] provides further references in the general area. There are numerous works
on the linear problem, and estimates this yields for the non-linear problems, such
as Strichartz estimates; here we refer to the recent work of Metcalfe and Tataru
[33] for a parametrix construction in low regularity, and references therein.) Here
we obtain results comparable to these (when restricted to the semilinear setting),
on a larger class of manifolds, see Remark 5.15. For non-linearities which do not
involve derivatives, slightly stronger results have been obtained, in a slightly dif-
ferent setting, in [9]; see Remark 5.16. On the other hand, there is little work
on the asymptotically de Sitter and Kerr-de Sitter settings; indeed the only paper
the authors are aware of is that of Baskin [1] in roughly comparable generality in
terms of the setting,9 though in exact de Sitter space Yagdjian [49, 48] has studied
a large class of semilinear equations with no derivatives. Baskin’s result is for a
semilinear equation with no derivatives and a single exponent, using his parametrix

7Here one needs to know the poles of the resolvent of the Laplacian on forms on exact hyperbolic

space only.
8On perturbations of Minkowski space, this follows from the appropriate behavior of poles of

the resolvent of the Laplacian on forms on exact hyperbolic space.
9There is more work on the linear problem in de Sitter, de Sitter-Schwarzschild and Kerr-de

Sitter spaces. We refer to [41] for more detail; some references are Polarski [35], Yagdjian and
Galstian [50], Sá Barreto and Zworski [36], Bony and Häfner [6], Vasy [43], Baskin [3], Dafermos

and Rodnianski in [10], Melrose, Sá Barreto and Vasy [30], Dyatlov [16, 15]. Also, while it received

more attention, the linear problem on Kerr space does not fit directly into our setting; see the
introduction of [41] for an explanantion and for further references, [11] for more background and

additional references.
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construction [3], namely up with10 p = 1 + 4
n−2 , and for λ > (n − 1)2/4. In the

same setting, p > 1 + 4
n−1 works for us, and thus Baskin’s setting is in particular

included. Yagdjian works with the explicit solution operator (derived using special
functions) in exact de Sitter space, again with no derivatives in the non-linearity.
While there are some exponents that his results cover (for λ > (n− 1)2/4, all p > 1
work for him) that ours do not directly (but indirectly, via the static model, we in

fact obtain such results), the range ( (n−1)2

4 − 1
4 ,

(n−1)2

4 ) is excluded by him while
covered by our work for sufficiently large p. In the (asymptotically) Kerr-de Sitter
setting, to our knowledge, there has been no similar semilinear work.

We next recall from [43] that an asymptotically de Sitter space is an appropriate
generalization of the Riemannian conformally compact spaces of Mazzeo and Mel-
rose [28], namely a smooth manifold with boundary, M̃ , with interior M̃◦ equipped
with a Lorentzian metric g̃, which we take to be of signature (1, n − 1) for the
sake of definiteness, and with a boundary defining function ρ, such that ĝ = ρ2g̃
is a smooth symmetric 2-cotensor of signature (1, n − 1) up to the boundary of

M̃ and ĝ(dρ, dρ) = 1 (thus, the boundary defining function is timelike, and thus
the boundary is spacelike; the = 1 statement makes the curvature asymptotically
constant), and in addition ∂M̃ has two components (each of which may be a union

of connected components) X̃±, with all null-geodesics c = c(s) of g̃ tending to X̃+

as s → +∞ and to X̃− as s → −∞, or vice versa.11 Analogously to asymptot-
ically hyperbolic spaces, where this was shown by Graham and Lee [18], on such

a space one can always introduce a product decomposition (∂M̃)z × [0, δ)ρ near

∂M̃ (possibly changing ρ) such that the metric has a warped product structure
ĝ = dρ2 − h(ρ, z, dz), g̃ = ρ−2ĝ; the metric is called even if h can be taken even in
ρ, i.e. a smooth function of ρ2. We refer to Guillarmou [19] for the introduction of
even metrics in the asymptotically hyperbolic context, and to [43], [41] and [40] for
further discussion.

Blowing up a point p at X̃+, which essentially means introducing spherical coor-

dinates around it, we obtain a manifold with corners [M̃ ; p], with a blow-down map

β : [M̃ ; p] → M̃ , which is a diffeomorphism away from the front face, which gets
mapped to p by β. Just like blowing up the origin in Minkowski space desingular-
izes the future (or past) light cone, this blow-up desingularizes the backward light

cone from p on M̃ , which lifts to a smooth submanifold transversal to the front face
on [M̃ ; p] which intersects the front face in a sphere Y . The interior of this lifted
backward light cone, at least near the front face, is a generalization of the static
patch in de Sitter space, and we refer to a neighborhood Mδ, δ > 0, of the closure of
the interior M+ of the lifted backward lightcone in [M̃ ; p] which only intersects the

boundary of [M̃ ; p] in the interior of the front face (so Mδ is a non-compact man-
ifold with boundary, with boundary Xδ, and with say boundary defining function
τ) as the ‘static’ asymptotically de Sitter problem. See Figure 1. Via a doubling
process, Xδ can be replaced by a compact manifold without boundary, X, and Mδ

by M = X× [0, τ0)τ , an approach taken in [41] where complex absorption was used,

10The dimension of the spacetime in Baskin’s paper is n + 1; we continue using our notation
above.

11Notice that in the interior of M̃ , the conformal factor ρ−2 simply reparameterizes the null-
geodesics, so equivalently one can require that null-geodesics of ĝ reach X̃± at finite parameter
values.
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or indeed one can instead work in a compact region Ω ⊂ Mδ by adding artificial,
spacelike, boundaries, as we do here in Section 2.1. With such an Ω, the distinction
between M and Mδ is irrelevant, and we simply write M below.

Figure 1. Setup of the ‘static’ asymptotically de Sitter problem.
Indicated are the blow-up of M̃ at p and the front face, the lift of
the backward light cone to [M̃ ; p] (solid), and lifts of backward light
cones from points nearby p (dotted); moreover, Ω ⊂ M (dashed
boundary) is a submanifold with corners within M (which is not
drawn here; see [41] for a description of M using a doubling pro-
cedure in a similar context). The role of Ω is explained in Sec-
tion 2.1.

See [43, 41] for relating the ‘global’ and the ‘static’ problems. We note that the
lift of g̃ to M in the static region is a Lorentzian b-metric, i.e. is a smooth symmetric
section of signature (1, n−1) of the second tensor power of the b-cotangent bundle,
bT ∗M . The latter is the dual of bTM , whose smooth sections are smooth vector
fields on M tangent to ∂M ; sections of bT ∗M are smooth combinations of dτ

τ
and smooth one forms on X, relative to a product decomposition X × [0, δ)τ near
X = ∂M .

As mentioned earlier, the methods of [41] work in a rather general b-setting,
including generalizations of ‘static’ asymptotically de Sitter spaces. Kerr-de Sit-
ter space, described from this perspective in [41, Section 6], can be thought of
as such a generalization. In particular, it still carries a Lorentzian b-metric, but
with a somewhat more complicated structure, of which the only important part
for us is that has trapped rays. More concretely, it is best to consider the bichar-
acteristic flow in the b-cosphere bundle (projections of null-bicharacteristics being
just the null-geodesics), bS∗M , quotienting out by the R+-action on the fibers of
bT ∗M \ o. On the ‘static’ asymptotically de Sitter space each half of the spherical
b-conormal bundle12 bSN∗Y consists of (a family of) saddle points of the null-
bicharacteristic flow (these are called radial sets, the stable/unstable directions are
normal to bSN∗Y itself), with one of the stable and unstable manifolds being the
conormal bundle of the lifted light cone (which plays the role of the event horizon in
black hole settings), and the other being the characteristic set within the boundary

12The b-conormal bundle bN∗Y of a boundary submanifold Y of a manifold with boundary

M is the subbundle of bT ∗YM whose fiber over p ∈ Y ⊂ ∂M = X is the annihilator of vector

fields on M tangent to Y and X. In local coordinates (τ, y, z), where Y is defined by z = 0 in X,
these vector fields are smooth linear combinations of τ∂τ , ∂yj , zj∂zk , τ∂zk , whose span in bTpM

is that of τ∂τ and ∂yj , and thus the fiber of the b-conormal bundle is spanned by the dzj , i.e. has

the same dimension as the codimension of Y in X (and not that in M , corresponding to dτ
τ

not

annihilating τ∂τ ). The spherical b-conormal bundle is the quotient of bN∗Y \o by the R+-action;
it is a submanifold of bS∗M .
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X (so within the boundary, the radial sets bSN∗Y , are actually sources or sinks).
Then on asymptotically de Sitter spaces all null-bicharacteristics over M+\X either
leave Ω in finite time or (if they lie on the conormal bundle of the event horizon)
tend to bSN∗Y as the parameter goes to ±∞, with each bicharacteristic tending
to bSN∗Y in at most one direction. The main difference for Kerr-de Sitter space is
that there are null-bicharacteristics which do not leave M+ \X and do not tend to
bSN∗Y . On de Sitter-Schwarzschild space (non-rotating black holes) these future
trapped rays project to a sphere, called the photon sphere, times [0, δ)τ ; on general
Kerr-de Sitter space the trapped set deforms, but is still normally hyperbolic, a
setting studied by Wunsch and Zworski in [47] and by Dyatlov in [17].

We refer to [2, Section 3] and to Section 5.1 here for a definition of asymptot-
ically Minkowski spaces, but roughly they are manifolds with boundary M with
Lorentzian metrics g on the interior M◦ conformal to a b-metric ĝ as g = τ−2ĝ,
with τ a boundary defining function13 (so these are Lorentzian scattering metrics
in the sense of Melrose [29], i.e. symmetric cotensors in the second power of the
scattering cotangent bundle, and of signature (1, n− 1)), with a real C∞ function
v defined on M with dv, dτ linearly independent at S = {v = 0, τ = 0}, and with
a specific behavior of the metric at S which reflects that of Minkowski space on its
radial compactification near the boundary of the light cone at infinity (so S is the
light cone at infinity in this greater generality). Concretely, the specific form is14

τ2g = ĝ = v
dτ2

τ2
−
(dτ
τ
⊗ α+ α⊗ dτ

τ

)
− h̃,

where α is a smooth one form on M , equal to 1
2 dv at S, h̃ is a smooth 2-cotensor on

M , which is positive definite on the annihilator of dτ and dv (which is a codimension
2 space). The difference between the de Sitter-type and Minkowski settings is in
part this conformal factor, τ−2, but more importantly, as this conformal factor
again does not affect the behavior of the null-bicharacteristics so one can consider
those of ĝ on bS∗M , at the spherical conormal bundle bSN∗S of S the nature of
the radial points is source/sink rather than a saddle point of the flow. (One also
makes a non-trapping assumption in the asymptotically Minkowski setting.)

While the basic ingredients of the necessary linear b-analysis were analyzed in
[41], the solvability framework was only discussed in the dilation invariant setting,
and in general the asymptotic expansion results were slightly lossy in terms of
derivatives in the non-dilation invariant case. We remedy these issues in this paper,
providing a full Fredholm framework. The key technical tools are the propagation
of b-singularities at b-radial points which are saddle points of the flow in bS∗M ,
see Proposition 2.1, as well as the b-normally hyperbolic versions, proved in the
Appendix, of the semiclassical normally hyperbolic trapping estimates of Wunsch
and Zworski [47]; the rest of the Fredholm setup is discussed in Section 2.1 in the
non-trapping and Section 3.1 in the normally hyperbolic trapping setting. The
analogue of Proposition 2.1 for sources/sinks was already proved in [2, Section 4];

13In Section 5 we switch to ρ as the boundary defining function for consistency with [2].
14More general, ‘long-range’ scattering metrics also work for the purposes of this paper without

any significant changes; the analysis of these is currently being completed by Baskin, Vasy and

Wunsch. The difference is the presence of smooth multiples of τ dτ
2

τ2 in the metric near τ = 0,

v = 0. These do not affect the normal operator, but slightly change the dynamics in bS∗M . This,
however, does not affect the function spaces to be used for our semilinear problem.
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our Lorentzian scattering metric Fredholm discussion, which relies on this, is in
Section 5.1.

We emphasize that our analysis would be significantly less cumbersome in terms
of technicalities if we were not including Cauchy hypersurfaces and solved a globally
well-behaved problem by imposing sufficiently rapid decay at past infinity instead (it
is standard to convert a Cauchy problem into a forward solution problem). Cauchy
hypersurfaces are only necessary for us if we deal with a problem ill-behaved in
the past because complex absorption does not force appropriate forward supports
even though it does so at the level of singularities; otherwise we can work with
appropriate (weighted) Sobolev spaces. The latter is the case with Lorentzian
scattering spaces, which thus provide an ideal example for our setting. It can also be
done on the global setting of de Sitter spaces, as in setting (3) above, essentially by
realizing these as the boundary of the appropriate compactification of a Lorentzian
scattering space, see [40]. In the case of Kerr-de Sitter black holes, in the presence
of dilation invariance, one has access to a similar luxury; complex absorption does
the job as in [41]; the key aspect is that it needs to be imposed outside the static
region we consider. For a general Lorentzian b-metric with a normally hyperbolic
trapped set, this may not be easy to arrange, and we do work by adding Cauchy
hypersurfaces, even at the cost of the resulting, rather artificial in terms of PDE
theory, technical complications. For perturbations of Kerr-de Sitter space, however,
it is possible to forego the latter for well-posedness by an appropriate gluing to
complete the space with actual Kerr-de Sitter space in the past for the purposes
of functional analysis. We remark that Cauchy hypersurfaces are somewhat ill-
behaved for L2 based estimates, which we use, but match L∞L2 estimates quite
well, which explains the large role they play in existing hyperbolic theory, such as
[24] or [21, Chapter 23.2]. We hope that adopting this more commonly used form
of ‘truncation’ of hyperbolic problems will aid the readability of the paper.

We also explain the role that the energy estimates (as opposed to microlocal
energy estimates) play. These mostly enter to deal with the artificially introduced
boundaries; if other methods were used to truncate the flow, their role reduces to
checking that in certain cases, when the microlocal machinery only guarantees Fred-
holm properties of the underlying linear operators, the potential finite dimensional
kernel and cokernel are indeed trivial. Asymptotically Minkowski spaces illustrate
this best, as the Hamilton flow is globally well-behaved there; see Section 5.1.

The other key technical tool is the algebra property of b-Sobolev spaces and
other spaces with additional conormal regularity. These are stated in the respective
sections; the case of the standard b-Sobolev spaces reduces to the algebra property
of the standard Sobolev spaces on Rn. Given the algebra properties, the results are
proved by applying the contraction mapping theorem to the linear operator.

In summary, the plan of this paper is the following. In each of the sections below
we consider one of these settings, and first describe the Sobolev spaces on which
one has invertibility for the linear problems of interest, then analyze the algebra
properties of these Sobolev spaces, finally proving the solvability of the semilinear
equations by checking that the hypotheses of the contraction mapping theorem are
satisfied.

The authors are grateful to Dean Baskin, Rafe Mazzeo, Richard Melrose, Gun-
ther Uhlmann, Jared Wunsch and Maciej Zworski for their interest and support. In
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particular, the overall strategy reflects Melrose’s vision for solving non-linear PDE
globally.

2. Static model of de Sitter space

2.1. The linear Fredholm framework. While the results of [41] on linear esti-
mates for wave equations for b-metrics are optimally stated when the metrics and
thus the corresponding operators are dilation-invariant, i.e. when near τ = 0 the
normal operator can be identified with the operator itself, see [41, Lemma 3.1],
the estimates for Sobolev derivatives are lossy for general b-metrics in [41, Proposi-
tion 3.5], essentially because one should not treat the difference between the normal
operator and the actual operator purely as a perturbation. While perhaps the main
interest here is in the dilation-invariant case, we first strengthen the linear results
in [41] in the non-dilation invariant setting by analyzing b-radial points which are
saddle points of the Hamilton flow. This is similar to [2, Section 4], where the
analogous result was proved when the b-radial points are sources/sinks. This is
then used to set up a Fredholm framework for the linear problem. If one is mainly
interested in the dilation invariant case, one can use [41, Lemma 3.1] in place of
Theorems 2.18-2.20 below, either adding the boundary corresponding to H2 below,
or still using complex absorption as was done in [41].

So suppose P ∈ Ψm
b (M), M a manifold with boundary. We refer to Section 3

of [41] for a discussion of the b-geometry relevant for the present context, and
[41, Section 2] for the results for the Mellin transformed normal operator. Let p
be the principal symbol of P, which is thus a homogeneous degree m function on
bT ∗M \ o, which we assume to be real-valued, and let Hp be the Hamilton vector
field of p (more precisely, the extension of the Hamilton vector field from T ∗M◦ \ o
to bT ∗M \ o), which is a homogeneous degree m − 1 vector field on bT ∗M \ o
tangent to the boundary bT ∗XM . In local coordinates (τ, z) on M near X, with
b-dual coordinates (σ, ζ), i.e. writing b-covectors as

σ
dτ

τ
+
∑
j

ζj dzj ,

this has the form

Hp = (∂σp)(τ∂τ )− (τ∂τp)∂σ +
∑
j

(
(∂ζjp)∂zj − (∂zjp)∂ζj

)
, (2.1)

see [2, Equation (3.20)], where a somewhat different notation is used, given by [2,

Equation (3.19)]. It is then convenient to consider the fiber compactification bT ∗M
of bT ∗M , where the fibers are replaced by their radial compactification. The new

boundary of bT ∗M at fiber infinity is bS∗M ; it still possesses the compactification

of the ‘old’ boundary bT ∗XM , see Figure 2. Recall here that bS∗M is naturally
the quotient of bT ∗M \ o by the R+-action of dilation in the fibers of the cotangent
bundle.

Let ρ̃ denote a homogeneous degree −1 defining function of bS∗M . Then the
rescaled Hamilton vector field

V = ρ̃m−1Hp

is a C∞ vector field on bT ∗M away from the 0-section, and it is tangent to all
boundary faces. The characteristic set Σ is the zero-set of the smooth function
ρ̃mp in bS∗M . We refer to the flow of V in Σ ⊂ bS∗M as the Hamilton, or
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Figure 2. The radially compactified cotangent bundle bT ∗M near
bT ∗XM ; the cosphere bundle bS∗M , viewed as the boundary at

fiber infinity of bT ∗M , is also shown, as well as the zero section

oM ⊂ bT ∗M and the zero section over the boundary oX ⊂ bT ∗XM .

(null)bicharacteristic flow; its integral curves, the (null)bicharacteristics, are repa-
rameterizations of those of the Hamilton vector field Hp, projected by the quotient
map bT ∗M \ o→ bS∗M .

2.1.1. Generalized b-radial sets. The standard propagation of singularities theorem
in the characteristic set Σ in the b-setting is that for u ∈ H−∞,rb (M), within Σ,

WFs,rb (u) \WFs−m+1,r
b (Pu) is a union of maximally extended integral curves (i.e.

null-bicharacteristics) of P. This is vacuous at points where V vanishes (as a smooth
vector field); these points are called radial points, since at such a point Hp itself
(on bT ∗M \ o) is radial, i.e. is a multiple of the generator of the dilations of the
fiber of the b-cotangent bundle. At a radial point α, V acts on the ideal I of C∞

functions vanishing at α, and thus on T ∗α
bT ∗M , which can be identified with I/I2.

Since V is tangent to both boundary hypersurfaces, given by τ = 0 and ρ̃ = 0, dτ
and dρ̃ are automatically eigenvectors of the linearization of V . We are interested
in a generalization of the situation in which we have a smooth submanifold L of
bS∗XM consisting of radial points which is a source/sink for V within bT ∗XM but
if it is a source, so in particular dρ̃ is in an unstable eigenspace, then dτ is in the
(necessarily one-dimensional) stable eigenspace, and vice versa. Thus, L is a saddle
point of the Hamilton flow.

In view of the bicharacteristic flow on Kerr-de Sitter space (which, unlike the
non-rotating de Sitter-Schwarzschild black holes, does not have this precise radial
point structure), it is important to be slightly more general, as in [41, Section 2.2].
Thus, we assume that dp does not vanish where p does, i.e. at Σ, and is linearly
independent of dτ at {τ = 0, p = 0} = Σ∩ bS∗XM , so Σ is a smooth submanifold of
bS∗M transversal to bS∗XM , and for L assume simply that L = L+∪L−, L± smooth
disjoint submanifolds of bS∗XM , given by L±∩bS∗XM where L± are smooth disjoint
submanifolds15 of Σ transversal to bS∗XM , defined locally near bS∗XM , with ρ̃m−1Hp
tangent to L±, with a homogeneous degree zero quadratic defining function16 ρ0 of

15These play the role of the two halves of the conormal bundles of event horizons.
16That is, ρ0 vanishes quadratically at L (and vanishes only at L), with the vanishing non-

degenerate, in the sense that the Hessian is positive definite, corresponding to ρ0 being a sum of

squares of linear defining functions whose differentials span the conormal bundle of L within Σ.
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L within Σ such that

ρ̃m−2Hpρ̃|L± =∓ β0, −ρ̃m−1τ−1Hpτ |L± = ∓β̃β0,

β0, β̃ ∈ C∞(L±), β0, β̃ > 0,
(2.2)

and, with β1 > 0,
∓ ρ̃m−1Hpρ0 − β1ρ0 (2.3)

is ≥ 0 modulo cubic vanishing terms at L±. Then L− is a source and L+ is a
sink within bS∗XM in the sense of nearby bicharacteristics within bS∗XM all tend
to L± as the parameter along them goes to ±∞, but at L− there is also a stable,
and at L+ an unstable, manifold, namely L−, resp. L+.17 In order to simplify the
statements, we assume that

β̃ is constant on L±; β̃ = β > 0;

we refer the reader to [41, Equation (2.5)-(2.6)], and the discussion throughout that

paper, where a general β̃ is allowed, at the cost of either sup β̃ or inf β̃ playing a
role in various statements depending on signs. Finally, we assume that P − P∗ ∈
Ψm−2

b (M) for convenience (with respect to some b-metric), as this is the case for
the Klein-Gordon equation.18

Proposition 2.1. Suppose P is as above.
If s ≥ s′, s′ − (m − 1)/2 > βr, and if u ∈ H−∞,rb (M) then L± (and thus a

neighborhood of L±) is disjoint from WFs,rb (u) provided L±∩WFs−m+1,r
b (Pu) = ∅,

L± ∩WFs
′,r

b (u) = ∅, and in a neighborhood of L±, L± ∩ {τ > 0} are disjoint from
WFs,rb (u).

On the other hand, if s−(m−1)/2 < βr, and if u ∈ H−∞,rb (M) then L± (and thus

a neighborhood of L±) is disjoint from WFs,rb (u) provided L±∩WFs−m+1,r
b (Pu) = ∅

and a punctured neighborhood of L±, with L± removed, in Σ ∩ bS∗XM is disjoint
from WFs,rb (u).

Remark 2.2. The decay order r plays the role of − Imσ in [41] in view of the
Mellin transform in the dilation invariant setting identifying weighted b-Sobolev
spaces with weight r with semiclassical Sobolev spaces on the boundary on the line
Imσ = −r, see [41, Equation (3.8)-(3.9)]. Thus, the numerology in this proposition
is a direct translation of that in [41, Propositions 2.3-2.4].

Proof. We remark first that ρ̃m−1Hpρ0 vanishes quadratically on L± since ρ̃m−1Hp
is tangent to L± and ρ0 itself vanishes there quadratically. Further, this quadratic
expression is positive definite near τ = 0 since it is such at τ = 0. Correspondingly,
we can strengthen (2.3) to

∓ ρ̃m−1Hpρ0 −
β1

2
ρ0 (2.4)

17Bicharacteristics in L± remain there by the tangency of ρ̃m−1Hp to L±; further τ → 0 along

them as the parameter goes to ∓∞ by (2.2), at least sufficiently close to τ = 0, since L± are
defined in L± by τ = 0.

18The natural assumption is that the principal symbol of 1
2i

(P − P∗) ∈ Ψm−1
b (M) at L± is

±β̂β0ρ̃
−m+1, β̂ ∈ C∞(L±).

If β̂ vanishes, Proposition 2.1 is valid without a change; otherwise it shifts the threshold quantity

s − (m − 1)/2 − r below in Proposition 2.1 to s − (m − 1)/2 − βr − β̂ if β̂ is constant, with

modifications as in [41, Proof of Propositions 2.3-2.4] otherwise.
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being non-negative modulo cubic terms vanishing at L± in a neighborhood of τ = 0.
Notice next that, using (2.4) in the first case and (2.2) in the second, and that

L± is defined in Σ by τ = 0, ρ0 = 0, there exist δ0 > 0 and δ1 > 0 such that

α ∈ Σ, ρ0(α) < δ0, τ(α) < δ1, ρ0(α) 6= 0⇒ (∓ρ̃m−1Hpρ0)(α) > 0

and
α ∈ Σ, ρ0(α) < δ0, τ(α) < δ1 ⇒ (±ρ̃m−1τ−1Hpτ)(α) > 0.

Similarly to [41, Proof of Propositions 2.3-2.4], which is not in the b-setting, and [2,
Proof of Proposition 4.4], which is but concerns only sources/sinks (corresponding
to Minkowski type spaces), we consider commutants

C ∈ τ−rΨs−(m−1)/2
b (M) = Ψ

s−(m−1)/2,−r
b (M)

with principal symbol

c = φ(ρ0)φ0(p0)φ1(τ)ρ̃−s+(m−1)/2τ−r, p0 = ρ̃mp,

where φ0 ∈ C∞c (R) is identically 1 near 0, φ ∈ C∞c (R) is identically 1 near 0 with
φ′ ≤ 0 in [0,∞) and φ supported in (−δ0, δ0), while φ1 ∈ C∞c (R) is identically 1
near 0 with φ′1 ≤ 0 in [0,∞) and φ1 supported in (−δ1, δ1), so that

α ∈ supp d(φ ◦ ρ0) ∩ supp(φ1 ◦ τ) ∩ Σ⇒ ∓(ρ̃m−1Hpρ0)(α) > 0,

and
±ρ̃m−1τ−1Hpτ

remains positive on supp(φ1 ◦ τ) ∩ supp(φ ◦ ρ0).
The main contribution then comes from the weights, which give

ρ̃m−1Hp(ρ̃
−s+(m−1)/2τ−r) = ∓(−s+ (m− 1)/2 + βr)β0ρ̃

−s+(m−1)/2τ−r,

where the sign of the factor in parentheses on the right hand side being negative,
resp. positive, gives the first, resp. the second, case of the statement of the proposi-
tion. Further, the sign of the term in which φ1(τ), resp. φ(ρ0), gets differentiated,

yielding ±τ β̃β0φ
′
1(τ), resp. φ′(ρ0)ρ̃m−1Hpρ0, is, when s− (m− 1)/2− βr > 0, the

opposite, resp. the same, of these terms, while when s − (m − 1)/2 − βr < 0, it is
the same, resp. the opposite, of these terms. Correspondingly,

σ2s(i[P, C∗C]) = ∓2
(
− β0

(
s− m− 1

2
− βr

)
φφ0φ1 − β0β̃τφφ0φ

′
1

∓ (ρ̃m−1Hpρ0)φ′φ0φ1 +mβ0p0φφ
′
0φ1

)
φφ0φ1ρ̃

−2sτ−2r.

We can regularize using using Sε ∈ Ψ−δb (M) for ε > 0, uniformly bounded in Ψ0
b(M),

converging to Id in Ψδ′

b (M) for δ′ > 0, with principal symbol (1+ερ̃−1)−δ, as in [41,
Proof of Propositions 2.3-2.4], where the only difference was that the calculation
was on X = ∂M , and thus the pseudodifferential operators were standard ones,
rather than b-pseudodifferential operators. The a priori regularity assumption on

WFs
′,r

b (u) arises as the regularizer has the opposite sign as compared to the contri-
bution of the weights, thus the amount of regularization one can do is limited. The
positive commutator argument then proceeds completely analogously to [41, Proof
of Propositions 2.3-2.4], except that, as in [41], one has to assume a priori bounds
on the term with the sign opposite to that of s− (m− 1)/2− βr, of which there is
exactly one for either sign (unlike in [41], in which only s− (m− 1)/2 + β Imσ < 0
has such a term), thus on Σ∩supp(φ′1◦τ)∩supp(φ◦ρ0) when s−(m−1)/2−βr > 0
and on Σ ∩ supp(φ1 ◦ τ) ∩ supp(φ′ ◦ ρ0) when s− (m− 1)/2− βr < 0.
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Using the openness of the complement of the wave front set we can finally choose
φ and φ1 (satisfying the support conditions, among others) so that the a priori
assumptions are satisfied, choosing φ1 first and then shrinking the support of φ in
the first case, with the choice being made in the opposite order in the second case,
completing the proof of the proposition. �

2.1.2. Complex absorption. In order to have good Fredholm properties we either
need a complete Hamilton flow, or need to ‘stop it’ in a manner that gives suitable
estimates; one may want to do the latter to avoid global assumptions on the flow
on the ambient space. The microlocally best behaved version is given by complex
absorption; it is microlocal, works easily with Sobolev spaces of arbitrary order, and
makes the operator elliptic in the absorbing region, giving rise to very convenient
analysis. The main downside of complex absorption is that it does not automatically
give forward mapping properties for the support of solutions in wave equation-like
settings, even though at the level of singularities, it does have the desired forward
property. It was used extensively in [41] – in the dilation invariant setting, the
bicharacteristics on X × (0,∞)τ are controlled (by the invariance) as τ → ∞ as
well as when τ → 0, and thus one need not use complex absorption there, instead
decay as τ → ∞ (corresponding to growth as τ → 0 on these dilation invariant
spaces) gives the desired forward property; complex absorption was only used to
cut off the flow within X. Here we want to localize in τ as well, and while complex
absorption can achieve this, it loses the forward support character of the problem.
However, as it is conceptually much cleaner, we discuss Fredholm properties using it
first before turning to adding artificial (spacelike) boundary hypersurfaces instead.

Thus, we now consider P − iQ ∈ Ψm
b (M), Q ∈ Ψm

b (M), with real principal
symbol q, being the complex absorption similarly to [41, Sections 2.2 and 2.8]; we
assume that WF′b(Q) ∩ L = ∅. Here the semiclassical version, discussed in [41]
with further references there, is a close parallel to our b-setting; it is essentially
equivalent to the b-setting in the special case that P, Q are dilation-invariant, for
then the Mellin transform gives rise exactly to the semiclassical problem as the
Mellin-dual parameter goes to infinity. Thus, we assume that the characteristic set
Σ of P has the form

Σ = Σ+ ∪ Σ−,

with each of Σ± being a union of connected components, and

∓q ≥ 0 near Σ±.

Recall from [41, Section 2.5], which in turn is a simple modification of the semiclas-
sical results of Nonnenmacher and Zworski [34], and Datchev and Vasy [12], that
under these sign conditions on q, estimates can be propagated in the backward
direction along the Hamilton flow on Σ+ and in the forward direction for Σ−, or,
phrased as a wave front set statement (the property of being singular propagates
in the opposite direction as the property of being regular!), WFs(u) is invariant
in19 (Σ+ \ bS∗XM) \WFs−m+1((P − iQ)u) under the forward Hamilton flow, and

in (Σ− \ bS∗XM) \WFs−m+1((P − iQ)u) under the backward flow. Since this is
a principal symbol argument, given in [41, Section 2.5] and [12, Lemma 5.1], its
extension to the b-setting only requires minimal changes. Namely, assuming one is
away from radial points as one may (since at these the statement is vacuous), one

19That is, the invariance is away from the boundary X; we address the behavior at the bound-

ary in the rest of the paragraph.
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constructs the principal symbol c of the commutant on bT ∗M \ o as a C∞ function
c0 on bS∗M with derivative of a fixed sign along the Hamilton flow in the region
where one wants to obtain the estimate (exactly the same way as for real principal
type proofs) multiplied by weights in τ and ρ̃, making the Hamilton derivative of
c0 large relative to c0 to control the error terms from the weights, and computes
〈u,−i[C∗C, P̃]u〉, where P̃ is the symmetric part of P− iQ (so has principal symbol

p) and Q̃ is the antisymmetric part. This gives

−2 Re〈u, iC∗C(P − iQ)u〉 − 2 Re〈u,C∗CQ̃u〉.

The issue here is that the second term on the right hand side involves C∗CQ̃, which
is one order higher that [C∗C, P̃], so while it itself has a desirable sign, one needs
to be concerned about subprincipal terms.20 However, one rewrites

2 Re〈u,C∗CQ̃u〉 = 2 Re〈u,C∗Q̃Cu〉+ 2 Re〈u,C∗[C, Q̃]u〉.

Now the first term is positive modulo a controllable error21 by the sharp G̊arding
inequality, or if one arranges that q is the square of a symbol, while the second can
be rewritten in terms of [C, [C, Q̃]], (C∗ − C)[C, Q̃], etc, which are all controllable

as they drop two orders relative to the product C∗CQ̃, giving rise to the result,
namely that for u ∈ H−∞,rb , WFs,rb (u) is invariant in Σ+ \WFs−m+1,r((P − iQ)u)

under the forward Hamilton flow, and in Σ− \WFs−m+1,r((P − iQ)u) under the
backward flow.

In analogy with [41, Definition 2.12], we say that P − iQ is non-trapping if all
bicharacteristics in Σ from any point in Σ\(L+∪L−) flow to Ell(q)∪L+∪L− in both
the forward and backward directions (i.e. either enter Ell(q) in finite time or tend to
L+ ∪L−). Notice that as Σ± are closed under the Hamilton flow, bicharacteristics
in L± \ (L+ ∪ L−) necessarily enter the elliptic set of Q in the forward (in Σ+),
resp. backward (in Σ−) direction. Indeed, by the non-trapping hypothesis, these
bicharacteristics have to reach the elliptic set of Q as they cannot tend to L+, resp.
L−: for L+ and L− are unstable, resp. stable manifolds, and these bicharacteristics
cannot enter the boundary (which is preserved by the flow), so cannot lie in the
stable, resp. unstable, manifolds of L+ ∪ L−, which are within bS∗XM . Similarly,
bicharacteristics in (Σ ∩ bS∗XM) \ (L+ ∪ L−) necessarily reach the elliptic set of Q
in the backward (in Σ+), resp. forward (in Σ−) direction. Then for s, r satisfying

s− (m− 1)/2 > βr

one has an estimate

‖u‖Hs,rb
≤ C‖(P − iQ)u‖Hs−m+1,r

b
+ C‖u‖

Hs
′,r

b

, (2.5)

provided one assumes s′ < s,

s′ − (m− 1)/2 > βr, u ∈ Hs′,r
b .

20In fact, as the principal symbol of C∗CQ̃ is real, the real part of its subprincipal symbol is
well-defined, and is the real part of c2q where c and q include the real parts of their subprincipal

terms, and is all that matters for this argument, so one could proceed symbolically. See also
Footnote 70.

21This uses the derivative of c, arising in the symbol of the commutator with P̃, to provide

the control: since Q is positive modulo an operator one order lower, and in the term involving
this operator, the principal symbol c of C is not differentiated, taking the derivative of c0 large
relative to c0, as is already used to control weights, etc., controls this error term as well.
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Indeed, this is a simple consequence of u ∈ Hs′,r
b , (P − iQ)u ∈ Hs−m+1,r

b implying
u ∈ Hs,r

b via the closed graph theorem, see [21, Proof of Theorem 26.1.7] and [39,
Section 4.3]. This implication in turn holds as on the elliptic set of Q one has

the stronger statement u ∈ Hs+1,r
b under these conditions, and then using real-

principal type propagation of regularity in the backward direction on Σ+ and the
forward direction on Σ−, one can propagate the microlocal membership of Hs,r

b (i.e.
the absence of the corresponding wave front set) in the backward, resp. forward,
direction on Σ+, resp. Σ−. Since bicharacteristics in L± \ (L+ ∪ L−) necessarily
enter the elliptic set of Q in the forward, resp. backward direction, and thus one
has Hs,r

b membership along them by what we have shown, Proposition 2.1 extends
this membership to L±, and hence to a neighborhood of these, and by our non-
trapping assumption every bicharacteristic enters either this neighborhood of L±
or the elliptic set of Q in finite time in the backward, resp. forward, direction, so by
the real principal type propagation of singularities we have the claimed microlocal
membership everywhere.

Reversing the direction in which one propagates estimates, one also has a similar
estimate for the adjoint, P∗ + iQ∗ except now one needs to have

s− (m− 1)/2 < βr

in order to propagate through the saddle points in the opposite direction, i.e. from
within bS∗XM to L±. Then for s′ < s,

‖u‖Hs,rb
≤ C‖(P∗ + iQ∗)u‖Hs−m+1,r

b
+ C‖u‖

Hs
′,r

b

. (2.6)

The issue with these estimates is that Hs,r
b does not include compactly into the

error term Hs′,r
b on the right hand side due to the lack of additional decay. Thus,

these estimates are insufficient to show Fredholm properties, which in fact do not
hold in general.

We thus further assume that there are no poles of the inverse of the Mellin

conjugate ̂(P − iQ)(σ) of the normal operator, N(P − iQ), on the line Imσ = −r.
Here we refer to [41, Section 3.1] for a brief discussion of the normal operator and the
Mellin transform; this cited section also contains more detailed references to [32].
Then using the Mellin transform, which is an isomorphism between weighted b-
Sobolev spaces and semiclassical Sobolev spaces (see Equations (3.8)-(3.9) in [41]),

and the estimates for ̂(P − iQ)(σ) (including the high energy, i.e. semiclassical,
estimates22, all of which is discussed in detail in [41, Section 2] — the high energy
assumptions of [41, Section 2] hold by our assumptions on the b-flow at bS∗XM ,
and which imply that for all but a discrete set of r the aforementioned lines do not
contain such poles), we obtain that on R+

ρ × ∂M
‖v‖Hs,rb

≤ C‖N(P − iQ)v‖Hs−m+1,r
b

(2.7)

when
s− (m− 1)/2 > βr.

Again, we have an analogous estimate for N(P∗ + iQ∗):
‖v‖Hs,rb

≤ C‖N(P∗ + iQ∗)v‖Hs−m+1,r
b

, (2.8)

22The high energy estimates are actually implied by b-principal symbol based estimates on

the normal operator space, M∞ = X × R+, X = ∂M , on spaces τrHs
b(M∞) corresponding to

Imσ = −r, but we do not explicitly discuss this here.
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provided −r is not the imaginary part of a pole of the inverse of ̂P∗ + iQ∗, and
provided

s− (m− 1)/2 < βr.

As ̂P∗ + iQ∗(σ) = (P̂−iQ̂)∗(σ), see the discussion in [41] preceding Equation (3.25),
the requirement on −r is the same as r not being the imaginary part of a pole of

the inverse of P̂ − iQ̂.
We apply these results by first letting χ ∈ C∞c (M) be identically 1 near ∂M

supported in a collar neighborhood of ∂M , which we identify with (0, ε)τ × ∂M of
the normal operator space. Then, assuming s′ − (m− 1)/2 > βr,

‖u‖
Hs
′,r

b

≤ ‖χu‖
Hs
′,r

b

+‖(1−χ)u‖
Hs
′,r

b

≤ C‖N(P−iQ)χu‖
Hs
′−m+1,r

b

+‖(1−χ)u‖
Hs
′,r

b

.

(2.9)
Now, if K = supp(1− χ), then

‖(1− χ)u‖
Hs
′,r

b

≤ C‖u‖Hs′ (K) ≤ C
′‖u‖

Hs
′,r̃

b

≤ C ′′‖u‖
Hs
′+1,r̃

b

for any r̃. On the other hand, N(P − iQ)− (P − iQ) ∈ τΨm
b ([0, ε)× ∂M), so

N(P − iQ)χu = (P − iQ)χu+ (N(P − iQ)− (P − iQ))χu

= χ(P − iQ)u+ [P − iQ, χ]u+ (N(P − iQ)− (P − iQ))χu

plus the fact that [P − iQ, χ] is supported in K and ‖χ(P − iQ)u‖
Hs
′−m+1,r

b

≤
‖(P − iQ)u‖

Hs
′−m+1,r

b

show that for all r̃

‖N(P − iQ)χu‖
Hs
′−m+1,r

b

≤ ‖(P − iQ)u‖
Hs
′−m+1,r

b

+ C‖u‖
Hs
′+1,r̃

b

+ C‖u‖
Hs
′+1,r−1

b

.

(2.10)
Combining (2.5), (2.9) and (2.10) we deduce that (with new constants, and taking
s′ sufficiently small and r̃ = r − 1)

‖u‖Hs,rb
≤ C‖(P − iQ)u‖Hs−m+1,r

b
+ C‖u‖

Hs
′+1,r−1

b

, (2.11)

where now the inclusion Hs,r
b → Hs′+1,r−1

b is compact when we choose, as we may,
s′ < s − 1, requiring, however, s′ − (m − 1)/2 > βr. Recall that this argument
required that s, r, s′ satisfied the requirements preceding (2.5), and that −r is not

the imaginary part of any pole of P̂ − iQ.
Analogous estimates hold for (P − iQ)∗ where now we write s̃, r̃ and s̃′ for the

Sobolev orders for the eventual application:

‖u‖H s̃,r̃b
≤ C‖(P − iQ)∗u‖H s̃−m+1,r̃

b
+ C‖u‖

H s̃
′+1,r̃−1

b

, (2.12)

provided s̃, r̃ in place of s and r satisfy the requirements stated before (2.6), and

provided −r̃ is not the imaginary part of a pole of ̂P∗ + iQ∗ (i.e. r̃ of P̂ − iQ̂). Note
that we do not have a stronger requirement for s̃′, unlike for s′ above, since upper
bounds for s imply those for s′ ≤ s.

Via a standard functional analytic argument, see [21, Proof of Theorem 26.1.7]
and also [41, Section 2.6] in the present context, we thus obtain Fredholm prop-
erties of P − iQ, in particular solvability, modulo a (possible) finite dimensional
obstruction, in Hs,r

b if
s− (m− 1)/2− 1 > βr. (2.13)

Concretely, we take s̃ = m− 1− s, r̃ = −r, s′ < s− 1 sufficiently close to s− 1 so
that s′ − (m− 1)/2 > βr (which is possible by (2.13)). Thus, s− (m− 1)/2 > βr
means s̃−(m−1)/2 = (m−1)/2−s < −βr = βr̃, so the space on the left hand side
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of (2.11) is dual to that in the first term on the right hand side of (2.12), and the
same for the equations interchanged, and notice that the condition on the poles of
the inverse of the Mellin transformed normal operators is the same for both P − iQ
and P∗ + iQ∗: −r is not the imaginary part of a pole of P̂ − iQ. This yields:

Proposition 2.3. Suppose that P is non-trapping. Suppose s, r ∈ R, s − (m −
1)/2− 1 > βr, −r is not the imaginary part of a pole of P̂ − iQ and let23

Ys,r = Hs,r
b (M), X s,r = {u ∈ Hs,r

b (M) : (P − iQ)u ∈ Hs−1,r
b (M)},

where P − iQ is a priori a map

P − iQ : Hs,r
b (M)→ Hs−2,r

b (M).

Then
P − iQ : X s,r → Ys−1,r

is Fredholm.

2.1.3. Initial value problems. As already mentioned, the main issue with this ar-
gument using complex absorption that it does not guarantee the forward nature
(in terms of supports) of the solution for a wave-like equation, although it does
guarantee the correct microlocal structure. So now we assume that P ∈ Diff2

b(M)
and that there is a Lorentzian b-metric g such that

P −�g ∈ Diff1
b(M), P − P∗ ∈ Diff0

b(M). (2.14)

Then one can run a completely analogous argument using energy type estimates by
restricting the domain we consider to be a manifold with corners, where the new
boundary hypersurfaces are spacelike with respect to g, i.e. given by level sets of
timelike functions. Such a possibility was mentioned in [41, Remark 2.6], though
it was not described in detail as it was not needed there, essentially because the
existence/uniqueness argument for forward solutions was given only for dilation
invariant operators. The main difference between using complex absorption and
adding boundary hypersurfaces is that the latter limit the Sobolev regularity one
can use, with the most natural choice coming from energy estimates. However, a
posteriori one can improve the result to better Sobolev spaces using propagation of
singularities type results.

So assume now that U ⊂ M is open, and we have two functions t1 and t2 in
C∞(M), both of which, restricted to U , are timelike (in particular have non-zero
differential) near their respective 0-level sets H1 and H2, and

Ω = t−1
1 ([0,∞)) ∩ t−1

2 ([0,∞)) ⊂ U.
Notice that the timelike assumption forces dtj to not lie in N∗X = N∗∂M (for
its image in the b-cosphere bundle would be zero), and thus if the Hj intersect
X, they do so transversally. We assume that the Hj intersect only away from X,
and that they do so transversally, i.e. the differentials of tj are independent at the
intersection. Then Ω is a manifold with corners with boundary hypersurfaces H1,
H2 and X (all intersected with Ω). We however keep thinking of Ω as a domain
in M . The role of the elliptic set of Q is now played by bS∗HjM , j = 1, 2. The

non-trapping assumption becomes that

23Note that Ys,r, X s,r are complete, in the case of X s,r with the natural norm being ‖u‖2Xs,r =

‖u‖2
H
s,r
b

(M)
+ ‖(P − iQ)u‖2

H
s−1,r
b

(M)
. See Footnote 27.
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(1) all bicharacteristics in ΣΩ = Σ ∩ bS∗ΩM from any point in ΣΩ ∩ (Σ+ \ L+)
flow (within ΣΩ) to bS∗H1

M ∪L+ in the forward direction (i.e. either enter
bS∗H1

M in finite time or tend to L+) and to bS∗H2
M ∪ L+ in the backward

direction,
(2) and from any point in ΣΩ∩(Σ−\L−) the bicharacteristics flow to bS∗H2

M ∪
L− in the forward direction and to bS∗H1

M ∪L− in the backward direction;

see Figure 3. In particular, orienting the characteristic set by letting Σ− be the
future oriented and Σ+ the past oriented part, dt1 is future oriented, while dt2 is
past oriented.

Figure 3. Setup for the discussion of the forward problem. Near
the spacelike hypersurfaces H1 and H2, which are the replace-
ment for the complex absorbing operator Q, we use standard
(non-microlocal) energy estimates, and away from them, we use
b-microlocal propagation results, including at the radial sets L±.
The bicharacteristic flow, in fact its projection to the base, is only
indicated near L+; near L−, the directions of the flowlines are
reversed.

On a manifold with corners, such as Ω, one can consider supported and ex-
tendible distributions; see [21, Appendix B.2] for the smooth boundary setting,
with simple changes needed only for the corners setting, which is discussed e.g. in
[42, Section 3]. Here we consider Ω as a domain in M , and thus its boundary face
X ∩ Ω is regarded as having a different character from the Hj ∩ Ω, i.e. the sup-
port/extendibility considerations do not arise at X – all distributions are regarded
as acting on a subspace of C∞ functions on Ω vanishing at X to infinite order,
i.e. they are automatically extendible distributions at X. On the other hand, at
Hj we consider both extendible distributions, acting on C∞ functions vanishing to
infinite order at Hj , and supported distributions, which act on all C∞ functions
(as far as conditions at Hj are concerned). For example, the space of supported
distributions at H1 extendible at H2 (and at X, as we always tacitly assume) is the
dual space of the subspace of C∞(Ω) consisting of functions vanishing to infinite
order at H2 and X (but not necessarily at H1). An equivalent way of characterizing
this space of distributions is that they are restrictions of elements of the dual of
Ċ∞(M) (consisting of C∞ functions on M vanishing to infinite order at X) with
support in t1 ≥ 0 to C∞ functions on Ω which vanish to infinite order at X and
H2, i.e. in the terminology of [21], restriction to Ω \ (H2 ∪X). The main interest
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is in spaces induced by the Sobolev spaces Hs,r
b (M). For instance,24

Hs,r
b (M)•,−,

with the first superscript on the right denoting whether supported (•) or extendible
(−) distributions are discussed at H1, and the second the analogous property at H2,
consists of restrictions of elements of Hs,r

b (M) with support in t1 ≥ 0 to Ω\(H2∪X).
Then elements of C∞(Ω) with the analogous vanishing conditions, so in the example
vanishing to infinite order at H2 and X, are dense in Hs,r

b (M)•,−; further the dual

of Hs,r
b (M)•,− is H−s,−rb (M)−,• with respect to the L2 (sesquilinear) pairing.

First we work locally. For this purpose it is convenient to introduce another
timelike function t̃j , of the same timelike nature as tj (both future or both past
oriented) and consider

Ω[t0,t1] = t−1
j ([t0,∞)) ∩ t̃−1

j ((−∞, t1]), Ω(t0,t1) = t−1
j ((t0,∞)) ∩ t̃−1

j ((−∞, t1)),

and similarly on half-open, half-closed intervals. Thus, Ω[t0,t1] becomes smaller as
t0 becomes larger or t1 becomes smaller.

We then consider energy estimates on Ω[T0,T1]. In order to set up the following
arguments, choose

T− < T ′− < T0, T1 < T ′+ < T+,

and assume that Ω[T−,T+] is compact, Ω[T0,T1] is non-empty, tj , t̃j are timelike
on Ω[T−,T+], with the same timelike orientation. The energy estimates propa-
gate estimates in the direction of either increasing or decreasing tj . With the
extendible/supported character of distributions at t̃j = T+ being irrelevant for this
matter in the case being considered and thus dropped from the notation (so − refers
to extendibility at tj = T0), consider

P : Hs,r
b (Ω[T0,T+])

− → Hs−2,r
b (Ω[T0,T+])

−, s, r ∈ R.

The energy estimate, with backward propagation in tj , from t̃−1
j ([T ′+, T+]), in this

setting takes the form:

Lemma 2.4. Let r ∈ R. There is C > 0 such that for u ∈ H2,r
b (Ω[T0,T+])

−,

‖u‖H1,r
b (Ω[T0,T1])−

≤ C
(
‖Pu‖H0,r

b (Ω[T0,T+])−
+ ‖u‖H1,r

b (Ω[T0,T+]∩t̃−1
j ([T ′+,T+]))−

)
(2.15)

This also holds with P replaced by P∗, acting on the same spaces.

Remark 2.5. The lemma is also valid if one replaces t−1
j ([t0,∞)) by t−1

j ([tj,0,∞))∩
t−1
k ([tk,0,∞)), and/or t̃−1

j ((−∞, t1]) by t̃−1
j ((−∞, tj,1])∩ t̃−1

k ((−∞, tk,1]) in the def-

inition of Ω[t0,t1], i.e. regarding tj and/or t̃j as vector valued. (One can also have
more than two such functions.) To see this, simply replace χ(tj) by χj(tj)χk(tk),
and analogously with χ̃ in the definition of V in (2.16). Then χ′χ̃ταA] is replaced
by χ′jχkχ̃jχ̃kτ

αA]+χjχ
′
kχ̃jχ̃kτ

αA], etc. Then χ′j can still be used to dominate χj ,

while the terms in which χ̃j is differentiated have support where t̃j is in (T ′+,j , T+,j),
so the control region on the right hand side of (2.15) is the union of these sets.

In our application this situation arises as we need the estimates on t−1
1 ([T0, T1])∩

t−1
2 ([0,∞)) and t−1

1 ([0,∞))∩ t−1
2 ([T0, T1]), with T0 = 0, T1 > 0 small. For instance,

24Notice that the Sobolev norm is of completely different nature at X than at the Hj , namely
the derivatives are based on complete, rather than incomplete, vector fields: Vb(M) is being

restricted to Ω, so one obtains vector fields tangent to X but not to the Hj .
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in the latter case t2 plays the role of tj above, while −t1 and t2 play the role of t̃j
and t̃k; see Figure 4.

Figure 4. A domain Ω̃ = t−1
2 ([0,∞)) ∩

(
(−t1)−1((−∞, 0]) ∩

t−1
2 ((−∞, T1])

)
on which we will apply the energy estimate (2.15).

Proof. To see (2.15), one proceeds as in [41, Section 3.3] and considers

V = −iχ(tj)χ̃(̃tj)τ
αW (2.16)

with W = G(tj , .) a timelike vector field and with χ, χ̃ ∈ C∞(R), both non-negative,
to be specified. Then choosing a Riemannian b-metric g̃,

−i(V ∗�g −�∗gV ) = bd∗g̃C
[ bd,

with the subscript on the adjoint on the right hand side denoting the metric with
respect to which it is taken, bd : C∞(M)→ C∞(M ; bT ∗M) being the b-differential,
and with

C[ = χ′χ̃ταA] + χχ̃′ταÃ] + χχ̃ταR[

where A], Ã] and R[ are bundle endomorphisms of CbT ∗M and A], Ã] are positive
definite. Proceeding further, replacing �g by P, one has

−i(V ∗P − P∗V ) = bd∗g̃C
] bd+ (Ẽ1)∗g̃τ

αχχ̃bd+ bd∗g̃τ
αχχ̃Ẽ2,

C] = χ′χ̃ταA] + χχ̃′ταÃ] + χχ̃ταR̃]
(2.17)

with Ẽj bundle maps from the trivial bundle over M to CbT ∗M , A], Ã] as before,

and R̃] a bundle endomorphism of CbT ∗M , as follows by expanding

−i(V ∗(P −�g)− (P∗ −�g)∗V )

using that P −�g ∈ Diff1
b(M). We regard the second term on the right hand side

of (2.17) as the one requiring a priori control by ‖u‖H1,r
b (Ω[T0,T+]∩t̃−1

j ([T ′+,T+]))− ; we

achieve this by making χ̃ supported in (−∞, T+), identically 1 near (−∞, T ′+], so
dχ̃ is supported in (T ′+, T+). Now making χ′ ≥ 0 large relative to χ on supp(χχ̃),

as in25 [41, Equation (3.27)], allows one to dominate all terms without derivatives
of χ, proving the energy estimate (2.15) when one takes α = −2r. �

25In [41, Equation (3.27)] the sign of χ′ is opposite, as the estimate is propagated in the
opposite direction.
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Propagating in the forward direction, from t−1
j ([T−, T

′
−]), where now − denotes

the character of the space at T1 (so − refers to extendibility at tj = T1)

‖u‖H1,r
b (Ω[T0,T1])−

≤ C
(
‖Pu‖H0,r

b (Ω[T−,T1])−
+ ‖u‖H1,r

b (Ω[T−,T1]∩t−1
j ([T−,T ′−]))−

)
(2.18)

In particular, for u supported in tj ≥ T0, the last estimate becomes, with the
first superscript on the right denoting whether supported (•) or extendible (−)
distributions are discussed at t = T0, the second superscript the same at t = T1,

‖u‖H1,r
b (Ω[T0,T1])•,−

≤ C‖Pu‖H0,r
b (Ω[T0,T1])•,−

, (2.19)

when

P : Hs,r
b (Ω[T0,T1])

•,− → Hs−2,r
b (Ω[T0,T1])

•,−

and u ∈ H2,r
b (Ω[T0,T1])

•,−. To summarize, we state both this and (2.15) in terms of
these supported spaces:

Corollary 2.6. Let r, r̃ ∈ R. For u ∈ H2,r
b (Ω[T0,T1])

•,−, one has

‖u‖H1,r
b (Ω[T0,T1])•,−

≤ C‖Pu‖H0,r
b (Ω[T0,T1])•,−

, (2.20)

while for v ∈ H2,r̃
b (Ω[T0,T1])

−,•, the estimate

‖v‖H1,r̃
b (Ω[T0,T1])−,•

≤ C‖P∗v‖H0,r̃
b (Ω[T0,T1])−,•

(2.21)

holds.

A duality argument, combined with propagation of singularities, thus gives:

Lemma 2.7. Let s ≥ 0, r ∈ R. Then there is C > 0 with the following property.
If f ∈ Hs−1,r

b (Ω[T0,T1])
•,−, then there exists u ∈ Hs,r

b (Ω[T0,T1])
•,− such that

Pu = f and

‖u‖Hs,rb (Ω[T0,T1])•,− ≤ C‖f‖Hs−1,r
b (Ω[T0,T1])•,−

.

Remark 2.8. As in Remark 2.5, the lemma also remains valid if one replaces
t−1
j ([t0,∞)) by t−1

j ([tj,0,∞))∩t−1
k ([tk,0,∞)), and/or t̃−1

j ((−∞, t1]) by t̃−1
j ((−∞, tj,1])∩

t̃−1
j ((−∞, tk,1]) in the definition of Ω[t0,t1], provided that the tj have linearly inde-

pendent differentials on their joint zero set, and similarly for the t̃j . The place
where this linear independence is used (the energy estimate above does not need
this) is for the continuous Sobolev extension map, valid on manifolds with corners,
see [42, Section 3].

Proof. We work on the slightly bigger region Ω̃′ = Ω[T ′−,T
′
+], applying the energy

estimates with T0 replaced by T ′−, T1 replaced by T ′+. First, by the supported

property at tj = T0, one can regard f as an element of Hs−1,r
b (Ω[T ′−,T1])

•,− with

support in [T0, T1]. Let

f̃ ∈ Hs−1,r
b (Ω[T ′−,T

′
+])
•,− ⊂ H−1,r

b (Ω[T ′−,T
′
+])
•,−

be an extension of f , so f̃ is supported in Ω[T0,T ′+], and restricts to f ; by the

definition spaces of extendible distributions as quotients of spaces of distributions
on a larger space, see [21, Appendix B.2], we can assume

‖f̃‖Hs−1,r
b (Ω[T ′−,T

′
+

])
•,− ≤ 2‖f‖Hs−1,r

b (Ω[T ′−,T1])
•,− . (2.22)
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By (2.15) applied with P replaced by P∗, r̃ = −r,
‖φ‖H1,r̃

b (Ω[T ′−,T
′
+

])
−,• ≤ C‖P∗φ‖H0,r̃

b (Ω[T ′−,T
′
+

])
−,• , (2.23)

for φ ∈ H2,r̃
b (Ω[T ′−,T

′
+])
−,•. Correspondingly, by the Hahn-Banach theorem, there

exists

ũ ∈ (H0,r̃
b (Ω[T ′−,T

′
+])
−,•)∗ = H0,r

b (Ω[T ′−,T
′
+])
•,−

such that

〈Pũ, φ〉 = 〈ũ,P∗φ〉 = 〈f̃ , φ〉, φ ∈ H2,r̃
b (Ω[T ′−,T

′
+])
−,•,

and

‖ũ‖H0,r
b (Ω[T ′−,T

′
+

])
•,− ≤ C‖f̃‖H−1,r

b (Ω[T ′−,T
′
+

])
•,− . (2.24)

One can regard ũ as an element of H0,r
b (Ω[T−,T ′+])

•,− with support in [T ′−, T
′
+], with

f̃ similarly extended; then 〈Pũ, φ〉 = 〈f̃ , φ〉 for φ ∈ Ċ∞c (Ω(T−,T ′+)) (here the dot over

C∞ refers to infinite order vanishing at X = ∂M !), so Pũ = f̃ in distributions.
Since ũ vanishes on (T−, T

′
−), and

f̃ ∈ Hs−1,r
b (Ω[T−,T ′+])

•,−,

propagation of singularities applied on Ω(T−,T ′+) (which has only the boundary

∂M = X) gives that ũ ∈ Hs,r
b,loc(Ω(T−,T ′+)) (i.e. here we are ignoring the two bound-

aries, tj = T−, T
′
+, not making a uniform statement there, but we are not ignoring

∂M = X). In addition, for χ, χ̃ ∈ C∞c (Ω(T−,T ′+)), χ̃ ≡ 1 on suppχ, we have the

estimate

‖χũ‖Hs,rb (Ω[T−,T ′+])
≤ C

(
‖χ̃Pũ‖Hs−1,r

b (Ω[T−,T ′+])
+ ‖χ̃ũ‖H0,r

b (Ω[T−,T ′+])

)
. (2.25)

In view of the support property of ũ, this gives that restricting to (T−, T1], we
obtain an element of Hs,r

b (Ω(T−,T1])
−, with support in [T0, T1], i.e. an element of

Hs,r
b (Ω[T0,T1])

•,−. The desired estimate follows from (2.24), controlling the second

term of the right hand side of (2.25), and (2.22) as well as using Pũ = f̃ . �

At this point, u given by Lemma 2.7 is not necessarily unique. However:

Lemma 2.9. Let s, r ∈ R. If u ∈ Hs,r
b (Ω[T0,T1])

•,− is such that Pu = 0, then
u = 0.

Proof. Propagation of singularities, as in the proof of Lemma 2.7, regarding u as
a distribution on (T−, T1) with support in [T0, T1) gives that u ∈ H∞,rb,loc(Ω(T−,T1)).

Taking T0 < T ′1 < T1, letting u′ = u|[T0,T ′1], (2.20) shows that u′ = 0. Since T ′1 is
arbitrary, this shows u = 0. �

Corollary 2.10. Let s ≥ 0, r ∈ R. Then there is C > 0 with the following property.
If f ∈ Hs−1,r

b (Ω[T0,T1])
•,−, then there exists a unique u ∈ Hs,r

b (Ω[T0,T1])
•,− such

that Pu = f .
Further, this unique u satisfies

‖u‖Hs,rb (Ω[T0,T1])•,− ≤ C‖f‖Hs−1,r
b (Ω[T0,T1])•,−

.

Proof. Existence is Lemma 2.7, uniqueness is linearity plus Lemma 2.9, which to-
gether with the estimate in Lemma 2.7 prove the corollary. �
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Corollary 2.11. Let s ≥ 0, r, r̃ ∈ R.
For u ∈ Hs,r

b (Ω[T0,T1])
•,− with Pu ∈ Hs−1,r

b (Ω[T0,T1])
•,−,

‖u‖Hs,rb (Ω[T0,T1])•,− ≤ C‖Pu‖Hs−1,r
b (Ω[T0,T1])•,−

, (2.26)

while for v ∈ Hs,r̃
b (Ω[T0,T1])

−,• with P∗v ∈ Hs−1,r̃
b (Ω[T0,T1])

−,•,

‖v‖Hs,r̃b (Ω[T0,T1])−,•
≤ C‖P∗v‖Hs−1,r̃

b (Ω[T0,T1])−,•
. (2.27)

Remark 2.12. Again, this estimate remains valid for vector valued tj and t̃j , see
Remarks 2.5 and 2.8, under the linear independence condition of the latter.

Proof. It suffices to consider (2.26). Let f = Pu ∈ H−1,r
b (Ω[T0,T1])

•,−, and let u′ ∈
H0,r

b (Ω[T0,T1])
•,− be given by Corollary 2.10. In view of the uniqueness statement

of Corollary 2.10, u = u′. Then the estimate of Corollary 2.10 proves the claim. �

This yields the following propagation of singularities type result:

Proposition 2.13. Let s ≥ 0, r ∈ R. If u ∈ H−∞,−∞b (Ω[T0,T1])
•,− with Pu ∈

Hs−1,r
b (Ω[T0,T1])

•,−, then u ∈ Hs,r
b (Ω[T0,T1])

•,−.

If instead u ∈ H−∞,−∞b (Ω[T0,T1])
−,− with Pu ∈ Hs−1,r

b (Ω[T0,T1])
−,− and for

some T̃0 > T0, u ∈ Hs,r
b (Ω[T0,T1] \ Ω(T̃0,T1])

−,−, then u ∈ Hs,r
b (Ω[T0,T1])

−,−.

Remark 2.14. One can ‘mix and match’ the two parts of the lemma in the setting
of Remark 2.5, with say a supportedness condition at t̃j , and only an extendibil-
ity assumption at t̃k, but with Hs,r

b membership assumption on u in Ω[T0,T1] \
t̃−1
k ((−∞, T̃1)), T̃1 < T1, with a completely analogous argument. For instance, in

the setting of Figure 4, one gets the regularity under supportedness assumptions at
H1, just extendibility at t2 = T1, but a priori regularity for t2 ∈ (T̃1, T1).

Proof. Let u′ ∈ Hs,r
b (Ω[T0,T1])

•,− be the unique solution in Hs,r
b (Ω[T0,T1])

•,− of

Pu′ = f where f = Pu ∈ Hs−1,r
b (Ω[T0,T1])

•,−; we obtain u′ by applying the exis-

tence part of Corollary 2.11. Then u, u′ ∈ H−∞,−∞b (Ω[T0,T1])
•,− and P(u−u′) = 0.

Applying Lemma 2.9, we conclude that u = u′, which completes the proof of the
first part.

For the second part, let χ ∈ C∞(R) be supported in (T0,∞), identically 1 near

[T̃0,∞), and consider u′ = (χ ◦ tj)u ∈ H1,r
b (Ω[T0,T1])

•,−, with the support property
arising from the vanishing of χ near T0. Then Pu′ = [P, (χ◦ tj)]u+(χ◦ tj)Pu. Now

the first term on the right hand side is in Hs−1,r
b (Ω[T0,T1])

•,− as on the support of dχ,
which is in Ω[T0,T1] \Ω(T̃0,T1], u is in Hs,r

b , and the commutator is first order, while

the second term is in the desired space since Pu ∈ Hs−1,r
b (Ω[T0,T1])

−,−, and as for
u itself, the cutoff improves the support property. Thus, the first part of the lemma
is applicable, giving that χu ∈ Hs,r

b (Ω[T0,T1])
•,−. Since (1−χ)u ∈ Hs,r

b (Ω[T0,T1])
−,−

by the a priori assumption, the conclusion follows. �

We take T0 = 0 and thus consider, for s ≥ 0,

P : Hs,r
b (Ω)•,− → Hs−2,r

b (Ω)•,− (2.28)

and

P∗ : Hs,r
b (Ω)−,• → Hs−2,r

b (Ω)−,•. (2.29)
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In combination with the real principal type propagation results and Proposition 2.1
this yields under the non-trapping assumptions, much as in the complex absorbing
case, that26

‖u‖Hs,rb (Ω)•,− ≤ C‖Pu‖Hs−1,r
b (Ω)•,− + C‖u‖H0,r

b (Ω)•,− , βr < −1/2, s > 0, (2.30)

and

‖u‖Hs,r̃b (Ω)−,• ≤ C‖P
∗u‖Hs−1,r̃

b (Ω)−,•+C‖u‖H0,r̃
b (Ω)−,• , βr̃ > s−1/2, s > 0. (2.31)

We could proceed as in the complex absorption case to make the space on the
left hand side include compactly into the ‘error term’ on the right hand using the
normal operators. As this imposes some constraints, cf. (2.13), which together with
the requirements of the energy estimates, namely that the Sobolev order is ≥ 0,
mean that we would get slightly too strong restrictions on s, see Remark 2.19, we
proceed instead with a direct energy estimate. We thus assume that Ω is sufficiently
small so that there is a boundary defining function τ of M with dτ

τ timelike on Ω,
of the same timelike character as t2, opposite to t1. As explained in [41, Section 7],

in this case there is C > 0 such that for Imσ > C, P̂ (σ) is necessarily invertible.
The energy estimate is:

Lemma 2.15. There exists r0 < 0 such that for r ≤ r0, −r̃ ≤ r0, there is C > 0
such that for u ∈ H2,r

b (Ω)•,−, v ∈ H2,r̃
b (Ω)−,•, one has

‖u‖H1,r
b (Ω)•,− ≤ C‖Pu‖H0,r

b (Ω)•,− ,

‖v‖H1,r̃
b (Ω)−,• ≤ C‖P

∗v‖H0,r̃
b (Ω)−,• .

(2.32)

Proof. We run the argument of Lemma 2.4 globally on Ω using a timelike vector
field (e.g. starting with W = G(dττ , .)) that has, as a multiplier, a sufficiently large
positive power α = −2r of τ , i.e. replacing (2.16) by

V = −iταW.

Then the term with τα differentiated (which in (2.17) is included in the R̃] term),
and thus possessing a factor of α, is used to dominate the other, ‘error’, terms in
(2.17), completing the proof of the lemma as in Lemma 2.4. �

This can be used as in Lemma 2.7 to provide solvability, and using the propaga-
tion of singularities, which in this case includes the use of Proposition 2.1, noting
that s− 1/2 > βr is automatically satisfied, improved regularity. In particular, we
obtain the following analogues of Corollaries 2.10-2.11.

Corollary 2.16. There is r0 < 0 such that for r ≤ r0 and for s ≥ 0 there is C > 0
with the following property.

If f ∈ Hs−1,r
b (Ω)•,−, then there exists a unique u ∈ Hs,r

b (Ω)•,− such that Pu = f .
Further, this unique u satisfies

‖u‖Hs,rb (Ω)•,− ≤ C‖f‖Hs−1,r
b (Ω)•,− .

26In fact, the error term on the right hand side can be taken to be supported in a smaller
region, since at H1 in the first case and at H2 in the second, there are no error terms due to the

energy estimates (2.20), applied with P∗ in place of P in the second case.
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Corollary 2.17. There is r0 < 0 such that if r < r0, −r̃ < r0 and s ≥ 0 then there
is C > 0 such that the following holds.

For u ∈ Hs,r
b (Ω)•,− with Pu ∈ Hs−1,r

b (Ω)•,−, one has

‖u‖Hs,rb (Ω)•,− ≤ C‖Pu‖Hs−1,r
b (Ω)•,− , (2.33)

while for v ∈ Hs,r̃
b (Ω)−,• with P∗v ∈ Hs−1,r̃

b (Ω)−,•, one has

‖v‖Hs,r̃b (Ω)−,• ≤ C‖P
∗v‖Hs−1,r̃

b (Ω)−,• . (2.34)

We restate Corollary 2.16 as an invertibility statement.

Theorem 2.18. There is r0 < 0 with the following property. Suppose s ≥ 0,
r ≤ r0, and let27

Ys,r = Hs,r
b (Ω)•,−, X s,r = {u ∈ Hs,r

b (Ω)•,− : Pu ∈ Hs−1,r
b (Ω)•,−},

where P is a priori a map P : Hs,r
b (Ω)•,− → Hs−2,r

b (Ω)•,−. Then

P : X s,r → Ys−1,r

is a continuous, invertible map, with continuous inverse.

Remark 2.19. Using normal operators as in the discussion leading to Proposi-
tion 2.3, one would get the following statement: Suppose s > 1, s − 3/2 > βr.
Then with X s,r, Ys,r as above, P : X s,r → Ys,r is Fredholm. Here the main loss
is that one needs to assume s > 1; this is done since in the argument one needs to
take s′ with s′ + 1 < s in order to transition the normal operator estimates from
N(P)u to Pu and still have a compact inclusion, but the normal operator estimates
need s′ ≥ 0 as, due to the boundary H2, they are again based on energy estimates.
Using the direct global energy estimate eliminates this loss, which is an artifact of
combining local energy estimates with the b-theory. In particular, in the complex
absorption setting, this problem does not arise, but on the other hand, one need
not have the forward support property of the solution.

The results of [41] then are immediately applicable to obtain an expansion of
the solutions; the main point of the following theorem being the elimination of the
losses in differentiability in [41, Proposition 3.5] due to Proposition 2.1.

Theorem 2.20. (Strenghened version of [41, Proposition 3.5].) Let M be a man-
ifold with a non-trapping b-metric g as above, with boundary X and let τ be a
boundary defining function, P as in (2.14). Suppose the domain Ω is as defined
above, and dτ

τ timelike.

Let σj be the poles of P̂−1, and let ` be such that Imσj + ` /∈ N for all j. Let
φ ∈ C∞(R) be such that suppφ ⊂ (0,∞), and φ ◦ t1 ≡ 1 near X ∩Ω. Then for s >

1/2 + β`, there are mjl ∈ N such that solutions of Pu = f with f ∈ Hs−1,`
b (Ω)•,−,

and with u ∈ Hs0,r0
b (Ω)•,−, s ≥ s0 ≥ 1, s0 − 1/2 > βr0 satisfy that for some

ajlκ ∈ C∞(X ∩ Ω),

u′ = u−
∑
j

∑
l∈N

∑
κ≤mjl

τ iσj+l(log τ)κ(φ ◦ t1)ajlκ ∈ Hs,`
b (Ω)•,−, (2.35)

27Note that Ys,r, X s,r are complete, in the case of X s,r with the natural norm being ‖u‖2Xs,r =

‖u‖2
H
s,r
b

(Ω)•,−
+ ‖Pu‖2

H
s−1,r
b

(Ω)•,−
, as follows by the continuity of P as a map Hs,r

b (Ω)•,− →

Hs−2,r
b (Ω)•,− and the completeness of the b-Sobolev spaces Hs,r

b (Ω)•,−.
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where the sum is understood to be over a finite set with − Imσj + l < `.

Here the (semi)norms of both ajlκ in C∞(X ∩ Ω) and u′ in Hs,`
b (Ω)•,− are

bounded by a constant times that of f in Hs−1,`
b (Ω)•,−.

The analogous result also holds if f possesses an expansion modulo Hs−1,`
b (Ω)•,−,

namely

f = f ′ +
∑
j

∑
κ≤m′j

ταj (log τ)κ(φ ◦ t1)ajκ,

with f ′ ∈ Hs−1,`
b (Ω)•,− and ajκ ∈ C∞(X ∩ Ω), where terms corresponding to the

expansion of the f are added to (2.35) in the sense of the extended union of index
sets [32, Section 5.18], recalled below in Definition 2.30.

Remark 2.21. Here the factor φ ◦ t1 is added to cut off the expansion away from
H1, thus assuring that u′ is in the indicated space (a supported distribution).

Also, the sum over l is generated by the lack of dilation invariance of P. If we
take ` such that − Imσj > `− 1 for all j then all the terms in the expansion arise

directly from the resonances, thus l = 0 and mj0 + 1 is the order of the pole of P̂−1

at σj , with the aj0κ being resonant states.

Proof. First assume that − Imσj > ` for every j; thus there are no terms subtracted
from u in (2.35). We proceed as in [41, Proposition 3.5], but use the propagation of
singularities, in particular Propositions 2.1 and 2.13, to eliminate the losses. First,
by the propagation of singularities, using s0 − 1/2 > βr0 and s ≥ s0, s ≥ 0,

u ∈ Hs,r0
b (Ω)•,−.

Thus, as P −N(P) ∈ τDiff2
b(M),

N(P)u = f − f̃ , f̃ = (P −N(P))u ∈ Hs−2,r0+1
b (Ω)•,− (2.36)

Applying28 [41, Lemma 3.1] (using s ≥ s0 ≥ 1), which is the lossless version of [41,
Proposition 3.5] in the dilation invariant case, one obtains (2.35) with ` replaced

by `′ = min(`, r0 + 1) except that u = u′ ∈ Hs−1,`′

b (Ω)•,− corresponding to the

f̃ term in N(P)u rather than u = u′ ∈ Hs,`′

b (Ω)•,− as desired. However, using

Pu = f ∈ Hs−1,`′

b (Ω)•,−, we deduce by the propagation of singularities, using

s > β`′ + 1/2, s ≥ 0, that u = u′ ∈ Hs,`′

b (Ω)•,−. If ` ≤ r0 + 1, we have proved
(2.35). Otherwise we iterate, replacing r0 by r0 + 1. We thus reach the conclusion,
(2.35), in finitely many steps.

If there are j such that − Imσj < `, then in the first step, when using [41,
Lemma 3.1], we obtain the partial expansion u1 corresponding to `′ = min(`, r0 +1)
in place of `; here we may need to decrease `′ by an arbitrarily small amount to make
sure that `′ is not − Imσj for any j. Further, the terms of the partial expansion
are annihilated by N(P), so u′ satisfies

Pu′ = Pu−N(P)u1 − (P −N(P))u1 ∈ Hs−1,`′

b (Ω)•,−

as (P − N(P))u1 ∈ H∞,r0+1
b (Ω)•,− in fact due to the conormality of u1 and P −

N(P) ∈ τDiff2
b(M). Correspondingly, the propagation of singularities result is

28In [41], Lemma 3.1 is stated on the normal operator space M∞, which does not have a

boundary face corresponding to H2, i.e. S2 × (0,∞), with complex absorption instead. However,
given the analysis on X ∩Ω discussed above, all the arguments go through essentially unchanged:

this is a Mellin transform and contour deformation argument.
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applicable as above to conclude that u′ ∈ Hs,`′

b (Ω)•,−. If ` ≤ r0 + 1 we are done.

Otherwise we have better information on f̃ in the next step, namely

f̃ = (P −N(P))u = (P −N(P))u′ + (P −N(P))u1

with the first term in Hs−2,r0+1
b (Ω)•,− (same as in the case first considered above,

without relevant resonances), while the expansion of u1 shows that (P −N(P))u1

has a similar expansion, but with an extra power of τ (i.e. τ iσj is shifted to τ iσj+1).
We can now apply [41, Lemma 3.1] again; in the case of the terms arising from the
partial expansion, u1, there are now new terms corresponding to shifting the powers
τ iσj to τ iσj+1, as stated in the referred Lemma, and possibly causing logarithmic

terms if σj−i is also a pole of P̂−1. Iterating in the same manner proves the theorem

when f ∈ Hs−1,`
b (Ω)•,−. When f has an expansion modulo Hs−1,`

b (Ω)•,−, the same
argument works; [41, Lemma 3.1] gives the terms with the extended union, which
then further generate additional terms due to P − N(P), just as the resonance
terms did. �

There is one problem with this theorem for the purposes of semilinear equations:
the resonant terms with Imσj ≥ 0 which give rise to unbounded, or at most just
bounded, terms in the expansion which become larger when one takes powers of
these, or when one iteratively applies the P−1 (with the latter being the only issue
if Imσj = 0 and the pole is simple).

As an example of the limitations this causes, consider an asymptotically de Sitter
space (M̃, g̃). We then blow up a point p at the future boundary X̃+, as discussed
in the introduction, to obtain the analogue of the static model of de Sitter space
M = [M̃ ; p] with the pulled back metric g, which is a b-metric near the front face

(but away from the side face); let P = �g − λ. If M̃ is actual de Sitter space, then
M is the actual static model; otherwise the metric of the asymptotically de Sitter
space, frozen at p, induces a de Sitter metric, g0, which is well defined at the front
face of the blow up M (but away from its side faces) as a b-metric. In particular,
the resonances in the ‘static region’ of any asymptotically de Sitter space are the
same as in the static model of actual de Sitter space.

On actual de Sitter space, the poles of P̂−1 are those on the hyperbolic space
in the interior of the light cone equipped by a potential, as described in [43,
Lemma 7.11], or indeed in [41, Proposition 4.2] where essentially the present nota-
tion is used.29 As shown in Corollary 7.18 of [43], converted to our notation, the
only possible poles are in

iŝ±(λ)− iN, ŝ±(λ) = −n− 1

2
±
√

(n− 1)2

4
− λ. (2.37)

In particular, when λ = m2, m > 0, then we conclude:

Lemma 2.22. For m > 0, P = �g −m2, all poles of P̂−1 have strictly negative
imaginary part.

In other words, for small mass m > 0, there are no resonances σ of the Klein-
Gordon operator with Imσ ≥ −ε0 for some ε0 > 0. Therefore, the expansion of u
as in (2.35) no longer has a constant term. Let us fix such m > 0 and ε0 > 0, which
ensures that for 0 < ε < ε0, the only term in the asymptotic expansion (2.35), when

29In [43, Lemma 7.11] −σ2 plays the same role as σ2 here or in [41, Proposition 4.2].
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s > 1/2+ε and f ∈ Hs−1,ε
b (Ω)•,−, is the ‘remainder’ term u′ ∈ Hs,ε

b (Ω)•,−. Here we
use that β = 1 in de Sitter space, hence on an asymptotically de Sitter space, see
[41, Section 4.4], in particular the second displayed equation after Equation (4.16)
there which computes β in accordance with Remark 2.2.

Being interested in finding forward solutions to (non-linear) wave equations on
asymptotically de Sitter spaces, we now define the forward solution operator

SKG : Hs−1,ε
b (Ω)•,− → Hs,ε

b (Ω)•,− (2.38)

using Theorems 2.18 and 2.20.

Remark 2.23. If M̃ ⊂ M is an asymptotically de Sitter space with global time
function t, τ = e−t is the defining function for future infinity, and the domain Ω
is such that Ω ∩ M̃ = {τ < τ0}, then SKG in fact restricts to a forward solution

operator on M̃ itself; indeed, if E : Hs−1,ε
b ({τ < τ0}) → Hs−1,ε

b (Ω)•,− is an exten-
sion operator, then the forward solution operator on {τ < τ0} is given by extending

f ∈ Hs−1,ε
b ({τ < τ0}) using E, finding the forward solution on Ω using SKG, and

restricting back to {τ < τ0}. The result is independent of the extension operator, as
is easily seen from standard energy estimates; see in particular [41, Proposition 3.9].

2.2. A class of semilinear equations. Let us fix m > 0 and ε0 > 0 as above
for statements about semilinear equations involving the Klein-Gordon operator; for
equations involving the wave operator only, let−ε0 be equal to the largest imaginary
part of all non-zero resonances of �g.

Theorem 2.24. Let 0 ≤ ε < ε0 and s > 1/2 + ε, s ≥ 1. Moreover, let30

q : Hs,ε
b (Ω)•,−×Hs−1,ε

b (Ω; bT ∗Ω)•,− → Hs−1,ε
b (Ω)•,− be a continuous function with

q(0, 0) = 0 such that there exists a continuous non-decreasing function L : R≥0 → R
satisfying

‖q(u, bdu)− q(v, bdv)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R,
where we use the norms corresponding to the map q. Then there is a constant
CL > 0 so that the following holds: If L(0) < CL, then for small R > 0, there

exists C > 0 such that for all f ∈ Hs−1,ε
b (Ω)•,− with norm ≤ C, the equation

(�g −m2)u = f + q(u, bdu) (2.39)

has a unique solution u ∈ Hs,ε
b (Ω)•,−, with norm ≤ R, that depends continuously

on f .
More generally, suppose

q : Hs,ε
b (Ω)•,− ×Hs−1,ε

b (Ω; bT ∗Ω)•,− ×Hs−1,ε
b (Ω)•,− → Hs−1,ε

b (Ω)•,−

satisfies q(0, 0, 0) = 0 and

‖q(u, bdu,w)− q(u′, bdu′, w′)‖ ≤ L(R)(‖u− u′‖+ ‖w − w′‖)
provided ‖u‖ + ‖w‖, ‖u′‖ + ‖w′‖ ≤ R, where we use the norms corresponding to
the map q, for a continuous non-decreasing function L : R≥0 → R. Then there is a
constant CL > 0 so that the following holds: If L(0) < CL, then for small R > 0,

there exists C > 0 such that for all f ∈ Hs−1,ε
b (Ω)•,− with norm ≤ C, the equation

(�g −m2)u = f + q(u, bdu,�gu) (2.40)

30Here and below in the subsequent sections bundles like bT ∗Ω refer to bT ∗ΩM ; the boundaries

Hj of Ω are regarded as artificial, and do not affect the cotangent bundle or the corresponding

vector fields.
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has a unique solution u ∈ Hs,ε
b (Ω)•,−, with ‖u‖Hs,εb

+‖�gu‖Hs−1,ε
b

≤ R, that depends

continuously on f .
Further, if the non-linearity is of the form q(bdu), with q : Hs−1,ε

b (Ω; bT ∗Ω)•,− →
Hs−1,ε

b (Ω)•,− having a small Lipschitz constant near 0, then for small R > 0, there

exists C > 0 such that for all f ∈ Hs−1,ε
b (Ω)•,− with ‖f‖ ≤ C, the equation

�gu = f + q(bdu)

has a unique solution u with u − (φ ◦ t1)c = u′ ∈ Hs,ε
b (Ω)•,−, where c ∈ C, that

depends continuously on f .31 Here, φ ∈ C∞(R) with support in (0,∞) and t1 are
as in Theorem 2.20.

Proof. To prove the first part, let SKG be the forward solution operator for �g−m2

as in (2.38). We want to apply the Banach fixed point theorem to the operator
TKG : Hs,ε

b (Ω)•,− → Hs,ε
b (Ω)•,−, TKGu = SKG(f + q(u, bdu)).

Let CL = ‖SKG‖−1, then we have the estimate

‖TKGu− TKGv‖ ≤ ‖SKG‖L(R′)‖u− v‖ ≤ C0‖u− v‖ (2.41)

for ‖u‖, ‖v‖ ≤ R′ and a constant C0 < 1, granted that L(R′) ≤ C0‖SKG‖−1,
which holds for small R′ > 0 by assumption on L. Then, TKG maps the R′-ball in
Hs,ε

b (Ω)•,− into itself if ‖SKG‖(‖f‖ + L(R′)R′) ≤ R′, i.e. if ‖f‖ ≤ R′(‖SKG‖−1 −
L(R′)). Put

R = R′/3, C = R(‖SKG‖−1 − L(R)).

Then the existence of a unique solution u ∈ Hs,ε
b (Ω)•,− with norm ≤ R to the

PDE (2.39) with ‖f‖Hs−1,ε
b

≤ C follows from the Banach fixed theorem.32

To prove the continuous dependence of u on f , suppose we are given uj ∈
Hs,ε

b (Ω)•,−, j = 1, 2, with norms ≤ R, fj ∈ Hs−1,ε
b (Ω)•,− with norms ≤ C, such

that

(�g −m2)uj = fj + q(uj ,
bduj), j = 1, 2.

Put v := u2 − u1, g = f2 − f1, then v ∈ Hs,ε
b (Ω)•,− has norm ≤ 2R = 2R′/3 and

satisfies the equation

(�g −m2)v = g +
(
q(u1 + v, bd(u1 + v))− q(u1,

bdu1)
)
. (2.42)

On the other hand, defining a map

T ′ : Hs,ε
b (Ω)•,− → Hs,ε

b (Ω)•,−,

T ′w = SKG

(
g +

(
q(u1 + w, bd(u1 + w))− q(u1,

bdu1)
))
,

we obtain

‖T ′w − T ′z‖ ≤ ‖SKG‖
(
q(u1 + w, bd(u1 + w))− q(u1 + z, bd(u1 + z))

)
≤ ‖SKG‖L(R′)‖w − z‖

for ‖w‖, ‖z‖ ≤ 2R′/3, and for ‖w‖ ≤ 2R′/3,

‖T ′w‖ ≤ ‖SKG‖(‖g‖+ 2L(R′)R′/3) ≤ 2R′/3

31That is, c ∈ C and u′ ∈ Hs,ε
b (Ω)•,− depend continuously on f .

32Of course, for this existence statement, we can also work with R′, resp. C′, instead of R,
resp. C.
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if ‖g‖ = ‖f2−f1‖ is small enough; therefore, the Banach fixed point theorem implies
that v is in fact the unique solution of (2.42) with norm ≤ 2R′/3, and we have the
estimate

‖v‖ = ‖T ′v‖ ≤ ‖SKG‖(‖g‖+ L(R′)‖v‖),
thus

‖u1 − u2‖ ≤
‖SKG‖

1− ‖SKG‖L(R′)
‖f2 − f1‖,

which completes the proof of the first part.
For the more general statement, we use that one can think of �g in the non-

linearity as a first order operator. Concretely, we work on the coisotropic space

X = {u ∈ Hs,ε
b (Ω)•,− : �gu ∈ Hs−1,ε

b (Ω)•,−}
with norm

‖u‖X = ‖u‖Hs,εb (Ω)•,− + ‖�gu‖Hs−1,ε
b (Ω)•,− .

This is a Banach space: Indeed, if (uk) is a Cauchy sequence in X , then uk → u

in Hs,ε
b (Ω)•,−, and �guk → v in Hs−1,ε

b (Ω)•,−; in particular, �guk → �gu and

�guk → v in τ εHs−2
b (Ω)•,−, thus �gu = v ∈ Hs−1,ε

b (Ω)•,−, which was to be shown.

We then define TKG : X → X by TKGu = SKG(f + q(u, bdu,�gu)) and obtain the
estimate

‖TKGu− TKGv‖X = ‖TKGu− TKGv‖Hs,εb
+ ‖q(u, bdu,�gu)− q(v, bdv,�gv)‖Hs−1,ε

b

≤ (‖SKG‖+ 1)L(R′)(‖u− v‖Hs,εb
+ ‖�gu−�gv‖Hs−1,ε

b
)

= (‖SKG‖+ 1)L(R′)‖u− v‖X ≤ C0‖u− v‖X
for u, v ∈ X with norms ≤ R′, with C0 < 1 if R′ > 0 is small enough, provided we
require L(0) < CL := (‖SKG‖+ 1)−1. Then, for u ∈ X with norm ≤ R′,

‖TKGu‖X ≤ (‖SKG‖+ 1)(‖f‖Hs−1,ε
b

+ L(R′)R′) ≤ R′

if ‖f‖ ≤ C ′, C ′ > 0 small. Thus, TKG is a contraction on X , and we obtain the
solvability of equation (2.40). The continuous dependence of the solution on the
right hand side, replacing R′ and C ′ by smaller constants R and C, is proved as
above.

For the third part, we use the forward solution operator S : Hs−1,ε
b (Ω)•,− →

Y := C ⊕ Hs,ε
b (Ω)•,− 33 for �g. We will apply the Banach fixed point theorem

to the operator T : Y → Y, Tu = S(f + q(bdu)): We again have an estimate like

(2.41), since bdu ∈ Hs−1,ε
b (Ω; bT ∗Ω)•,− for u ∈ Y, and for small R′ > 0, T maps the

R′-ball around 0 in Y into itself if the norm of f in Hs−1,ε
b (Ω)•,− is small, as above.

The continuous dependence of the solution on the right hand side on a smaller ball
is proved as above. �

The following basic statement ensures that there are interesting non-linearities
q that satisfy the requirements of the theorem; see also Section 2.3.

Lemma 2.25. Let s > n/2, then Hs
b(Rn+) is an algebra. In particular, Hs

b(N)
is an algebra on any compact n-dimensional manifold N with boundary which is
equipped with a b-metric.

33Y is a Banach space with norm ‖(c, u′)‖Y = |c|+ ‖u′‖Hs,ε
b

(Ω)•,− . See Section 2.3 for related

and more general statements.
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Proof. The first statement is the special case k = 0 of Lemma 4.4 after a logarithmic
change of coordinates, which gives an isomorphism Hs

b(Rn+) ∼= Hs(Rn); the lemma
is well-known in this case, see e.g. [38, Chapter 13.3]. The second statement follows
by localization and from the coordinate invariance of Hs

b. �

More and related statements will be given in Section 4.2.

Remark 2.26. The algebra property of Hs
b(N) for s > dim(N)/2 is a special case

of the fact that for any F ∈ C∞(R), for real valued u, or F ∈ C∞(C), for complex
valued u, with F (0) = 0, the composition map Hs

b(N) 3 u 7→ F ◦ u ∈ Hs
b(N)

is well-defined and continuous, see for example [38, Chapter 13.10]. In the real
valued u case, if F (0) 6= 0, then writing F (t) = F (0) + tF1(t) shows that F ◦ u ∈
C + Hs

b(N). If r > 0, then Hs,r
b (N) ⊂ Hs

b(N) shows that F1(u) ∈ Hs
b(N), thus

F ◦ u = F (0) + uF1(u) ∈ C + Hs,r
b (N); and if F vanishes to order k at 0 then

F (t) = tkFk(t), so F ◦u = uk(Fk ◦u), and the multiplicative properties of Hs,r
b (N)

show that F ◦ u ∈ Hs,kr
b (N). The argument is analogous for complex valued u,

indeed for RL-valued u, using Taylor’s theorem on F at the origin.

As a corollary we have

Corollary 2.27. If s > n/2, the hypotheses of Theorem 2.24 hold for non-linearities
q(u) = cup, p ≥ 2 integer, c ∈ C, as well as q(u) = q0u

p, q0 ∈ Hs
b(M).

If s− 1 > n/2, the hypotheses of Theorem 2.24 hold for non-linearities q

q(u, bdu) =
∑

2≤j+|α|≤d

qjαu
j
∏
k≤|α|

Xα,ku, (2.43)

qj,α ∈ C +Hs
b(M), Xα,k ∈ Vb(M).

Thus, in either case, for m > 0, 0 ≤ ε < ε0, s > 1/2 + ε and for small R > 0,

there exists C > 0 such that for all f ∈ Hs−1,ε
b (Ω)•,− with norm ≤ C, the equation

(�g −m2)u = f + q(u, bdu) (2.44)

has a unique solution u ∈ Hs,ε
b (Ω)•,−, with norm ≤ R, that depends continuously

on f .
The analogous conclusion also holds for �gu = f + q(bdu) provided ε > 0, with

the solution being in C(φ◦t1)⊕Hs,ε
b (Ω)•,−, φ◦t1 identically 1 near X∩Ω, vanishing

near H1.

Remark 2.28. For such polynomial non-linearities, the Lipschitz constant L(R) in
the statement of Theorem 2.24 actually satisfies L(0) = 0. To give an example
where L(0) > 0, let us consider the situation where we are given a solution u to
(�g−m2)u = f+u2 and a small perturbation g of f ; we want to solve (�−m2)(u+
v) = (f + g) + (u+ v)2 for v, which simplifies to (�g −m2)v = g+ 2uv+ v2. Thus,
if u is small (in an appropriate norm), which is reasonable to assume given that we
only solve semilinear equations for small data, then q(v) = 2uv + v2 indeed has a
small non-zero Lipschitz constant near 0, and thus Theorem 2.24 is applicable.

Since in Theorem 2.24 we allow q to depend on �gu, we can in particular solve
certain quasilinear equations if s > max{1/2+ε, n/2+1}: Suppose for example that
q′ : Hs,ε

b (Ω)•,− → Hs−1
b (Ω)•,− is continuous with ‖q′(u)−q′(v)‖ ≤ L′(R)‖u−v‖ for

u, v ∈ Hs,ε
b (Ω)•,− with norms ≤ R, where L′ : R≥0 → R is locally bounded, then

we can solve the equation

(1 + q′(u))(�g −m2)u = f ∈ Hs−1,ε
b (Ω)•,−
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provided the norm of f is small. Indeed, put q(u,w) = −q′(u)(w − m2u), then
q(u,�gu) = −q′(u)(�g −m2)u and the PDE becomes

(�g −m2)u = f + q(u,�gu),

which is solvable by Theorem 2.24, since, with ‖ · ‖ = ‖ · ‖Hs−1,ε
b

, for u, u′ ∈
Hs,ε

b (Ω)•,−, w,w′ ∈ Hs−1,ε
b (Ω)•,− with ‖u‖+ ‖w‖, ‖u′‖+ ‖w′‖ ≤ R, we have

‖q(u,w)− q(u′, w′)‖ ≤ ‖q′(u)− q′(u′)‖‖w −m2u‖+ ‖q′(u′)‖‖w − w′ −m2(u− u′)‖
≤ L′(R)((1 +m2)R+m2R)‖u− u′‖+ L′(R)R‖w − w′‖
≤ L(R)(‖u− u′‖+ ‖w − w′‖)

with L(R)→ 0 as R→ 0.
By a similar argument, one can also allow q′ to depend on bdu and �gu.

Remark 2.29. Recalling the discussion following Theorem 2.20, let us emphasize

the importance of P̂ (σ)−1 having no poles in the closed upper half plane by looking
at the explicit example of the operator P = ∂x in 1 dimension. In terms of τ = e−x,

we have P = −τ∂τ , thus P̂ (σ) = −iσ, considered as an operator on the boundary

(which is a single point) at +∞ of the radial compactification of R; hence P̂ (σ)−1

has a simple pole at σ = 0, corresponding to constants being annihilated by P. Now
suppose we want to find a forward solution of u′ = u2 + f , where f ∈ C∞c (R). In
the first step of the iterative procedure described above, we will obtain a constant
term; the next step gives a term that is linear in x (x being the antiderivative of
1), i.e. in log τ , then we get quadratic terms and so on, therefore the iteration does
not converge (for general f), which is of course to be expected, since solutions to
u′ = u2 +f in general blow up in finite time. On the other hand, if P = ∂x+1, then

P̂ (σ)−1 = (1− iσ)−1, which has a simple pole at σ = −i, which means that forward
solutions u of u′ + u = u2 + f with f as above can be constructed iteratively, and
the first term of the expansion of u at +∞ is cτ i(−i) = ce−x, c ∈ C.

2.3. Semilinear equations with polynomial non-linearity. With polynomial
non-linearities as in (2.43), we can use the second part of Theorem 2.20 to obtain an
asymptotic expansion for the solution; see Remark 2.36 and, in a slightly different
setting, Section 3.2 for details on this. Here, we instead define a space that encodes
asymptotic expansions directly in such a way that we can run a fixed point argument
directly.

To describe the exponents appearing in the expansion, we use index sets as
introduced by Melrose, see [32].

Definition 2.30.

(1) An index set is a discrete subset E of C× N0 satisfying the conditions
(i) (z, k) ∈ E ⇒ (z, j) ∈ E for 0 ≤ j ≤ k, and
(ii) If (zj , kj) ∈ E , |zj |+ kj →∞ ⇒ Re zj →∞.

(2) For any index set E , define

wE (z) =

{
max{k ∈ N0 : (z, k) ∈ E }, (z, 0) ∈ E

−∞ otherwise.

(3) For two index sets E ,E ′, define their extended union by

E∪E ′ = E ∪ E ′ ∪ {(z, l + l′ + 1): (z, l) ∈ E , (z, l′) ∈ E ′}
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and their product by E E ′ = {(z + z′, l + l′) : (z, l) ∈ E , (z′, l′) ∈ E ′}. We
shall write E k for the k-fold product of E with itself.

(4) A positive index set is an index set E with the property that Re z > 0 for
all z ∈ C with (z, 0) ∈ E .

Remark 2.31. To ensure that the class of polyhomogeneous conormal distributions
with a given index set E is invariantly defined, Melrose [32] in addition requires
that (z, k) ∈ E implies (z + j, k) ∈ E for all j ∈ N0. In particular, this is a natural
condition in non dilation-invariant settings as in Theorem 2.20. A convenient way
to enforce this condition in all relevant situations is to enlarge the index set cor-
responding to the poles of the inverse of the normal operator accordingly; see the
statement of Theorem 2.35.

Observe though that this condition is not needed in the dilation-invariant cases
of the solvability statements below.

Since we want to capture the asymptotic behavior of solutions near X ∩ Ω, we
fix a cutoff φ ∈ C∞(R) with support in (0,∞) such that φ ◦ t1 ≡ 1 near X ∩Ω (we
already used such a cutoff in Theorem 2.20), and make the following definition.

Definition 2.32. Let E be an index set, and let s, r ∈ R. For ε > 0 with the
property that there is no (z, 0) ∈ E with Re z = ε, define the space X s,r,εE to consist
of all tempered distributions v on M with support in Ω̄ such that

v′ = v −
∑

(z,k)∈E
Re z<ε

τz(log τ)k(φ ◦ t1)vz,k ∈ Hs,ε
b (Ω)•,− (2.45)

for certain vz,k ∈ Hr(X ∩ Ω).

Observe that the terms vz,k in the expansion (2.45) are uniquely determined by
v, since ε > Re z for all z ∈ C for which (z, 0) appears in the sum (2.45); then also
v′ are uniquely determined by v. Therefore, we can use the isomorphism

X s,r,εE
∼=
( ⊕

(z,k)∈E
Re z<ε

Hr(X ∩ Ω)
)
⊕Hs,ε

b (Ω)•,−

to give X s,r,εE the structure of a Banach space.

Lemma 2.33. Let P,F be positive index sets, and let ε > 0. Define E ′0 = P∪F
and recursively E ′N+1 = P∪

(
F ∪

⋃
k≥2(E ′N )k

)
; put EN = {(z, k) ∈ E ′N : 0 < Re z ≤

ε}. Then there exists N0 ∈ N such that EN = EN0 for all N ≥ N0; moreover, the
limiting index set E∞(P,F , ε) := EN0 is finite.

Proof. Writing π1 : C× N0 → C for the projection, one has

π1E1 =
{
z : 0 < Re z ≤ ε, z =

k∑
j=1

zj : k ≥ 1, zj ∈ π1E0

}
,

and it is then clear that π1EN = π1E1 for all N ≥ 1. Since E0 is a positive index
set, there exists δ > 0 s.t. Re z ≥ δ for all z ∈ E0; hence π1E∞ = π1E1 is finite.

To finish the proof, we need to show that for all z ∈ C, the number wEN (z)
stabilizes. Defining p(z) = wP(z)+1 for z ∈ π1P and p(z) = 0 otherwise, we have
a recursion relation

wEN (z) = p(z) + max

{
wF (z), max

z=z1+···+zk
k≥2,zj∈π1E∞

{ k∑
j=1

wEN−1
(zj)

}}
, N ≥ 1. (2.46)
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For each zj appearing in the sum, we have Im zj ≤ Im z − δ. Thus, we can use
(2.46) with z replaced by such zj and N replaced by N − 1 to express wEN (z) in
terms of a finite number of p(zα) and wF (zα), Im zα ≤ Im z, and a finite number
of wEN−2

(zβ), zβ ≤ Im z − 2δ. Continuing in this way, after N0 = b(Im z)/δc + 1
steps we have expressed wEN (z) in terms of a finite number of p(zγ) and wF (zγ),
Im zγ ≤ Im z, only, and this expression is independent of N as long as N ≥ N0. �

Definition 2.34. Let P,F be positive index sets, and let ε > 0 be such that
there is no (z, 0) ∈ E∞(P,F , ε) with Re z = ε, with E∞(P,F , ε) as defined in the
statement of Lemma 2.33. Then for s, r ∈ R, define the Banach spaces

X s,r,εP,F := X s,r,εE∞(P,F ,ε),

0X s,r,εP,F := X s,r,εE∞(P,F ,ε)∪{(0,0)}.

Note that the spaces (0)X s,s,εP,F are Banach algebras34 for s > n/2. Moreover,

X s,s,εP,F interacts well with the forward solution operator SKG of �g − m2 in the

sense that u ∈ X s,s,εP,F , k ≥ 2, with P being related to the poles of P̂(σ)−1, where

P = �g − m2, as will be made precise in the statement of Theorem 2.35 below,
implies SKG(uk) ∈ X s,s,εP,F .

We can now state the result giving an asymptotic expansion of the solution of
(�g −m2)u = f + q(u, bdu) for polynomial non-linearities q.

Theorem 2.35. Let ε > 0, s > max{1/2+ε, n/2+1}, and q as in (2.43). Moreover,

if σj ∈ C are the poles of the inverse family P̂(σ)−1, where P = �g−m2, and mj+1

is the order of the pole of P̂(σ)−1 at σj, let P = {(iσj +k, `) : 0 ≤ ` ≤ mj , k ∈ N0}.
Assume that ε 6= Re(iσj) for all j, and that moreover m > 0, which implies that P
is a positive index set.35 Finally, let F be a positive index set.

Then for small enough R > 0, there exists C > 0 such that for all f ∈ X s−1,s−1,ε
F

with norm ≤ C, the equation

(�g −m2)u = f + q(u, bdu)

has a unique solution u ∈ X s,s,εP,F , with norm ≤ R, that depends continuously on f ;

in particular, u has an asymptotic expansion with remainder term in Hs,ε
b (Ω)•,−.

Further, if the polynomial non-linearity is of the form q(bdu), then for small

R > 0, there exists C > 0 such that for all f ∈ X s−1,s−1,ε
F with norm ≤ C, the

equation

�gu = f + q(bdu)

has a unique solution u ∈ 0X s,s,εP,F , with norm ≤ R, that depends continuously on f .

Proof. By Theorem 2.20 and the definition of the space X = X s,s,εP,F , we have a

forward solution operator SKG : X → X of �g − m2. Thus, we can apply the
Banach fixed point theorem to the operator T : X → X , Tu = SKG(f + q(u, bdu)),
where we note that q : X → X , which follows from the definition of X and the
fact that q is a polynomial only involving terms of the form uj

∏
k≤|α|Xα,ku for

j+ |α| ≥ 2. This condition on q also ensures that T is a contraction on a sufficiently
small ball in X+.

34In the sense that there is a constant C > 0 such that ‖uv‖ ≤ C‖u‖‖v‖ for all u, v ∈ (0)X s,s,εP,F .
35See Lemma 2.22.
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For the second part, writing 0X = 0X s,s,εP,F , we have a forward solution operator

S : X → 0X . But q(bdu) : 0X → X , since bd annihilates constants, and we can thus
finish the proof as above.

The continuous dependence of the solution on the right hand side is proved as
in the proof of Theorem 2.24. �

Note that ε > 0 is (almost) unrestricted here, and thus we can get arbitrarily
many terms in the asymptotic expansion if we work with arbitrarily high Sobolev
spaces.

The condition that the polynomial q(u, bdu) does not involve a linear term is very
important as it prevents terms of low order stacking up in the iterative process used
to solve the equation. Also, adding a term νu to q(u, bdu) effectively changes the
Klein-Gordon parameter from −m2 to ν − m2, which will change the location of

the poles of P̂ (σ)−1; in the worst case, if ν > m2, this would even cause a pole to
move to Imσ > 0, corresponding to a resonant state that blows up exponentially
in time.

Remark 2.36. Instead of working with the spaces (0)X s,s,εP,F , which have the expan-
sion built in, one could alternatively first prove the existence of a solution u in a
(slightly) decaying b-Sobolev space, which then allows one to regard the polynomial
non-linearity as a perturbation of the linear operator �g − m2; then an iterative
application of the dilation-invariant result [41, Lemma 3.1] gives an expansion of
the solution to the non-linear equation. We will follow this idea in the discussion
of polynomial non-linearities on asymptotically Kerr-de Sitter spaces in the next
section.

3. Kerr-de Sitter space

3.1. Linear Fredholm theory. The linear theorem in the case of normally hy-
perbolic trapping for dilation-invariant operators P = �g − λ is the following:

Theorem 3.1. (See [41, Theorem 1.4].) Let M be a manifold with a b-metric g
as above, with boundary X, and let τ be the boundary defining function, P as in
(2.14). If g has normally hyperbolic trapping, t1,Ω are as above, φ ∈ C∞(R) as in
Theorem 2.20, then there exist C ′ > 0, κ > 0, β ∈ R such that for 0 ≤ ` < C ′

and s > 1/2 + β`, s ≥ 0, solutions u ∈ H−∞,−∞b (Ω)•,− of (�g − λ)u = f with

f ∈ Hs−1+κ,`
b (Ω)•,− satisfy that for some ajκ ∈ C∞(Ω∩X) (which are the resonant

states) and σj ∈ C (which are the resonances),

u′ = u−
∑
j

∑
κ≤mj

τ iσj (log τ)κ(φ ◦ t1)ajκ ∈ Hs,`
b (Ω)•,−. (3.1)

Here the (semi)norms of both ajκ in C∞(Ω∩X) and u′ in Hs,`
b (Ω)•,− 36 are bounded

by a constant times that of f in Hs−1+κ,`
b (Ω)•,−. The same conclusion holds for

sufficiently small perturbations of the metric as a symmetric bilinear form on bTM
provided the trapping is normally hyperbolic.

In order to state the analogue of Theorems 2.18-2.20 when one has normally
hyperbolic trapping at Γ ⊂ bS∗XM , we need some notation in addition to that in

36Note that, as in the proof of Theorem 2.18, u′ is the restriction to Ω of a distribution in

Hs,`
b,loc(Ω̃)•,−, where Ω̃ is a slightly bigger domain, thus u′ lies in the indicated space.
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Section 2. We defer the details of the local nature of the normally hyperbolic
trapping at Γ to the Appendix to avoid interrupting the main argument, and here
describe what it means for the global flow. In the setting of Section 2, as leading
up to Theorem 2.18, see the discussion above Figure 3, we define

(1) the forward trapped set in Σ+ as the set of points in ΣΩ ∩ (Σ+ \ L+) the
bicharacteristics through which do not flow (within ΣΩ) to bS∗H1

M ∪L+ in

the forward direction (i.e. they do not reach bS∗H1
M in finite time and they

do not tend to L+),
(2) the backward trapped set in Σ+ as the set of points in ΣΩ ∩ (Σ+ \ L+) the

bicharacteristics through which do not flow to bS∗H2
M∪L+ in the backward

direction,
(3) the forward trapped set in Σ− as the set of points in ΣΩ ∩ (Σ− \ L−) the

bicharacteristics through which do not flow to bS∗H2
M ∪L− in the forward

direction,
(4) the backward trapped set in Σ− as the set of points in ΣΩ ∩ (Σ− \ L−) the

bicharacteristics through which do not flow to bS∗H1
M∪L− in the backward

direction.

The forward trapped set is the union of the forward trapped sets in Σ±, and anal-
ogously for the backward trapped set. The trapped set Γ is the intersection of the
forward and backward trapped sets. We say that P is normally hyperbolically trap-
ping, or has normally hyperbolic trapping, if Γ ⊂ bS∗XM is b-normally hyperbolic
in the sense discussed in the Appendix in the paragraph of (A.14)-(A.16).

We introduce replacements for the b-Sobolev spaces used in Section 2 which are
called normally isotropic at Γ; these spaces Hsb,Γ, see also (A.19), and dual spaces

H∗,−sb,Γ are just the standard b-Sobolev spaces Hs
b(M), resp. H−sb (M), microlocally

away from Γ. Note that bT ∗M is not a symplectic manifold (in the natural way)
since the symplectic form on bT ∗M◦M does not extend smoothly to bT ∗M . Thus,
the word ‘normally isotropic’ is not completely justified; we use it since it reflects
that in the analogous semiclassical setting, see [47], the set Γ is symplectic, and the
origin in the symplectic orthocomplement (TαΓ)⊥ of TαΓ, which is also symplectic,
is isotropic within (TαΓ)⊥.

Concretely, if Γ is locally (in a neighborhood U0 of Γ) defined by τ = 0, φ+ =
φ− = 0, p̂ = 0 in bS∗M , with dτ, dφ+, dφ−, dp̂, p̂ = ρ̃mp, linearly independent at Γ,

then taking any Q± ∈ Ψ0
b(M) with principal symbol φ±, P̂ ∈ Ψ0

b(M) with principal
symbol p̂, and Q0 ∈ Ψ0

b(M) elliptic on U c0 with WF′b(Q0) ∩ Γ = ∅, we define the
(global) b-normally isotropic spaces at Γ of order s, Hsb,Γ = Hsb,Γ(M), by the norm

‖u‖2Hsb,Γ = ‖Q0u‖2Hsb + ‖Q+u‖2Hsb + ‖Q−u‖2Hsb + ‖τ1/2u‖2Hsb + ‖P̂ u‖2Hsb + ‖u‖2
H
s−1/2
b

,

(3.2)
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and let H∗,−sb,Γ be the dual space relative to L2 which is thus37

Q0H
−s
b +Q+H

−s
b +Q−H

−s
b + τ1/2H−sb + P̂H−sb +H

−s+1/2
b .

In particular,

Hs
b(M) ⊂ Hsb,Γ(M) ⊂ Hs−1/2

b (M) ∩Hs,−1/2
b (M),

H
s+1/2
b (M) +H

s,1/2
b (M) ⊂ H∗,sb,Γ(M) ⊂ Hs

b(M).
(3.3)

Microlocally away from Γ, Hsb,Γ(M) is indeed just the standard Hs
b space while

H∗,−sb,Γ is H−sb since at least one of Q0, Q±, τ , P̂ is elliptic; the space is independent

of the choice of Q0 satisfying the criteria since at least one of Q±, τ , P̂ is elliptic on
U0 \Γ. Moreover, Ψk

b(M) : Hsb,Γ(M)→ Hs−kb,Γ (M) is continuous as for A ∈ Ψk
b(M),

Q+Au = AQ+u + [Q+, A]u and [Q+, A] ∈ Ψk−1
b (M); the analogous statement

also holds for the dual spaces. The notation Hsb,Γ(M) is justified for the space is
independent of the particular defining functions φ± chosen; near Γ any other choice
would replace φ± by smooth non-degenerate linear combinations plus a multiple of

τ and of p̂, denote these by φ̃±, and thus the corresponding Q̃± can be expressed
as

B+Q++B−Q−+B∂τ+B̂P̂+B0Q0+R, B±, B0, B∂ , B̂ ∈ Ψ0
b(M), R ∈ Ψ−1

b (M),

so the new norm can be controlled by the old norm, and conversely in view of
the non-degeneracy. We also remark that in fact the term ‖u‖2

H
s−1/2
b

in the norm

(3.2) can be replaced by ‖u‖2
Hs−1

b

, see the discussion preceding Proposition A.2

in the Appendix: this arises from the Poisson bracket property of φ+ and φ−,
corresponding to the (partially) isotropic nature of Γ.

Further, if Ω ⊂ M , as in Section 2, is such that bS∗HjΩ ∩ Γ = ∅, j = 1, 2, then

spaces such as
H∗,sb,Γ(Ω)•,−

are not only well-defined, but are standard Hs
b-spaces near the Hj . The inclusions

analogous to (3.3) also hold for the corresponding spaces over Ω.

Notice that elements of Ψp
b(M) only map Hsb,Γ(M) to H∗,s−p−1

b,Γ (M), with the

issues being at Γ corresponding to (3.3) (thus there is no distinction between the
behavior on the Ω vs. the M -based spaces). However, if A ∈ Ψp

b(M) has principal
symbol vanishing on Γ then

A : Hsb,Γ(M)→ Hs−p
b (M), A : Hs

b(M)→ H∗,s−pb,Γ (M), (3.4)

as A can be expressed as A+Q+ +A−Q−+A∂τ + ÂP̂ +A0Q0 +R, A±, A0, A∂ , Â ∈
Ψ0

b(M), R ∈ Ψ−1
b (M), with the second mapping property following by duality as

Ψp
b(M) is closed under adjoints, and the principal symbol of the adjoint vanishes

wherever that of the original operator does. Correspondingly, if Aj ∈ Ψ
mj
b (M) have

principal symbol vanishing at Γ then A1A2u : Hsb,Γ(M)→ H∗,s−m1−m2

b,Γ (M).

37We refer to [31, Appendix A] for a general discussion of the underlying functional analysis.

In particular, Lemma A.3 there essentially gives the density of Ċ∞(M) in Hsb,Γ(M): one can

simply drop the subscript ‘e’ in the statement of that lemma to conclude that H∞b (M) (so in

particular H
s−1/2
b (M)) is dense in Hsb,Γ(M), and then the density of Ċ∞(M) in Hs′

b (M) for any

s′ completes the argument. The completeness of Hsb,Γ(M) follows from the continuity of Ψ0
b(M)

on H
s−1/2
b (M).
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We consider P as a map

P : Hsb,Γ(Ω)•,− → Hs−2
b,Γ (Ω)•,−,

and let

YsΓ = H∗,sb,Γ(Ω)•,−, X sΓ = {u ∈ Hsb,Γ(Ω)•,− : Pu ∈ Ys−1
Γ }.

While X sΓ is complete,38 it is a slightly exotic space, unlike X s in Theorem 2.18
which is a coisotropic space depending on Σ (and thus the principal symbol of P)

only, since elements of Ψp
b(M) only map Hsb,Γ(M) to H∗,s−p−1

b,Γ (M) as remarked

earlier. Correspondingly, X sΓ actually depends on P modulo Ψ0
b(M) plus first order

pseudodifferential operators of the form A1A2, A1 ∈ Ψ0
b(M), A2 ∈ Ψ1

b(M), both
with principal symbol vanishing at Γ – here the operators should have Schwartz
kernels supported away from the Hj ; near Hj (but away from Γ), one should say

P matters modulo Diff1
b(M), i.e. only the principal symbol of P matters.

We then have:

Theorem 3.2. Suppose s ≥ 3/2, and that the inverse of the Mellin transformed

normal operator P̂(σ)−1 has no poles with Imσ ≥ 0. Then

P : X sΓ → Ys−1
Γ

is invertible, giving the forward solution operator.

Proof. First, with r < −1/2, thus with dual spaces having weight r̃ > 1/2, The-
orem 2.18 holds without changes as Proposition A.2 gives non-trapping estimates
in this case on the standard b-Sobolev spaces. In particular, if r � 0, KerP
is trivial even on H

s−1/2,r
b (Ω)•,−, hence certainly on its subspace Hsb,Γ(Ω)•,−.

Similarly, KerP∗ is trivial on Hs,r̃
b (Ω)−,•, r̃ � 0, and thus with r < −1/2, for

f ∈ H−1,r
b (Ω)•,− there exists u ∈ H0,r

b (Ω)•,− with Pu = f . Further, making use of

the non-trapping estimates in Proposition A.2, if r < 0 then f ∈ Hs−1,r
b (Ω)•,−, so

the argument of Theorem 2.20 improves this statement to u ∈ Hs,r
b (Ω)•,−.

In particular, if f ∈ H∗,s−1
b,Γ (Ω)•,− ⊂ Hs−1,0

b (Ω)•,−, then u ∈ Hs,r
b (Ω)•,− for

r < 0. This can be improved using the argument of Theorem 2.20. Indeed, with
−1 ≤ r < 0 arbitrary, P −N(P) ∈ τDiff2

b(M) implies as in (2.36) that

N(P)u = f − f̃ , f̃ = (P −N(P))u ∈ Hs−2,r+1
b (Ω)•,−, (3.5)

and thus as f ∈ H∗,s−1
b,Γ (Ω)•,− ⊂ Hs−1,0

b (Ω)•,−, so the right hand side is in

Hs−2,0
b (Ω)•,−, the dilation-invariant result, [41, Lemma 3.1], gives u ∈ Hs−1,0

b (Ω)•,−.

This can then be improved further since in view of Pu = f ∈ H∗,s−1
b,Γ (Ω)•,−, propa-

gation of singularities, most crucially Proposition A.2, yields u ∈ Hsb,Γ(Ω)•,−. This
completes the proof of the theorem. �

38 Also, elements of C∞(Ω) vanishing to infinite order at H1 and X ∩ Ω are dense in X sΓ.

Indeed, in view of [31, Lemma A.3] the only possible issue is at Γ, thus the distinction between
Ω and M may be dropped. To complete the argument, one proceeds as in the quoted lemma,

using the ellipticity of σ at Γ, letting Λn ∈ Ψ−∞b (M), n ∈ N, be a quantization of φ(σ/n)a,

a ∈ C∞(bS∗M) supported in a neighborhood of Γ, identically 1 near Γ, φ ∈ C∞c (R), noting

that [Λn,P] ∈ Ψ−∞b (M) is uniformly bounded in Ψ0
b(M) + τΨ1

b(M) in view of (2.1), and thus

for u ∈ X sΓ, PΛnu = ΛnPu + [P,Λn]u → Pu in H∗,s−1
b,Γ since [P,Λn] is uniformly bounded

H
s−1/2
b ∩Hs,−1/2

b → H
s−1/2
b ∩Hs−1,1/2

b , and thus Hsb,Γ →H
∗,s−1
b,Γ by (3.3).
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This result shows the importance of controlling the resonances in Imσ ≥ 0.
For the wave operator on exact Kerr-de Sitter space, Dyatlov’s analysis [16, 15]
shows that the zero resonance of �g is the only one in Imσ ≥ 0, the residue at 0
having constant functions as its range. For the Klein-Gordon operator �g −m2,
the statement is even better from our perspective as there are no resonances in
Imσ ≥ 0 for m > 0 small. This is pointed out in [16]; we give a direct proof based
on perturbation theory.

Lemma 3.3. Let P = �g on exact Kerr-de Sitter space. Then for small m > 0,

all poles of (P̂(σ)−m2)−1 have strictly negative imaginary part.

Proof. By perturbation theory, the inverse family of P̂(σ)− λ has a simple pole at
σ(λ) coming with a single resonant state φ(λ) and a dual state ψ(λ), with analytic
dependence on λ, where σ(0) = 0, φ(0) ≡ 1, ψ(0) = 1{µ>0}, where we use the

notation of [41, Section 6]. Differentiating P̂(σ(λ))φ(λ) = λφ(λ) with respect to λ
and evaluating at λ = 0 gives

σ′(0)P̂ ′(0)φ(0) + P̂(0)φ′(0) = φ(0).

Pairing this with ψ(0), which is orthogonal to Ran P̂(0), yields

σ′(0) =
〈ψ(0), φ(0)〉

〈ψ(0), P̂ ′(0)φ(0)〉
,

Since φ(0) = 1 and ψ(0) = 1{µ>0}, this implies

sgn Imσ′(0) = − sgn Im〈ψ(0), P̂ ′(0)φ(0)〉. (3.6)

To find the latter quantity, we note that the only terms in the general form of
the d’Alembertian that could possibly yield a non-zero contribution here are terms
involving τDτ and either Dr, Dφ or Dθ. Concretely, using the explicit form of the

dual metric G 39 in the new coordinates t = t̃ + h(r), φ = φ̃ + P (r), τ = e−t, with
h(r), P (r) as in [41, Equation (6.5)],

G = −ρ−2

(
µ̃(∂r − h′(r)τ∂τ + P ′(r)∂φ)2 +

(1 + γ)2

κ sin2 θ
(−a sin2 θτ∂τ + ∂φ)2 + κ∂2

θ

− (1 + γ)2

µ̃
(−(r2 + a2)τ∂τ + a∂φ)2

)
,

and its determinant |detG|1/2 = (1+γ)2ρ−2(sin θ)−1, we see that the only non-zero
contribution to the right hand side of (3.6) comes from the term

(1 + γ)2ρ−2(sin θ)−1Dr

(
(1 + γ)−2ρ2 sin θρ−2µ̃h′(r)

)
τDτ

= −iρ−2∂r(µ̃h
′(r))τDτ

of the d’Alembertian. Mellin transforming this amounts to replacing τDτ by σ;
then differentiating the result with respect to σ gives

〈ψ(0), P̂ ′(0)φ(0)〉 = −i
∫
µ̃>0

ρ−2∂r(µ̃h
′(r)) dvol

= −i
∫ π

0

∫ 2π

0

∫ r+

r−

(1 + γ)−2 sin θ ∂r(µ̃h
′(r)) dr dφ dθ

39See Equation (6.1) in [41].
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= − 4πi

(1 + γ)2
[(µ̃h′(r))|r+ − (µ̃h′(r))|r− ]. (3.7)

Since the singular part of h′(r) at r± (which are the roots of µ̃) is h′(r) = ∓ 1+γ
µ̃ (r2+

a2), the right hand side of (3.7) is positive up to a factor of i; thus Imσ′(0) < 0 as
claimed. �

In other words, for small mass m > 0, there are no resonances σ of the Klein-
Gordon operator with Imσ ≥ −ε0 for some ε0 > 0. Therefore, the expansion of
u as in (3.1) no longer has a constant term. Correspondingly, for ε ∈ R, ε ≤ ε0,
Theorem 3.1 gives the forward solution operator

SKG,I : Hs−1+κ,ε
b (Ω)•,− → Hs,ε

b (Ω)•,− (3.8)

in the dilation-invariant case.
Further, Theorem 3.2 is applicable and gives the forward solution operator

SKG : H∗,s−1
b,Γ (Ω)•,− → Hsb,Γ(Ω)•,− (3.9)

on the normally isotropic spaces.
For the semilinear application, for non-linearities without derivatives, it is im-

portant that the loss of derivatives κ in the space Hs−1+κ,ε
b is ≤ 1. This is not

explicitly specified in the paper of Wunsch and Zworski [47], though their proof
directly40 gives that, for small ε > 0, κ can be taken proportional to ε, and there
is ε′0 > 0 such that κ ∈ (0, 1] for ε < ε′0. We reduce ε0 > 0 above if needed so that
ε0 ≤ ε′0; then (3.8) holds with κ = cε ∈ (0, 1] if ε < ε0, where c > 0.

In fact, one does not need to go through the proof of [47], for the Phragmén-
Lindelöf theorem allows one to obtain the same conclusion from their final result:

Lemma 3.4. Suppose h : Ω → X is a holomorphic function on the half strip Ω =
{z ∈ C : 0 ≤ Im z ≤ c,Re z ≥ 1} which is continuous on Ω̄, with values in a Banach
space X, and suppose moreover that there are constants A,C > 0 such that

‖h(z)‖ ≤ C|z|k1 , Im z = 0,

‖h(z)‖ ≤ C|z|k2 , Im z = c,

‖h(z)‖ ≤ C exp(A|z|), z ∈ Ω̄.

(3.10)

Then there is a constant C ′ > 0 such that

‖h(z)‖ ≤ C ′|z|k1(1− Im z
c )+k2

Im z
c

for all z ∈ Ω̄.

Proof. Consider the function f(z) = zk1−i k2−k1
c z, which is holomorphic on a neigh-

borhood of Ω̄. Writing z ∈ Ω̄ as z = x+ iy with x, y ∈ R, one has

|f(z)| = |z|k1 exp

(
Im

(
k2 − k1

c
z log z

))
= |z|k1 |z|

k2−k1
c Im z exp

(
k2 − k1

c
x arctan(y/x)

)
.

Noting that |x arctan(y/x)| = y|(x/y) arctan(y/x)| is bounded by c for all x+iy ∈ Ω̄,
we conclude that

e−|k2−k1||z|k1(1− Im z
c )+k2

Im z
c ≤ |f(z)| ≤ e|k2−k1||z|k1(1− Im z

c )+k2
Im z
c .

40See especially the part before Section 4.4 of [47].
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Therefore, f(z)−1h(z) is bounded by a constant C ′ on ∂Ω̄, and satisfies an expo-
nential bound for z ∈ Ω. By the Phragmén-Lindelöf theorem, ‖f(z)−1h(z)‖X ≤ C ′,
and the claim follows. �

Since for any δ > 0, we can bound | log z| ≤ Cδ|z|δ for |Re z| ≥ 1, we obtain that

the inverse family R(σ) = P̂(σ)−1 of the normal operator of �g on (asymptotically)
Kerr-de Sitter spaces as in [41], here in the setting of artificial boundaries as opposed
to complex absorption, satisfies a bound

‖R(σ)‖|σ|−(s−1)Hs−1

|σ|−1 (X∩Ω)→|σ|−sHs
|σ|−1 (X∩Ω) ≤ Cδ|σ|

−1+κ′+δ (3.11)

for any δ > 0, Imσ ≥ −cκ′ and |Reσ| large. Therefore, as mentioned above, by the
proof of Theorem 3.1, i.e. [41, Theorem 1.4], in particular using [41, Lemma 3.1],
we can assume κ ∈ (0, 1] in the dilation-invariant result, Theorem 3.1, if we take
C ′ > 0 small enough, i.e. if we do not go too far into the lower half plane Imσ < 0,
which amounts to only taking terms in the expansion (3.1) which decay to at most
some fixed order, which we may assume to be less than − Imσj for all resonances
σj .

3.2. A class of semilinear equations; equations with polynomial non-
linearity. In the following semilinear applications, let us fix κ ∈ (0, 1] and ε0 as
explained before Lemma 3.4, so that we have the forward solution operator SKG,I

as in (3.8)
We then have statements paralleling Theorems 2.24, 2.35 and Corollary 2.27,

namely Theorems 3.5, 3.9 and Corollary 3.8, respectively.

Theorem 3.5. Suppose (M, g) is dilation-invariant. Let −∞ < ε < ε0, s > 1/2 +

βε, s ≥ 1, and let q : Hs,ε
b (Ω)•,− → Hs−1+κ,ε

b (Ω)•,− be a continuous function with
q(0) = 0 such that there exists a continuous non-decreasing function L : R≥0 → R
satisfying

‖q(u)− q(v)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R.
Then there is a constant CL > 0 so that the following holds: If L(0) < CL, then for

small R > 0, there exists C > 0 such that for all f ∈ Hs−1+κ,ε
b (Ω)•,− with norm

≤ C, the equation

(�g −m2)u = f + q(u)

has a unique solution u ∈ Hs,ε
b (Ω)•,−, with norm ≤ R, that depends continuously

on f .
More generally, suppose

q : Hs,ε
b (Ω)•,− ×Hs−1+κ,ε

b (Ω)•,− → Hs−1+κ,ε
b (Ω)•,−

satisfies q(0, 0) = 0 and

‖q(u,w)− q(u′, w′)‖ ≤ L(R)(‖u− u′‖+ ‖w − w′‖)

provided ‖u‖ + ‖w‖, ‖u′‖ + ‖w′‖ ≤ R, where we use the norms corresponding to
the map q, for a continuous non-decreasing function L : R≥0 → R. Then there
is a constant CL > 0 so that the following holds: If L(0) < CL, then for small

R > 0, there exists C > 0 such that for all f ∈ Hs−1+κ,ε
b (Ω)•,− with norm ≤ C,

the equation

(�g −m2)u = f + q(u,�gu)
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has a unique solution u ∈ Hs,ε
b (Ω)•,−, with ‖u‖Hs,εb

+ ‖�gu‖Hs−1+κ,ε
b

≤ R, that

depends continuously on f .

Proof. We use the proof of the first part of Theorem 2.24, where in the current
setting the solution operator SKG,I maps Hs−1+κ,ε

b (Ω)•,− → Hs,ε
b (Ω)•,−, and the

contraction map is T : Hs,ε
b (Ω)•,− → Hs,ε

b (Ω)•,−, Tu = SKG,I(f + q(u)).
For the general statement, we follow the proof of the second part of Theorem 2.24,

where we now instead use the Banach space

X = {u ∈ Hs,ε
b (Ω)•,− : �gu ∈ Hs−1+κ,ε

b (Ω)•,−}
with norm

‖u‖X = ‖u‖Hs,εb
+ ‖�gu‖τεHs−1+κ

b
.

which is a Banach space by the same argument as in the proof of Theorem 2.24. �

We have a weaker statement in the general, non dilation-invariant case, where
we work in unweighted spaces.

Theorem 3.6. Let s ≥ 1, and suppose q : Hs
b(Ω)•,− → Hs

b(Ω)•,− is a continuous
function with q(0) = 0 such that there exists a continuous non-decreasing function
L : R≥0 → R satisfying

‖q(u)− q(v)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R.
Then there is a constant CL > 0 so that the following holds: If L(0) < CL, then
for small R > 0, there exists C > 0 such that for all f ∈ Hs

b(Ω)•,− with norm ≤ C,
the equation

(�g −m2)u = f + q(u)

has a unique solution u ∈ Hs
b(Ω)•,−, with norm ≤ R, that depends continuously on

f .
An analogous statement holds for non-linearities q = q(u,�gu) which are con-

tinuous maps q : Hs
b(Ω)•,− × Hs

b(Ω)•,− → Hs
b(Ω)•,−, vanish at (0, 0) and have a

small Lipschitz constant near 0.

Proof. Since

SKG : Hs
b(Ω)•,− ⊂ H∗,s−1/2

~,Γ (Ω)•,− → Hs+1/2
~,Γ (Ω)•,− ⊂ Hs

b(Ω)•,−,

by (3.3) and (3.9), this follows again from the Banach fixed point theorem. �

Remark 3.7. The proof of Theorem 3.2 shows that equations on spaces with negative
weights (i.e. growing near infinity) behave as nicely as equations on the static
part of de Sitter space, discussed in Section 2. However, naturally occurring non-
linearities (e.g., polynomials) will not be continuous non-linear operators on such
growing spaces.

Corollary 3.8. If s > n/2, the hypotheses of Theorem 3.6 hold for non-linearities
q(u) = cup, p ≥ 2 integer, c ∈ C, as well as q(u) = q0u

p, q0 ∈ Hs
b(M).

Thus for small m > 0 and R > 0, there exists C > 0 such that for all f ∈
Hs

b(Ω)•,− with norm ≤ C, the equation

(�g −m2)u = f + q(u)

has a unique solution u ∈ Hs
b(Ω)•,−, with norm ≤ R, that depends continuously on

f .
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If f satisfies stronger decay assumptions, then u does as well. More precisely,
denoting the inverse family of the normal operator of the Klein-Gordon operator

with (small) mass m by Rm(σ) = (P̂(σ)−m2)−1, which has poles only in Imσ < 0
(cf. Lemma 3.3 and [16, 41]), and moreover defining the spaces X s,r,εF and X s,r,εP,F

completely analogously to the corresponding spaces in Section 2.3, we have the
following result:

Theorem 3.9. Fix 0 < ε < min{C ′, 1/2} and let s� s′ ≥ max{1/2 + βε, n/2, 1 +
κ}.41 Let

q(u) =

d∑
p=2

qpu
p, qp ∈ Hs

b(M).

Moreover, if σj ∈ C are the poles of the inverse family Rm(σ), and mj + 1 is the
order of the pole of Rm(σ) at σj, let P = {(iσj + k, `) : 0 ≤ ` ≤ mj , k ∈ N0}.
Assume that ε 6= Re(iσj) for all j, and that m > 0 is so small that P is a positive
index set. Finally, let F be a positive index set.

Then for small enough R > 0, there exists C > 0 such that for all f ∈ X s,s,εF
with norm ≤ C, the equation

(�g −m2)u = f + q(u) (3.12)

has a unique solution u ∈ X s
′,s′,ε

P,F , with norm ≤ R, that depends continuously on f ;

in particular, u has an asymptotic expansion with remainder term in Hs,ε
b (Ω)•,−.

Proof. Let us write P = �g − m2. Let δ < 1/2 be such that 0 < 2δ < Re z

for all (z, 0) ∈ F , then f ∈ Hs,2δ
b (Ω)•,−. Now, for u ∈ Hs,δ

b (Ω)•,−, consider

Tu := SKG(f + q(u)). First of all, f + q(u) ∈ Hs,2δ
b (Ω)•,− ⊂ Hs

b(Ω)•,−, thus the

proof of Theorem 3.2 shows that we also have u ∈ Hs+1,r
b (Ω)•,−, r < 0 arbitrary.

Therefore,

N(P)u = f+q(u)+(N(P)−P)u ∈ Hs,2δ
b (Ω)•,−+Hs−1,r+1

b (Ω)•,− ⊂ Hs−1,2δ
b (Ω)•,−,

and thus if δ > 0 is sufficiently small, namely, δ < inf{− Imσj}/2, Theorem 3.1

implies u ∈ Hs−κ,2δ
b (Ω)•,−. Since we can choose κ = cδ for some constant c > 0,

we obtain

u ∈
⋂
r>0

Hs+1,r
b (Ω)•,− ∩Hs−cδ,2δ

b (Ω)•,− ⊂
⋂
r′>0

H
s,2δ−2cδ2/(1+cδ)−r′
b (Ω)•,−

by interpolation. In particular, choosing δ > 0 even smaller if necessary, we obtain

Tu ∈ Hs,δ
b (Ω)•,−. Applying the Banach fixed point theorem to the map T thus

gives a solution u ∈ Hs,δ
b (Ω)•,− to the equation (3.12).

For this solution u, we obtain

N(P)u = Pu+ (N(P)− P)u ∈ Hs,2δ
b +Hs−2,δ+1

b ⊂ Hs−2,2δ
b

since q only has quadratic and higher terms. Hence Theorem 3.1 implies that

u = u1 + u′, where u1 is an expansion with terms coming from poles of P̂−1 whose

decay order lies between δ and 2δ, and u′ ∈ Hs−1−κ,2δ
b (Ω)•,−. This in turn implies

41A concrete bound for s will be given in the course of the proof, but it will depend on an
unspecified constant; see Footnote 42.
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that f + q(u) has an expansion with remainder term in H
s−1−κ,min{4δ,ε}
b (Ω)•,−,

thus
N(P)u ∈ Hs−3−κ,min{4δ,ε}

b (Ω)•,− plus an expansion,

and we proceed iteratively, until, after k more steps, we have 4 · 2kδ ≥ ε, and

then u has an expansion with remainder term Hs−3−2k−κ,ε
b (Ω)•,− provided we can

apply Theorem 3.1 in the iterative procedure, i.e. provided s− 3− 2k − κ =: s′ >
max{1/2 + βε, n/2, 1 + κ}.42 �

3.3. Semilinear equations with derivatives in the non-linearities. Theo-
rem 3.2 allows one to solve even semilinear equations with derivatives in some
cases. For instance, in the case of de Sitter-Schwarzschild space, within Σ∩ bS∗XM ,
Γ is given by r = rc, σ1(Dr) = 0, where rc = 3

2rs is the radius of the photon sphere,

see e.g. [41, Section 6.4]. Thus, non-linear terms such as (r− rc)(∂ru)2 are allowed
for s > n

2 + 1 since ∂r : Hsb,Γ(M) → Hs−1
b (M), with the latter space being an

algebra, while multiplication by r− rc maps this space to H∗,s−1
b,Γ by (3.4). Thus, a

straightforward modification of Theorem 3.6, applying the fixed point theorem on
the normally isotropic spaces directly, gives well-posedness.

4. de Sitter space

We can approach the problem of solving non-linear wave equations on global de
Sitter space in two ways: Either, we proceed as in the previous two sections, first
showing invertibility of the linear operator on suitable spaces and then applying
the contraction mapping principle to solve the non-linear problem; or we use the
solvability results from Section 2 for static parts of de Sitter space and glue the
solutions on all static parts together to obtain a global solution. The first approach,
which we will follow in Sections 4.1-4.4, has the disadvantage that the conditions
on the non-linearity that guarantee the existence of solutions are quite restrictive,
however in case the conditions are met, one has good decay estimates for solutions.
The second approach on the other hand, detailed in Section 4.5, allows many of the
non-linearities, suitably reinterpreted, that work on static parts of de Sitter space,
but the decay estimates for solutions are quite weak relative to the decay of the
forcing term because of the gluing process.

4.1. The linear framework. Let g be the metric on an n-dimensional asymp-
totically de Sitter space X with global time function t [43]. Then, following [41,
Section 4], the operator43

Pσ = µ−1/2µiσ/2−(n+1)/4

(
�g −

(n− 1

2

)2

− σ2

)
µ−iσ/2+(n+1)/4µ−1/2 (4.1)

extends non-degenerately to an operator on a closed manifold X̃ which contains the
compactification X of de Sitter space as a submanifold with boundary Y , where
Y = Y− ∪ Y+ has two connected components, which we call the boundary of X at
past, resp. future, infinity.44 Here, µ = 0 is the defining function of Y , and µ > 0
is the interior of de Sitter space. Moreover, null-bicharacteristics of Pσ tend to Y±
as t→ ±∞.

42This is satisfied if s > max{1/2 + βε, n/2, 1 + κ}+ 2dlog2(ε/δ)e+ κ − 1.
43Pσ in our notation corresponds to P ∗σ̄ in [41], the latter operator being the one for which

one solves the forward problem.
44Non-degenerately here means that near Y±, Pσ fits into the framework of [41].
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Following Vasy [40], let us in fact assume that X̃ = C− ∪X ∪C+ is the union of
the compactifications of asymptotically de Sitter space X and two asymptotically
hyperbolic caps C±.45 Then Pσ is the restriction to X of an operator P̃σ ∈ Diff2(X̃),
which is Fredholm as a map

P̃σ : X̃ s → Ỹs−1, X̃ s = {u ∈ Hs : P̃σu ∈ Hs−1}, Ỹs−1 = Hs−1,

where46 s ∈ C∞(S∗X̃), monotone along the bicharacteristic flow, is such that
s|N∗Y− > 1/2− Imσ, s|N∗Y+

< 1/2− Imσ, and s is constant near S∗Y±.47

Restricting our attention to X, we define the space Hs(X)•,− to be the comple-
tion in Hs(X) of the space of C∞ functions that vanish to infinite order at Y−; thus
the superscripts indicate that distributions in Hs(X)•,− are supported distributions
near Y− and extendible distributions near Y+. Then, define the spaces

X s = {u ∈ Hs(X)•,− : Pσu ∈ Hs−1(X)•,−}, Ys−1 = Hs−1(X)•,−.

Theorem 4.1. Fix σ ∈ C and s ∈ C∞(S∗X) as above. Then Pσ : X s → Ys−1 is
invertible, and P−1

σ : Hs−1(X)•,− → Hs(X)•,− is the forward solution operator of
Pσ.

Proof. First, let us assume Reσ � 0 so semiclassical/large parameter estimates are

applicable to P̃σ, and let T0 ∈ R be such that s is constant in {t ≤ T0}. Then for

any T1 ≤ T0, we can paste together microlocal energy estimates for P̃σ near C−
and standard energy estimates for the wave equation in {t ≤ T1} away from Y− as
in the derivation of Equation (3.29) of [41], and thereby obtain

‖u‖H1({t≤T1}) . ‖P̃σu‖H0({t≤T1}); (4.2)

thus, f ∈ C∞(X̃), supp f ⊂ {t ≥ T1} implies supp P̃−1
σ f ⊂ {t ≥ T1}. Choosing

φ ∈ C∞c (X) with support in {t ≥ T1} and ψ ∈ C∞(X̃) with support in {t ≤ T1}, we

therefore obtain ψP̃−1
σ φ = 0. Since P̃−1

σ is meromorphic, this continues to hold for
all σ ∈ C such that Imσ > 1/2− s. Since T1 ≤ T0 is arbitrary, this, together with
standard energy estimates on the asymptotically de Sitter space X, proves that
P−1
σ propagates supports forward, provided Pσ is invertible. Moreover, elements of

ker P̃σ are supported in C+.
The invertibility of Pσ is a consequence of [2, Lemma 8.3], also see Footnote 15

there: Let E : Hs−1(X)•,− → Hs−1(X̃) be a continuous extension operator that

extends by 0 in C− and R : Hs(X̃)→ Hs(X)−,− the restriction, then R ◦ P̃−1
σ ◦E

does not have poles; and since⋃
T1≤T0

Hs({t > T1})•,− ⊂ Hs(X)•,−

(where • denotes supported distributions at {t = T1}, resp. Y−) is dense, R◦P̃−1
σ ◦E

in fact maps into Hs(X)•,−, thus P−1
σ = R ◦ P̃−1

σ ◦ E indeed exists and has the
claimed properties. �

In our quest for finding forward solutions of semilinear equations, we restrict
ourselves to a submanifold with boundary Ω ⊂ X containing and localized near

45One might need to take two copies of X to construct X̃; see [40].
46We are using variable order Sobolev spaces as in [2, Section 1, Appendix].
47The choice of signs here is opposite to the one in [40], since here we are going to construct

the forward solution operator on X.
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future infinity, so that we can work in fixed order Sobolev spaces; moreover, it will
be useful to measure the conormal regularity of solutions to the linear equation
at the conormal bundle of the boundary of X at future infinity more precisely.
So let Hs,k(X̃, Y+) be the subspace of Hs(X̃) with k-fold regularity with respect

to the Ψ0(X̃)-module M of first order ΨDOs with principal symbol vanishing on
N∗Y+. A result of Haber and Vasy, [20, Theorem 6.3], with s0 = 1/2 − Imσ

in our case, shows that f ∈ Hs−1,k(X̃, Y+), P̃σu = f , u a distribution, in fact

imply that u ∈ Hs,k(X̃, Y+). So if we let Hs,k(Ω)•,− denote the space of all u ∈
Hs(X)•,− which are restrictions to Ω of functions in Hs,k(X̃, Y+), supported in
Ω ∪ C+, the argument of Theorem 4.1 shows that we have a forward solution
operator Sσ : Hs−1,k(Ω)•,− → Hs,k(Ω)•,−, provided

s < 1/2− Imσ. (4.3)

4.1.1. The backward problem. Another problem that we will briefly consider below
is the backward problem, i.e. where one solves the equation on X backward from
Y+, which is the same, up to relabelling, as solving the equation forward from
Y−. Thus, we have a backward solution operator S−σ : Hs−1,k(Ω)−,• → Hs,k(Ω)−,•

(where Ω is chosen as above so that we can use constant order Sobolev spaces),
provided s > 1/2− Imσ. Similarly to the above, − denotes extendible distributions
at ∂Ω∩X◦ and • supported distributions at Y+; the module regularity is measured
at Y+.

4.2. Algebra properties of Hs,k(Ω)•,−. Let us call a polynomially bounded mea-
surable function w : Rn → (0,∞) a weight function. For such a weight function w,
we define

H(w)(Rn) = {u ∈ S′(Rn) : wû ∈ L2(Rn)}.
The following lemma is similar in spirit to, but different from, Strichartz’ result on
Sobolev algebras [37]; it is the basis for the multiplicative properties of the more
delicate spaces considered below.

Lemma 4.2. Let w1, w2, w be weight functions such that one of the quantities

M+ := sup
ξ∈Rn

∫ (
w(ξ)

w1(η)w2(ξ − η)

)2

dη

M− := sup
η∈Rn

∫ (
w(ξ)

w1(η)w2(ξ − η)

)2

dξ

(4.4)

is finite. Then H(w1)(Rn) ·H(w2)(Rn) ⊂ H(w)(Rn).

Proof. For u, v ∈ S(Rn), we use Cauchy-Schwarz to estimate

‖uv‖2H(w) =

∫
w(ξ)2|ûv(ξ)|2 dξ

≤
∫
w(ξ)2

(∫
w1(η)|û(η)|w2(ξ − η)|v̂(ξ − η)|w1(η)−1w2(ξ − η)−1 dη

)2

dξ

≤
∫ (∫ (

w(ξ)

w1(η)w2(ξ − η)

)2

dη

)

×
(∫

w1(η)2|û(η)|2w2(ξ − η)2|v̂(ξ − η)|2 dη
)
dξ
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≤M+‖u‖2H(w1)‖v‖2H(w2)

as well as

‖uv‖2H(w) ≤
∫ (∫

w2(ξ − η)2|v̂(ξ − η)|2 dη
)

×

(∫ (
w(ξ)

w1(η)w2(ξ − η)

)2

w1(η)2|û(η)|2 dη

)
dξ

= ‖v‖2H(w2)

∫
w1(η)2|û(η)|2

(∫ (
w(ξ)

w1(η)w2(ξ − η)

)2

dξ

)
dη

≤M−‖u‖2H(w1)‖v‖2H(w2) .

Since S(Rn) is dense in H(w1)(Rn) and H(w2)(Rn), the lemma follows. �

In particular, if ∥∥∥∥ w(ξ)

w(η)w(ξ − η)

∥∥∥∥
L∞ξ L

2
η

<∞, (4.5)

then H(w) is an algebra.
For example, the weight function w(ξ) = 〈ξ〉s for s > n/2 satisfies (4.5) as we will

check below, which implies that Hs(Rn) is an algebra for s > n/2; this is the special
case k = 0 of Lemma 4.4 below, and is well-known, see e.g. [38, Chapter 13.3]. Also,
product-type weight functions wd(ξ) = 〈ξ′〉s〈ξ′′〉k (where ξ = (ξ′, ξ′′) ∈ Rd+(n−d)

for s > d/2, k > (n− d)/2 satisfy (4.5).
The following lemma, together with the triangle inequality 〈ξ〉α . 〈η〉α+〈ξ−η〉α

for α ≥ 0, will often be used to check conditions like (4.4).

Lemma 4.3. Suppose α, β ≥ 0 are such that α+ β > n. Then∫
Rn

dη

〈η〉α〈ξ − η〉β
∈ L∞(Rnξ ).

Proof. Splitting the domain of integration into the two regions {〈η〉 < 〈ξ− η〉} and
{〈η〉 ≥ 〈ξ − η〉}, we obtain the bound∫

Rn

dη

〈η〉α〈ξ − η〉β
≤ 2

∫
Rn

dη

〈η〉α+β
,

which is finite in view of α+ β > n. �

Another important consequence of Lemma 4.2 is that Hs′(Rn) is an Hs(Rn)-
module provided |s′| ≤ s, s > n/2, which follows for s′ ≥ 0 from M+ < ∞, and
for s′ < 0 either by duality or from M− <∞ (with M± as in the statement of the
lemma, with the corresponding weight functions).

Lemma 4.4. Write x ∈ Rn as x = (x′, x′′) ∈ Rd+(n−d). For s ∈ R, k ∈ N0, let

Ys,kd (Rn) = {u ∈ Hs(Rn) : Dk
x′′u ∈ Hs(Rn)}.

Then for s > d/2, s+ k > n/2, Ys,kd (Rn) is an algebra.
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Proof. Using the Leibniz rule, we see that it suffices to show: If u, v ∈ Ys,kd , then

Dα
x′′uD

β
x′′v ∈ Hs, provided |α| + |β| ≤ k. Since Dα

x′′u ∈ Y
s,k−|α|
d and Dβ

x′′v ∈
Ys,k−|β|d , this amounts to showing that

Ys,ad · Ys,bd ⊂ H
s if a+ b ≥ k. (4.6)

Using the characterization Ys,ad = H(w) for w(ξ) = 〈ξ〉s〈ξ′′〉k, Lemma 4.2 in turn
reduces this to the estimate∫

〈ξ〉2s

〈η〉2s〈η′′〉2a〈ξ − η〉2s〈ξ′′ − η′′〉2b
dη

.
∫

dη

〈η′′〉2a〈ξ − η〉2s〈ξ′′ − η′′〉2b
+

∫
dη

〈η〉2s〈η′′〉2a〈ξ′′ − η′′〉2b

≤
∫

dη′

〈ξ′ − η′〉2s′
∫

dη′′

〈η′′〉2a〈ξ′′ − η′′〉2b+2(s−s′)

+

∫
dη′

〈η′〉2s′
∫

dη′′

〈η′′〉2a+2(s−s′)〈ξ′′ − η′′〉2b
,

where we choose d/2 < s′ < s such that a+ b+ s− s′ > (n− d)/2, which holds if
k+s > (n−d)/2+s′, which is possible by our assumptions on s and k. The integrals
are uniformly bounded in ξ: For the η′-integrals, this follows from s′ > d/2; for the
η′′-integrals, we use Lemma 4.3. �

We shall now use this (non-invariant) result to prove algebra properties for spaces
with iterated module regularity: Consider a compact manifold without boundary
X and a submanifold Y . Let M ⊃ Ψ0(X) be the Ψ0(X)-module of first order
ΨDOs whose principal symbol vanishes on N∗Y . For s ∈ R, k ∈ N0, define

Hs,k(X,Y ) = {u ∈ Hs(X) : Mku ∈ Hs(X)}.

Proposition 4.5. Suppose dim(X) = n and codim(Y ) = d. Assume that s > d/2
and s+ k > n/2. Then Hs,k(X,Y ) is an algebra.

Proof. Away from Y , Hs,k(X,Y ) is just Hs+k(X), which is an algebra since s+k >
dim(X)/2. Thus, since the statement is local, we may assume that we have a

product decomposition near Y , namely X = Rdx′ × Rn−dx′′ , Y = {x′ = 0}, and
that we are given arbitrary u, v ∈ Hs,k(X,Y ) with compact support close to (0, 0)
for which we have to show uv ∈ Hs,k(X,Y ). Notice that for f ∈ Hs(X) with
such small support, f ∈ Hs,k(X,Y ) is equivalent to M′kf ∈ Hs(X), where M′
is the C∞(M)-module of differential operators generated by Id, ∂x′′i , x

′
j∂x′k , where

1 ≤ i ≤ n− d, 1 ≤ j, k ≤ d.
Thus the proposition follows from the following statement: For s, k as in the

statement of the proposition,

Hs,k(Rn,Rn−d) := {u ∈ Hs(Rn) : (x′)α̃Dα
x′D

β
x′′u ∈ H

s(Rn), |α̃| = |α|, |α|+ |β| ≤ k}
is an algebra. Using the Leibniz rule, we thus have to show that

((x′)α̃Dα
x′D

β
x′′u)((x′)γ̃Dγ

x′D
δ
x′′v) ∈ Hs, (4.7)

provided |α̃| = |α|, |γ̃| = |γ|, |α| + |β| + |γ| + |δ| ≤ k. Since the two factors in
(4.7) lie in Hs,k−|α|−|β| and Hs,k−|γ|−|δ|, respectively, this amounts to showing that
Hs,a ·Hs,b ⊂ Hs for a + b ≥ k. This however is easy to see, since Hs,c ⊂ Ys,cd for

all c ∈ N0, and Ys,ad · Ys,bd ⊂ Hs was proved in (4.6). �
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In order to be able to obtain sharper results for particular non-linear equations
in Section 4.3, we will now prove further results in the case codim(Y ) = 1, which
we will assume to hold from now on; also, we fix n = dim(X).

Proposition 4.6. Assume that s > 1/2 and k > (n − 1)/2. Then Hs,k(X,Y ) ·
Hs−1,k(X,Y ) ⊂ Hs−1,k(X,Y ).

Proof. Using the Leibniz rule, this follows from Ys,a1 · Ys−1,b
1 ⊂ Hs−1 for a+ b ≥ k.

This, as before, can be reduced to the local statement on Rn = Rx1 × Rn−1
x′ with

Y = {x1 = 0}. We write ξ = (ξ1, ξ
′) ∈ R1+(n−1) and η = (η1, η

′) ∈ R1+(n−1). By
Lemma 4.2, the case s ≥ 1 follows from the estimate∫

〈ξ〉2(s−1)

〈η〉2s〈η′〉2a〈ξ − η〉2(s−1)〈ξ′ − η′〉2b
dη

.
∫

dη

〈η〉2〈η′〉2a〈ξ − η〉2(s−1)〈ξ′ − η′〉2b
+

∫
dη

〈η〉2s〈η′〉2a〈ξ′ − η′〉2b

≤ 2

∫
dη1

〈η1〉2s

∫
dη′

〈η′〉2a〈ξ′ − η′〉2b
∈ L∞ξ

by Lemma 4.3.

If 1/2 < s ≤ 1, then ξ1 and ξ′ play different roles.48 Let u ∈ Ys,a1 , v ∈ Ys−1,b
1 ,

and put

u0(ξ) = 〈ξ〉s〈ξ′〉au(ξ) ∈ L2(Rn), v0(ξ) = 〈ξ〉s−1〈ξ′〉bv(ξ) ∈ L2(Rn).

Then

〈ξ〉s−1ûv(ξ) =

∫
〈η〉1−s

〈ξ〉1−s〈η′〉b〈ξ − η〉s〈ξ′ − η′〉a
u0(ξ − η)v0(η) dη,

hence by Cauchy-Schwartz and Lemma 4.3∫
〈ξ〉2(s−1)|ûv(ξ)|2 dξ

≤
∫ (∫

dη′

〈η′〉2b〈ξ′ − η′〉2a

)(∫ ∣∣∣∣∫ 〈η〉1−s

〈ξ〉1−s〈ξ − η〉s
u0(ξ − η)v0(η) dη1

∣∣∣∣2 dη′
)
dξ

.
∫∫ (∫

|u0(ξ − η)|2 dη1

)(∫
〈η〉2(1−s)

〈ξ〉2(1−s)〈ξ − η〉2s
|v0(η)|2 dη1

)
dη′ dξ

.
∫∫
‖u0(·, ξ′ − η′)‖2L2 |v0(η)|2

×
(∫

1

〈ξ − η〉2s
+

1

〈ξ〉2(1−s)〈ξ − η〉2(2s−1)
dξ1

)
dξ′ dη

. ‖u‖2Ys,a1
‖v‖2Ys−1,b

1

,

since 1/2 < s ≤ 1, thus 1 − s ≥ 0 and 2s − 1 > 0, and the ξ1-integral is thus
bounded from above by∫

1

〈ξ1 − η1〉2s
+

1

〈ξ1〉2(1−s)〈ξ1 − η1〉2(2s−1)
dξ1 ∈ L∞η1

.

48The background regularity to be proved is Hs−1, s− 1 ≤ 0, thus the continuity of multipli-

cation in the conormal direction to Y is proved by ‘duality’ (i.e. using Lemma 4.2 with M− <∞),
whereas the continuity in the tangential (to Y ) directions, where both factors have k > (n− 1)/2

derivatives, is proved directly (i.e. using Lemma 4.2 with M+ <∞).
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The proof is complete. �

For semilinear equations whose non-linearity does not involve any derivatives,
one can afford to lose derivatives in multiplication statements. We give two useful
results in this context, the first being a consequence of Proposition 4.6.

Corollary 4.7. Let µ ∈ C∞(X) be a defining function for Y , i.e. µ|Y ≡ 0, dµ 6= 0
on Y , and µ vanishes on Y only. Suppose s > 1/2 and ` ∈ C are such that
Re `+3/2 > s. Then multiplication by µ`+ defines a continuous map Hs,k(X,Y )→
Hs−1,k(X,Y ) for all k ∈ N0.

Proof. By the Leibniz rule, it suffices to prove the statement for k = 0. We
have µ`+ ∈ HRe `+1/2−ε;∞(X,Y ) for all ε > 0 49, hence the corollary follows from
Proposition 4.6, since one has Re ` + 1/2 − ε ≥ s − 1 for some ε > 0 provided
Re `+ 3/2 > s. �

Proposition 4.8. Let 0 ≤ s′, s1, s2 < 1/2 be such that s′ < s1 + s2 − 1/2, and let

k > (n− 1)/2. Then Hs1,k(X,Y ) ·Hs2,k(X,Y ) ⊂ Hs′,k(X,Y ).

Proof. Using the Leibniz rule, this reduces to the statement that Ys1,a1 ·Ys2,b1 ⊂ Hs′

if a + b ≥ k. Splitting covariables ξ = (ξ1, ξ
′), η = (η1, η

′), Lemma 4.2 in turn
reduces this to the observation that∫

〈ξ〉2s′

〈η〉2s1〈η′〉2a〈ξ − η〉2s2〈ξ′ − η′〉2b
dη

.

(∫
dη1

〈η1〉2(s1−s′)〈ξ1 − η1〉2s2
+

∫
dη1

〈η1〉2s1〈ξ1 − η1〉2(s2−s′)

)
×
∫

dη′

〈η′〉2a〈ξ′ − η′〉2b

is uniformly bounded in ξ by Lemma 4.3 in view of s′ < s1 +s2−1/2 < min{s1, s2},
thus s1−s′ > 0 and s2−s′ > 0, and s1+s2−s′ > 1/2, as well as a+b > (n−1)/2. �

Corollary 4.9. Let p ∈ N and s = 1/2−ε with 0 ≤ ε < 1/2p, and let k > (n−1)/2.
Then u ∈ Hs,k(X,Y ) ⇒ up ∈ H0,k(X,Y ).

Proof. Proposition 4.8 gives u2 ∈ H1/2−2ε−ε′2,k for all ε′2 > 0, thus u3 ∈ H1/2−3ε−ε′3,k

for all ε′3 > 0, since ε′2 > 0 is arbitrary; continuing in this way gives up ∈
H1/2−pε−ε′p,k for all ε′p > 0, and the claim follows. �

4.3. A class of semilinear equations. Recall that we have a forward solution
operator Sσ : Hs−1,k(Ω)•,− → Hs,k(Ω)•,− of Pσ, defined in (4.1), provided s <
1/2− Imσ. Let us fix such s ∈ R and σ ∈ C. Undoing the conjugation, we obtain
a forward solution operator

S = µ−1/2µ−iσ/2+(n+1)/4Sσµ
iσ/2−(n+1)/4µ−1/2,

S : µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,− → µ(n−1)/4+Imσ/2Hs,k(Ω)•,−

of (�g − (n− 1)2/4− σ2). Since g is a 0-metric, the natural vector fields to appear
in a non-linear equation are 0-vector fields; see Section 4.5 for a brief discussion

49Indeed, the Fourier transform of χ(x)x`+ on R, with χ ∈ C∞c (R), is bounded by a constant

multiple of 〈ξ〉−Re `−1, which is an element of 〈ξ〉−rL2
ξ if and only if r − Re `− 1 < −1/2, i.e. if

Re `+ 1/2 > r.
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of these concepts. However, since the analysis is based on ordinary Sobolev spaces
relative to which one has b-regularity (regularity with respect to the module M),
we consider b-vector fields in the non-linearities. In case one does use 0-vector
fields, the solvability conditions can be relaxed; see Section 4.4.

Theorem 4.10. Suppose s < 1/2− Imσ. Let

q : µ(n−1)/4+Imσ/2Hs,k(Ω)•,− × µ(n−1)/4+Imσ/2Hs,k−1(Ω; bT ∗Ω)•,−

→ µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,−

be a continuous function with q(0, 0) = 0 such that there exists a continuous non-
decreasing function L : R≥0 → R satisfying

‖q(u, bdu)− q(v, bdv)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R.

Then there is a constant CL > 0 so that the following holds: If L(0) < CL, then for
small R > 0, there exists C > 0 such that for all f ∈ µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,−

with norm ≤ C, the equation(
�g −

(n− 1

2

)2

− σ2

)
u = f + q(u, bdu)

has a unique solution u ∈ µ(n−1)/4+Imσ/2Hs,k(Ω)•,−, with norm ≤ R, that depends
continuously on f .

Proof. Use the Banach fixed point theorem as in the proof of Theorem 2.24. �

Remark 4.11. As in Theorem 2.24, we can also allow non-linearities q(u, bdu,�gu),
provided

q : µ(n−1)/4+Imσ/2Hs,k(Ω)•,− × µ(n−1)/4+Imσ/2Hs−1,k(Ω; bT ∗Ω)•,−

× µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,−

→ µ(n+3)/4+Imσ/2Hs−1,k(Ω)•,−

is continuous, q(0, 0, 0) = 0 and q has a small Lipschitz constant near 0.

4.4. Semilinear equations with polynomial non-linearity. Next, we want to
find a forward solution of the semilinear PDE(

�g −
(n− 1

2

)2

− σ2

)
u = f + cµAupX(u) (4.8)

where c ∈ C∞(X̃), and X(u) =
∏q
j=1Xju is a q-fold product of derivatives of u

along vector fields Xj ∈ M.50 Note that the derivatives in the non-linearity lie in
the moduleM (in coordinates: µ∂µ, ∂y), whereas, as mentioned above, the natural

vector fields are 0-derivatives (in coordinates: x∂x = 2µ∂µ and x∂y = µ1/2∂y), but
since it does not make the computation more difficult, we consider module instead
of 0-derivatives and compensate this by allowing any weight µA in front of the
non-linearity.

50What follows is of course just a computation in the course of which we will obtain conditions
on A, p, q which guarantee that the map u 7→ cµAupX(u) satisfies the conditions of the map q in

Theorem 4.10.



SEMILINEAR WAVE EQUATIONS 53

Rephrasing the PDE in terms of Pσ using ũ = µiσ/2−(n+1)/4+1/2u and f̃ =
µ−1/2+iσ/2−(n+1)/4f , we obtain

Pσũ = f̃ + cµAµ−1/2+iσ/2−(n+1)/4µ(p+q)(−iσ/2+(n−1)/4)ũp
q∏
j=1

(fj +Xj ũ)

= f̃ + cµ`ũp
q∏
j=1

(fj +Xj ũ),

where fj ∈ C∞(X̃) and

` = A+ (p+ q − 1)(−iσ/2 + (n− 1)/4)− 1. (4.9)

Therefore, if ũ ∈ Hs,k(Ω)•,−, we obtain that the right hand side of the equation

lies in Hs,k−1(Ω)•,− if f̃ ∈ Hs,k−1(Ω)•,−, s > 1/2, k > (n+ 1)/2, which by Propo-
sition 4.5 implies that Hs,k−1(Ω)•,− is an algebra, and if

Re `+ 1/2 = A+ (p+ q − 1)(Imσ/2 + (n− 1)/4)− 1/2 > s, (4.10)

since this condition ensures that µ` ∈ Hs,∞(X), which implies that multiplication
by µ` is a bounded map Hs,k−1(Ω)•,− → Hs,k−1(Ω)•,−.51 Given the restriction
(4.3) on s and Imσ, we see that by choosing s > 1/2 close to 1/2, Imσ < 0 close
to 0, we obtain the condition

p+ q > 1 +
4(1−A)

n− 1
. (4.11)

If these conditions are satisfied, the right hand side of the re-written PDE lies in
Hs,k−1(Ω)•,− ⊂ Hs−1,k(Ω)•,−, so Theorem 4.10 is applicable, and thus (4.8) is
well-posed in these spaces.

From (4.11) with A = 0, we see that quadratic non-linearities are fine for n ≥ 6,
cubic ones for n ≥ 4.

To sum this up, we revert back to u = µ(n−1)/4−iσ/2ũ and f = µ(n+3)/4−iσ/2f̃ :

Theorem 4.12. Let s > 1/2, k > (n + 1)/2, and assume A ∈ R and p, q ∈ N0,
p + q ≥ 2 satisfy condition (4.10). Moreover, suppose σ ∈ C satisfies (4.3), i.e.

Imσ < s − 1/2. Finally, let c ∈ C∞(M̃) and X(u) =
∏q
j=1Xju, where Xj are

vector fields in M. Then for small enough R > 0, there exists a constant C > 0
such that for all f ∈ µ(n+3)/4+Imσ/2Hs,k(Ω)•,− with norm ≤ C, the PDE(

�g −
(n− 1

2

)2

− σ2

)
u = f + cµAupX(u)

has a unique solution u ∈ µ(n−1)/4+Imσ/2Hs,k(Ω)•,−, with norm ≤ R, that depends
continuously on f .

The same conclusion holds if the non-linearity is a finite sum of terms of the
form cµAupX(u), provided each such term separately satisfies (4.3).

51If one works in higher regularity spaces, s ≥ 3/2, we in fact only need Re `+ 3/2 > s, since

then multiplication by µ` is a bounded map Hs,k−1(Ω)•,− ⊂ Hs−1,k(Ω)•,− → Hs−1,k(Ω)•,−.
However, the solvability criterion (4.11) would be weaker, namely the role of the dimension n

shifts by 2, since in order to use s ≥ 3/2, we need Imσ < −1.
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Proof. Reformulating the PDE in terms of ũ and f̃ as above, this follows from an
application of the Banach fixed point theorem to the map

Hs,k(Ω)•,− 3 ũ 7→ Sσ

(
f̃ + µ`ũp

q∏
j=1

(fj +Xj ũ)

)
∈ Hs,k(Ω)•,−

with ` given by (4.9) and fj ∈ C∞(X̃). Here, p + q ≥ 2 and the smallness of R
ensure that this map is a contraction on the ball of radius R in Hs,k(Ω)•,−. �

Remark 4.13. Even though the above conditions force Imσ < 0, let us remark
that the conditions of the theorem, most importantly (4.10), can be satisfied if
m2 = (n− 1)2/4 + σ2 > 0 is real, which thus means that we are in fact considering
a non-linear equation involving the Klein-Gordon operator �g − m2. Indeed, let
σ = iσ̃ with σ̃ < 0, then condition (4.10) with A = 0, p + q = 2, becomes σ̃ >
2 − (n − 1)/2 (where we accordingly have to choose s > 1/2 close, depending on
σ̃, to 1/2), and the requirement σ̃ < 0 forces n ≥ 6. On the other hand, we want
(n− 1)2/4− σ̃2 = m2 > 0; we thus obtain the condition

0 < m2 <

(
n− 1

2

)2

−
(

2− n− 1

2

)2

for masses m that Theorem 4.12 can handle, which does give a non-trivial range of
allowed m for n ≥ 6.

Remark 4.14. Let us compare the numerology in Theorem 4.12 with the numerol-
ogy for the static model of de Sitter space in Section 2: First, we can solve fewer
equations globally on de Sitter space, and second, we need stronger regularity as-
sumptions in order to make an iterative argument work: In the static model, we
needed to be in a b-Sobolev space of order > (n + 2)/2, which in the non-blown-
up picture corresponds to 0-regularity of order > (n + 2)/2, whereas in the global
version, we need a background Sobolev regularity > 1/2, relative to which we have
‘b-regularity’ (i.e. regularity with respect to the module M) of order > (n+ 1)/2.
This comparison is of course only a qualitative one, though, since the underlying
geometries in the two cases are different.

Using Proposition 4.6 and Corollary 4.7, one can often improve this result. Thus,
let us consider the most natural case of equation (4.8) in which we use 0-derivatives
Xj , corresponding to the 0-structure on the not even-ified manifold X, and no addi-
tional weight. The only difference this makes is if there are tangential 0-derivatives
(in coordinates: µ1/2∂y). For simplicity of notation, let us therefore assume that

Xj = µ1/2X̃j , 1 ≤ j ≤ α, and Xj = X̃j , α < j ≤ q, where the X̃j are vector fields

in M. Then the PDE (4.8), rewritten in terms of Pσ, ũ and f̃ , becomes

Pσũ = f̃ + cµ`ũp
q∏
j=1

(f̃j + X̃j ũ) (4.12)

with f̃j ∈ C∞(X̃), where

` = α/2 + (p+ q − 1)(−iσ/2 + (n− 1)/4)− 1.

First, suppose that there are no derivatives in the non-linearity so that p ≥ 2, q =
α = 0. Then µ`ũp ∈ Hs−1,k(Ω)•,− provided Re `+ 3/2 > s > 1/2 by Corollary 4.7;
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choosing s arbitrarily close to 1/2, this is equivalent to

Imσ/2 + (n− 1)/4 > 0. (4.13)

This is a very natural condition: The solution operator for the linear wave equa-
tion produces solutions with asymptotics µ(n−1)/4±iσ,52 and the non-linear equa-
tion (4.8) should therefore only be well-behaved if solutions to the linear equation
decay at infinity, i.e. if ± Imσ+(n−1)/4 ≥ 0. Since we need Imσ < 0 to be allowed
to take s > 1/2, condition (4.13) is equivalent to the (small) decay of solutions to
the linear equation at infinity (where µ = 0).

Next, let us assume that q > 0. Then the non-linear term in equation (4.12) is
an element of

µ`Hs,k(Ω)•,− ·Hs,k−1(Ω)•,− ⊂ Hs,k−1(Ω)•,−

by Proposition 4.6, provided Re `+ 1/2 > s > 1/2, which gives the condition

Imσ/2 + (n− 1)/4 > 1− α/2

where we again choose s > 1/2 arbitrarily close to 1/2, i.e. for α = 2, we again get
condition (4.13), and for α > 2, we get an even weaker one.

Finally, let us discuss a non-linear term of the form cµAup, p ≥ 2, in the setting
of even lower regularity 0 ≤ s < 1/2, the technical tool here being Corollary 4.9:

Rewriting the PDE (4.8) with this non-linearity in terms of Pσ, ũ and f̃ , we get

Pσũ = f̃ + cµ`ũp, ` = A+ (p− 1)(−iσ/2 + (n− 1)/4)− 1.

Let s = 1/2− ε with 0 ≤ ε < 1/2p. Then if ũ ∈ H1/2−ε,k(Ω)•,− with k > (n− 1)/2,
Corollary 4.9 yields ũp ∈ H0,k(Ω)•,−, thus

µ`ũp ∈ H0,k(Ω)•,− ⊂ Hs−1,k(Ω)•,−

provided Re ` ≥ 0, i.e.

n > 1 +
4(1−A)

p− 1
− 2 Imσ, (4.14)

where we still require Imσ < 1/2− s = ε, which in particular allows σ to be real if
ε > 0.

In summary:

Theorem 4.15. Let p ≥ 2 be an integer, 1/2 − 1/2p < s ≤ 1/2, k > (n − 1)/2,
and suppose σ ∈ C is such that Imσ < 1/2− s. Moreover, assume A ∈ R and the
dimension n satisfy condition (4.14). Then for small enough R > 0, there exists
a constant C > 0 such that for all f ∈ µ(n+3)/4+Imσ/2Hs,k(Ω)•,− with norm ≤ C,
the PDE (

�g −
(n− 1

2

)2

− σ2

)
u = f + cµAup

has a unique solution u ∈ µ(n−1)/4+Imσ/2Hs,k(Ω)•,−, with norm ≤ R, that depends
continuously on f .

In particular, if 1/4 < s < 1/2, 0 < Imσ < 1/2 − s and A = 0, then quadratic
non-linearities are fine for n ≥ 5; if Imσ = 0 and A = 0, then they work for n ≥ 6.

52See (2.37), and recall that we are working with the even-ified manifold with boundary defining
function µ = x2.
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4.4.1. Backward solutions to semilinear equations with polynomial non-linearity.
Recalling the setting of Section 4.1.1, let us briefly turn to the backward problem
for (4.8), which we rephrase in terms of Pσ as above. For simplicity, let us only
consider the ‘least sophisticated’ conditions, namely s > 1/2, k > (n+ 1)/2,

A+ (p+ q − 1)(Imσ/2 + (n− 1)/4)− 1/2 > s, (4.15)

and, this is the important change compared to the forward problem, s > 1/2−Imσ,
where the latter guarantees the existence of the backward solution operator S−σ .
Thus, if Imσ > 0 is large enough and s > 1/2 satisfies (4.15), then (4.8) is solvable
in any dimension.

In the special case that we only consider 0-derivatives and no extra weight, which
corresponds to putting A = q + α/2, we obtain the condition

Imσ >
4(1− q − α/2)− (p+ q − 1)(n− 1)

2(p+ q + 1)

if we choose s > 1/2− Imσ close to 1/2, which in particular allows Imσ ≥ 0, and
thus σ2 arbitrary, if p > 1 + 4

n−1 (so p ≥ 2 is acceptable if n ≥ 6) or q + α/2 ≥ 1.

4.5. From static parts to global de Sitter space. Let us consider the equation

(�g −m2)u = f + q(u, 0du), (4.16)

where the reason for using the 0-differential 0d will be given momentarily. The idea
is that every point in X lies in the interior of the backward light cone from some
point p at future infinity Y+, denoted Sp. Then blowing up X at p, we obtain
a static part of (asymptotically) de Sitter space where the solvability statements
have been explained in Section 2. We then solve equation (4.16) on Sp, thereby
obtaining a forward solution up, and by local uniqueness for �g−m2 in X, all such
solutions agree on their overlap, i.e. up ≡ uq on Sp ∩ Sq. Therefore, we can define
a function u by setting u = up on Sp, p ∈ Y+, which then is a solution of (4.16) on
X. To make this precise, we need to analyze the relationships between the function
spaces on the Sp, p ∈ Y+, and X. As we will see in Lemma 4.16 below, b-Sobolev

spaces on the blow-ups Sp of X at boundary points are closely related to 0-Sobolev
spaces on X.

Recall the definition of 0-Sobolev spaces on a manifold with boundary M (for us,
M = X) with a 0-metric, i.e. a metric of the form x−2ĝ with x a boundary defining
function, where ĝ extends non-degenerately to the boundary: If V0(M) = xV(M)
denotes the Lie algebra of 0-vector fields, where V(M) are smooth vector fields on
M , and Diff∗0(M) the enveloping algebra of 0-differential operators, then

Hk
0 (M) = {u ∈ L2(M,dvol) : Pu ∈ L2(M,dvol), P ∈ Diffk0(M)}.

For clarity, we shall write L2
0(M) = L2(M,dvol). We also recall the definition of

the 0-(co)tangent spaces: If Ip denotes the ideal of C∞(M) functions vanishing at
p ∈ M , then the 0-tangent space at p is defined as 0TpM = V0(M)/Ip · V0(M),
and the 0-cotangent space at p, 0T ∗pM , as the dual of 0TpM . In local coordinates

(x, y) ∈ Rx × Rn−1
y near the boundary of M , we have dvol = f(x, y)dxx

dy
xn−1 with

f smooth and non-vanishing, and V0(M) is spanned by x∂x and x∂y; also x∂x and
x∂yj , j = 2, . . . , n, is a basis of 0TpM (for p ∈ ∂M , which is the only place where

0-spaces differ from the standard spaces), and dx
x ,

dyj
x , j = 2, . . . , n, is a basis of

0T ∗pM .
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Now, let Ω ⊂ X be a domain as in Section 4.1. Moreover, let βp : Sp → X be the
blow-down map, and let Ωp ⊂ Sp be a domain with corners as in Section 2, whose
boundary is the union of ∂Sp and an ‘artificial’ spacelike boundary; let us in fact
choose Ωp = β−1

p (Ω). We then have:

Lemma 4.16. Let k ∈ N0, ` ∈ R. Then there are constants C > 0 and Cδ > 0
such that for all δ > 0,

‖f‖
H
k,`−(n−1)/2−δ
0 (Ω)•

≤ Cδ sup
p∈Y+

‖β∗pf‖Hk,lb (Ωp)•,− ≤ CCδ‖f‖Hk,`0 (Ω)• . (4.17)

Here, • indicates supported distributions at the ‘artificial’ boundary and − extendible
distributions at all other boundary hypersurfaces.

Proof. Let us work locally near a point p ∈ Y+; since Y+
∼= Sn−1 is compact, all

constructions below can be made uniformly in p. The only possible issues are near
the boundary Y+ = {x = 0}, with x a boundary defining function; hence, let us
work in a product neighborhood Y+ × [0, 2ε)x, ε > 0, of Y+, and let us assume u is
supported is Y+ × [0, ε].

We use coordinates x, y2, . . . , yn such that yj = 0 at p. Coordinates on Sp
are then x, z2, . . . , zn with zj = yj/x, i.e. βp(x, z) = (x, xz), with the restriction∑n
j=2 |zj |2 ≤ 1. Therefore,

‖β∗pf‖2L2
b
≈
∫
Sp

|β∗pf(x, z)|2 dx
x
dz =

∫
βp(Sp)

|f(x, xz)|2 dx
x
dz

≤
∫
|f(x, y)|2 dx

x

dy

xn−1
≈ ‖f‖2L2

0
.

Adding weights to this estimate is straightforward. Next, we observe

x∂x(β∗pf)(x, z) = x∂xf(x, xz) + zx∂yf(x, xz)

∂z(β
∗
pf)(x, z) = x∂yf(x, xz),

(4.18)

and since |z| ≤ 1, we conclude that β∗pf ∈ H1
b(Sp) is equivalent to f, x∂xf, x∂yf ∈

L2
0(βp(Sp)), which proves the second inequality in (4.17) in the case k = 1; the

general case is similar.
For the first inequality in (4.17), we first note that the additional weight comes

from the number of static parts, i.e. interiors of backward light cones from points in
Y+, that one needs to cover any fixed half space {x ≥ x0}: Namely, for 0 < x0 ≤ ε,
let B(x0) ⊂ Y+ be a set of points such that every point in {x ≥ x0} lies in Sp for

some p ∈ B(x0); then we can choose B(x0) such that |B(x0)| ≤ Cx
−(n−1)
0 , where

| · | denotes the number of elements in a set. This follows from the observation
that the area of the slice x = x0 of Sp within Y+

∼= Sn−1 53 is bounded from below

by cxn−1
0 for some p-independent constant c > 0. Indeed, note that null-geodesics

of the 0-metric g are, up to reparametrization, the same as null-geodesics of the
conformally related metric x2g, which is a non-degenerate Lorentzian metric up to
Y+.54

Thus, putting α = (n− 1)/2 + δ, δ > 0, we estimate∫
x≤ε
|xαf(x, y)| dx

x

dy

xn−1
=

∞∑
j=0

∫
2−j−1ε<x≤2−jε

|xαf(x, y)|2 dx
x

dy

xn−1

53Keep in mind that we are working in a product neighborhood of Y+.
54Also see Figure 5.
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.
∞∑
j=0

2−2αj
∑

p∈B(2−j−1ε)

‖β∗pf‖2L2
b
.
∞∑
j=0

2−2αj(2−j−1ε)−n+1 sup
p∈Y+

‖β∗pf‖2L2
b

.
∞∑
j=0

2−j(2α−n+1) sup
p∈Y+

‖β∗pf‖2L2
b
,

with the sum converging since 2α − n + 1 = 2δ > 0. Weights and higher order
Sobolev spaces are handled similarly, using (4.18). �

In particular, this justifies why in equation (4.16), we have to take d = 0d : Hk,`
0 (X)→

Hk−1,`
0 (X; 0T ∗X) in order to make the global equation interact well with the static

patches.
Since we want to consider local problems to solve the global one, the non-linearity

q must be local in the sense that q(u, 0du)(p) for p ∈ X only depends on p and its
arguments evaluated at p; let us for simplicity assume that q is in fact a polynomial
as in (2.43).

Using Corollary 2.27, we then obtain:

Theorem 4.17. Let 0 ≤ ε < ε0 with ε0 as in Section 2.2, and s > max{1/2 +
ε, n/2 + 1}, s ∈ N. Let

q(u, 0du) =
∑

2≤j+|α|≤d

qjαu
j
∏
k≤|α|

Xα,ku,

qj,α ∈ C + Hs
0(X), Xα,k ∈ V0(M). Then there exists C > 0 such that for all

f ∈ Hs−1,ε
0 (Ω)• with norm ≤ C, the equation

(�g −m2)u = f + q(u, 0du)

has a unique solution u ∈
⋂
δ>0H

s,ε−(n−1)/2−δ
0 (Ω)• that depends continuously on

f .
The analogous conclusion also holds for �gu = f + q(0du) provided ε > 0, with

the solution u being in
⋂
δ>0H

s,−(n−1)/2−δ
0 (Ω)•. Moreover, for all p ∈ Y+, the limit

u∂(p) := limp′→p,p′∈X u(p′) exists, u∂ ∈ C0,ε(Y+), and u − u∂(φ ◦ t1) ∈ xεC0(X),
where φ ◦ t1 is identically 1 near Y+ and vanishes near the ‘artificial’ boundary of
Ω.

Proof. We start by proving the first part: If f ∈ Hs−1,ε
0 (Ω)•, then fp = β∗pf ∈

Hs−1,ε
b (Sp) is a uniformly bounded family in the respective norms by Lemma 4.16.

We can then use Corollary 2.27 to solve

(�g −m2)up = fp + q(up,
bdup)

in the static part Sp, where we use that q is a polynomial and the fact that bT ∗p′Sp
naturally injects into 0T ∗βp(p′)Ω for p′ ∈ Sp to make sense of the non-linearity;

we thus obtain a uniformly bounded family up = ũp|Sp ∈ Hs,ε
b (Sp)

•,−. By local
uniqueness and since f vanishes near Y−, we see that the function u, defined by
u(βp(p

′)) = up(p
′) for p ∈ Y+, p′ ∈ Sp, is well-defined, and by Lemma 4.16, we

indeed have u ∈ Hs,ε−(n−1)/2−δ
0 (Ω)• for all δ > 0.

For the second part, we follow the same strategy, obtaining solutions up = cp(φ◦
t1) + u′p of

�gup = fp + q(bdup),
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where cp ∈ C and u′p ∈ H
s,ε
b (Sp)

•,− are uniformly bounded, thus up is uniformly

bounded in Hs,−δ
b (Ω)• for every fixed δ > 0, and therefore the existence of a unique

solution u follows as before. Put u∂(p) := cp, then u∂(p) = limp′→p,p′∈Sp u(p′),

since u′p ∈ xεC0(Sp) by the Sobolev embedding theorem. We first prove that u∂ so
defined is ε-Hölder continuous. Let us work in local coordinates (x, y) near a point
(0, y0) in Y+. Now, u′p is uniformly bounded in xεC0(Sp), and since for x0 > 0
arbitrary, we have cp1 + u′p1

(x0, y∗) = cp2 + u′p2
(x0, y∗) for all p1, p2 ∈ Y+, provided

|p1 − p2| ≤ cx0 for some constant c > 0, which ensures that Sp1
∩ Sp2

∩ {x = x0} is
non-empty and thus contains a point (x0, y∗) (see Figure 5), we obtain

|cp1 − cp2 | = |u′p1
(x0, y∗)− u′p2

(x0, y∗)| ≤ Cxε0, |p1 − p2| ≤ cx0

for all x0, thus
|u∂(p1)− u∂(p2)|
|p1 − p2|ε

≤ C, p1, p2 ∈ Y+.

Figure 5. Setup for the proof of u∂ ∈ C0,ε(Y+): Shown are the
backward light cones from two nearby points p1, p2 ∈ Y+ that
intersect within the slice {x = x0} at a point (x0, y∗).

This in particular implies that

|u(x, y)− u∂(0, y0)| ≤ |u(x, y)− u∂(0, y)|+ |u∂(0, y)− u∂(0, y0)|

≤ C(|y − y0|ε + xε)
x→0,y→y0−−−−−−−→ 0,

(4.19)

hence we in fact have u∂(p) = limp′→p,p′∈X u(p′). Finally, putting y = y0 in (4.19)

proves that u− u∂(φ ◦ t1) ∈ xεC0(X). �

The major lossy part of the argument is the conversion from f to the family β∗pf :
Even though the second inequality in Lemma 4.16 is optimal (e.g., for functions
which are supported in a single static patch), one loses (n − 1)/2 orders of decay
relative to the gluing estimate, i.e. the first inequality in Lemma 4.16, which is
used to pass from the family up to u.

Observe on the other hand that the decay properties of u, without regard to those
of f , in the first part of the theorem are very natural, since the constant function

1 is an element of
⋂
δ>0H

∞,−(n−1)/2−δ
0 (X), thus u has an additional decay of ε

relative to constants.

Remark 4.18. Notice that for the proof of Theorem 4.17 it is irrelevant whether
certain 0-Sobolev spaces are algebras, since the main analysis, Corollary 2.27, is
carried out on b-Sobolev spaces.
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5. Minkowski space

5.1. The linear Fredholm framework. We now consider n-dimensional non-
trapping asymptotically Minkowski spacetimes (M, g), a notion which includes the
radial compactification of Minkowski spacetime. This notion was briefly recalled in
the introduction; here we restate this in the notation of [2, Section 3] where this
notion was introduced.

Thus, M is compact with smooth boundary, with a boundary defining function
ρ (we switch the notation from τ mainly to emphasize that ρ is not everywhere
timelike), and scattering vector fields V ∈ Vsc(M), introduced by Melrose [29],
are smooth vector fields of the form ρV ′, V ′ ∈ Vb(M). Hence, if the zj are local
coordinates on ∂M extended to a neighborhood in M , then a local basis of these
vector fields over C∞(M) is ρ2∂ρ, ρ∂zj . Correspondingly, Vsc(M) is the set of
smooth sections of a vector bundle scTM , which is therefore, roughly speaking,
ρbTM . The dual bundle, called the scattering cotangent bundle, is denoted by
scT ∗M . If M is the radial compactification of Rn, by gluing a sphere at infinity via
the reciprocal polar coordinate map (r, ω) 7→ (r−1, ω) ∈ (0, 1)ρ × Sn−1

ω , i.e. adding
ρ = 0 to the right hand side (corresponding to ‘r = ∞’), then Vsc(M) is spanned
by (the lifts of) the translation invariant vector fields over C∞(M), which in turn
simply consists of classical symbols on Rn of order 0.

A Lorentzian scattering metric g is a Lorentzian signature, taken to be (1, n−1),
metric on scTM , i.e. a smooth symmetric section of scT ∗M ⊗ scT ∗M with this
signature with the following additional properties:

(1) there is a real C∞ function v defined on M with dv, dρ linearly independent
at ‘the light cone at infinity’, S = {v = 0, ρ = 0},

(2) g(ρ2∂ρ, ρ
2∂ρ) has55 the same sign56 as v at ρ = 0,

(3) near S,

g = v
dρ2

ρ4
−
(dρ
ρ2
⊗ α

ρ
+
α

ρ
⊗ dρ

ρ2

)
− h̃

ρ2
,

where α is a smooth one-form on M ,

α =
1

2
dv +O(v) +O(ρ),

h̃ is a smooth 2-cotensor on M , which is positive definite on the (codimen-
sion two) annihilator of dρ and dv.

A Lorentzian scattering metric is non-trapping if

(1) S = S+ ∪S− (each a disjoint union of connected components), in X = ∂M
the open set {v > 0} ∩ X decomposes as C+ ∪ C− (disjoint union), with
∂C+ = S+, ∂C− = S−; we write C0 = {v < 0} ∩X,

(2) the projections of all null-bicharacteristics in scT ∗M \ o to M tend to S±
as their parameter tends to ±∞ or vice versa.

Since a conformal factor only reparameterizes bicharacteristics, this means that
with ĝ = ρ2g, which is a b-metric on M , the projections of all null-bicharacteristics
of ĝ in bT ∗M \ o tend to S±. As already pointed out in the introduction, the
difference between the de Sitter-type and Minkowski settings is that at the spherical

55The vector field ρ2∂ρ is well-defined up to a positive factor at ρ = 0, and is called the

scattering normal vector field.
56Thus, ρ2∂ρ is timelike in v > 0, spacelike in v < 0.



SEMILINEAR WAVE EQUATIONS 61

conormal bundle bSN∗S of S the nature of the radial points is source/sink rather
than a saddle point of the flow at L± discussed in Section 2.1.

We first state solvability properties, namely we show that under the assumptions
of [2, Section 3], the problem of finding a tempered solution to �gw = f is a
Fredholm problem in suitable weighted Sobolev spaces. In particular, there is only
a finite dimensional obstruction to existence. Then we strengthen the assumptions
somewhat and show actual solvability in the strong sense that in these spaces the
solution w satisfies that if f is vanishing to infinite order near C−, then so does w.

Let
L = ρ−(n−2)/2ρ−2�gρ

(n−2)/2 ∈ Diff2
b(M)

be the ‘conjugated’ b-wave operator (as in [2, Section 4]), which is formally self-
adjoint with respect to the density of the Lorentzian b-metric ĝ = ρ2g, further
L = �ĝ − γ, where γ ∈ C∞(M) real valued. With57

m ∈ C∞(bS∗M) a variable (Sobolev) order function, decreasing along

the direction of the Hamilton flow oriented to the future, i.e. towards S+,
(5.1)

and with
R+ = bSN∗S+, resp. R− = bSN∗S−,

the future, resp. past, radial sets in bS∗M , see [2, Section 3.6], and with

m+ l < 1/2 at R+, m+ l > 1/2 at R−,
m constant near R+ ∪R−, one has an estimate

‖u‖Hm,lb
≤ C‖Lu‖Hm−1,l

b
+ C‖u‖

Hm
′,l

b

, (5.2)

provided one assumes m′ < m,

m′ + l > 1/2 at R−, u ∈ Hm′,l
b .

To see this, we recall and record a slight improvement of [2, Proposition 4.4]:

Proposition 5.1. Suppose L is as above.

If m + l < 1/2, and if u ∈ H−∞,lb (M) then R± (and thus a neighborhood of

R±) is disjoint from WFm,lb (u) provided R± ∩WFm−1,l
b (Lu) = ∅ and a punctured

neighborhood of R±, with R± removed, in Σ ∩ bS∗M is disjoint from WFm,lb (u).

On the other hand, if m′+ l > 1/2, m ≥ m′, u ∈ H−∞,lb (M) and if WFm
′,l

b (u)∩
R± = ∅ then R± (and thus a neighborhood of R±) is disjoint from WFm,lb (u)

provided R± ∩WFm−1,l
b (Lu) = ∅ and a punctured neighborhood of R±, with R±

removed, in Σ ∩ bS∗M is disjoint from WFm,lb (u).

Proof. The first statement is proved in [2, Proposition 4.4]. The second statement
follows the same way, but in that case the product of the required powers of the
boundary defining functions, ρ−2lρ̃−2m+1, with ρ̃ the defining function of fiber
infinity58 as in Section 2.1, in the commutant of [2, Proposition 4.4] provides a
favorable sign, thus [2, Equation (4.1)] holds without the E term. However, when

57In the actual application of asymptotically Minkowski spaces, one can take m to be a function

on M rather than bS∗M by making it take constant values near C+, resp. C−, corresponding
to the requirements at R+, resp. R− below, and transitioning in between using a time function

as in Theorem 5.2, hypothesis (3), i.e. making m of the form F ◦ t̃ for appropriate F . Since this

simplifies some arguments below, we assume this whenever it is convenient.
58This defining function is denoted by ν in [2].



62 PETER HINTZ AND ANDRAS VASY

regularizing, the regularizer contributes a term with the opposite sign, exactly as
in [41, Proof of Propositions 2.3-2.4]; this forces the requirement on the a priori

regularity, namely WFm
′,l

b (u) ∩ R± = ∅, exactly as in the referred results of [41];
see also Proposition 2.1 above. �

Indeed, due to the closed graph theorem, (5.2) follows immediately from the
b-radial point regularity statements of Proposition 5.1 for sources/sinks, and the
propagation of b-singularities for variable order Sobolev spaces, which is not proved
in [2], but whose analogue in standard Sobolev spaces is proved there in [2, Propo-
sition A.1] (with additional references given to related results in the literature), and
as it is a purely symbolic argument, the extension to the b-setting is straightfor-
ward.59

One also has a similar estimate for L when one replaces m by a weight m̃ which
is increasing along the direction of the Hamilton flow oriented towards the past,

m̃+ l̃ > 1/2 at R+, m̃+ l̃ < 1/2 at R−,
provided one assumes m̃′ < m̃,

m̃′ + l̃ > 1/2 at R+, u ∈ Hm̃′,l̃
b .

Further L can be replaced by L∗. Thus,

‖u‖
Hm̃,l̃b

≤ C‖L∗u‖
Hm̃−1,l̃

b

+ C‖u‖
Hm̃
′,l̃

b

. (5.3)

Just as in the asymptotically de Sitter/Kerr settings, one wants to improve

these estimates so that the space Hm,l
b , resp. Hm̃,l̃

b , on the left hand side includes
compactly into the error term on the right hand side. This argument is completely
analogous to Section 2.1 using the Mellin transformed normal operator estimates
obtained in [2, Section 5]. We thus further assume that there are no poles of the

Mellin conjugate L̂(σ) on the line Imσ = −l. Then using the Mellin transform and

the estimates for L̂(σ) (including the high energy estimates, which imply that for
all but a discrete set of l the aforementioned lines do not contain such poles), as in
Section 2.1, we obtain that on R+

ρ × ∂M
‖v‖Hm̂,lb

≤ C‖N(L)v‖Hm̂−1,l
b

(5.4)

when m̂ ∈ C∞(S∗∂M) is a variable order function decreasing along the direction
of the Hamilton flow oriented to the future, Λ+, resp. Λ−, the future, resp. past,
radial sets in S∗∂M , and with

m̂+ l < 1/2 at Λ+, m̂+ l > 1/2 at Λ−.

One can take
m̂ = m|T∗∂M ,

for instance, under the identification of T ∗∂M as a subspace of bT ∗∂MM , taking
account that homogeneous degree zero functions on T ∗∂M \o are exactly functions
on S∗∂M , and analogously on bT ∗∂MM . However, in the limit σ →∞, one should
use norms depending on σ reflecting the dependence of the semiclassical norm on h.
We recall from Footnote 57 that in the main case of interest one can take m to be a
pullback from M , and thus the Mellin transformed operator norms are independent
of σ. In either case, we simply write m in place of m̂.

59Cf. Proposition 2.1 here and [2, Proposition 4.4] extending the radial point results, Proposi-

tions 2.3-2.4, of [41], from the boundaryless setting to the b-setting.
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Again, we have an analogous estimate for N(L∗):

‖v‖
Hm̃,l̃b

≤ C‖N(L∗)v‖
Hm̃−1,l̃

b

, (5.5)

provided −l̃ is not the imaginary part of a pole of L̂∗, and provided m̃ satisfies the

requirements above. As L̂∗(σ) = (L̂)∗(σ), the requirement on −l̃ is the same as l̃

not being the imaginary part of a pole of L̂.
At this point the argument of the paragraph of (2.9) in Section 2.1 can be

repeated verbatim to yield that for m with m+l > 3/2 (with the stronger restriction
coming from the requirements on m′ at R−, m̃′ at R+, and m′ < m−1, m̃′ < m̃−1;
recall that one needs to estimate the normal operator on these primed spaces)

‖u‖Hm,lb
≤ C‖Lu‖Hm−1,l

b
+ C‖u‖

Hm
′+1,l−1

b

, (5.6)

where now the inclusion Hm,l
b → Hm′+1,l−1

b is compact (as we choose m′ < m− 1);
this argument required m, l,m′ satisfied the requirements preceding (5.2), and that

−l is not the imaginary part of any pole of L̂.
Analogous estimates hold for L∗:

‖u‖
Hm̃,l̃b

≤ C‖L∗u‖
Hm̃−1,l̃

b

+ C‖u‖
Hm
′+1,l̃−1

b

, (5.7)

provided m̃, l̃, m̃′ satisfy the requirements stated before (5.3), m̃′ < m̃ − 1, and

provided −l̃ is not the imaginary part of a pole of L̂∗ (i.e. l̃ of L̂).
Via the same functional analytic argument as in Section 2.1 we thus obtain Fred-

holm properties of L, in particular solvability, modulo a (possible) finite dimensional

obstruction, in Hm,l
b if

m+ l > 3/2 at R−, m+ l < −1/2 at R+.

More precisely, we take m̃ = 1 − m, l̃ = −l, so m + l < −1/2 at R+ means

m̃+ l̃ = 1− (m+ l) > 3/2, so the space on the left hand side of (5.6) is dual to that
in the first term on the right hand side of (5.7), and the same for the equations
interchanged. Then the Fredholm statement is for

L : Xm,l → Ym−1,l,

with

Ys,r = Hs,r
b , X s,r = {u ∈ Hs,r

b : Lu ∈ Hs−1,r
b }.

Note that, by propagation of singularities, i.e. most importantly using Proposi-

tion 5.1, with KerL ⊂ Hm,l
b , KerL∗ ⊂ H1−m,−l

b a priori,

KerL ⊂ Hm[,l
b , KerL∗ ⊂ H1−m[,−l

b if

m[ + l > 1/2 at R−, m[ + l < 1/2 at R+.
(5.8)

We can improve this further using the propagation of singularities. Namely,
suppose one merely has

m+ l > 3/2 at R−, m+ l < 1/2 at R+, (5.9)

so the requirement at R+ is weakened. Then let m] = m − 1 near R+, m] ≤ m
everywhere, but still satisfying the requirements for the order function along the
Hamilton flow, so the Fredholm result is applicable with m] in place of m. Now,

if u ∈ Xm],l, Lu = f , f ∈ Ym−1,l ⊂ Ym]−1,l, then Proposition 5.1 gives u ∈ Xm,l.
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Further, if KerL and KerL∗ are trivial, this gives that for m, l as in (5.9), satisfying
also the conditions along the Hamilton flow, L : Xm,l → Ym−1,l is invertible.

Now, as invertibility (the absence of kernel and cokernel) is preserved under suffi-
ciently small perturbations, it holds in particular for perturbations of the Minkowski
metric which are Lorentzian scattering metrics in our sense, with closeness mea-
sured in smooth sections of the second symmetric power of bT ∗M . (Note that
non-trapping is also preserved under such perturbations.)

For more general asymptotically Minkowski metrics we note that, due to The-
orem 2.20 (which does not have any requirements for the timelike nature of the
boundary defining function, and which works locally near C− either by working on
(extendible) function spaces or by using the localization given by wave propagation

as in Section 3.3 of [41] or Section 4.1 here) elements of KerL on Hm,l
b , with m, l

as above, lie in Ċ∞(M) locally near C− provided all resonances, i.e. poles of L̂(σ),
in Imσ < −l have polar parts (coefficients of the Laurent series) that map into

distributions supported on C+. As shown in [40, Remark 4.17] when L̂(σ) arises
from a Lorentzian conic metric as in60 [40, Equation (3.5)], but with the arguments
applicable without significant changes in our more general case, see also [2, Sec-
tion 7] for our general setting, and [41, Remark 4.6] for a related discussion with

complex absorption, the resonances of L̂(σ) consist of the resonances of the asymp-
totically hyperbolic resolvents on the caps, namely RC+

(σ), RC−(−σ), as well as
possibly imaginary integers, σ ∈ iZ\{0}, with resonant states when Imσ < 0 being
differentiated delta distributions at S+ = ∂C+ while the dual states are differen-
tiated delta distributions at S− = ∂C− when Imσ > 0; the latter arise, e.g. as
poles on even dimensional Minkowski space. More generally, when composed with
extension of C∞c (C− ∪ C0) by zero to C∞(X) from the right and with restriction

to C− ∪ C0 from the left, the only poles of L̂(σ) are those of RC−(−σ) as well as

the possible σ ∈ iN+. Thus, fixing61 l > −1, one can conclude that elements of

KerL are in Ċ∞(M) locally near C+ provided RC−(σ̃) has no poles in Im σ̃ > l.

The analogous statement for KerL∗ on Hm̃,l̃
b is that fixing l̃ > −1, elements are

in Ċ∞(M) near C+ provided RC+(σ̃) has no poles in Im σ̃ > l̃. As l̃ = −l for our
duality arguments, the weakest symmetric assumption (in terms of strength at C+

and C−) is that RC± do not have any poles in the closed upper half plane; here

the closure is added to make sure L is actually Fredholm on Hm,l
b with l = 0. In

general, if one wants to use other values of l, one needs to assume the absence of
poles in Imσ ≥ −|l| (if one wants to keep the hypotheses symmetric).

Note that assuming dρ
ρ is timelike (with respect to ĝ) near C−, one automatically

has the absence of poles of RC− in an upper half plane, and the finiteness (with
multiplicity) of the number of poles in any upper half plane, by the semiclassical
estimates of [41], see Section 3.2 and 7.2 (one can ignore the complex absorption

60In [40], the boundary defining function used to define the Mellin transform is replaced by
its reciprocal, which effectively switches the sign of σ in the operator, but also the backward

propagator is considered (propagating toward the past light cone), which reverses the role of σ and

−σ again, so in fact, the signs in [40] and [2] agree for the formulae connecting the asymptotically

hyperbolic resolvents and the global operator, L̂(σ).
61The only change for l ≤ −1 is that one needs to exclude the potential pure imaginary integer

poles as well.
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discussion there), so in this case the issue is that of a possible finite number of

resonances. There is an analogous statement if dρ
ρ is timelike near C+ for RC+ .

Now, assuming still that dρ
ρ is timelike at, hence near C−, it is easy to construct

a function t which has a timelike differential near C−, and appropriate sublevel sets
are small neighborhoods of C−. Once one has such a function t, energy estimates
can be used to conclude that rapidly vanishing, in such a neighborhood, solutions
of Lu = 0 actually vanish in this neighborhood, so elements of KerL have support
disjoint from C−; similarly elements of KerL∗ have support disjoint from C+.

Concretely, with Ĝ the dual b-metric of ĝ, let 0 < ε0 < ε1, ε̃ > 0, δ > 0 be such
that

ρ < ε̃, v > −ε1 ⇒ Ĝ
(dρ
ρ
,
dρ

ρ

)
> δ,

ρ < ε̃, −ε1 < v < −ε0 ⇒ Ĝ
(dρ
ρ
, dv
)
< 0, Ĝ(dv, dv) > 0.

Such constants exist since Ĝ(dρρ ,
dρ
ρ ) is positive on a neighborhood of C− by as-

sumption (thus for any sufficiently small ε1, ε̃ there is a desired δ so that the first

inequality is satisfied), Ĝ(dρρ , dv)|S− = −2 so any sufficiently small ε1 and ε̃ give

Ĝ(dρρ , dv) < 0 in the desired region, and finally Ĝ(dv, dv) > 0 on C0 near S− (as

Ĝ(dv, dv) = −4v+O(v2) there), so choosing ε1 sufficiently small, ε0 < ε1, and then ε̃
sufficiently small satisfies all criteria. Now let ε−, ε+ be such that 0 < ε− < ε+ < ε̃,
and let φ ∈ C∞(R) have φ′ ≤ 0, φ = 0 near [−ε0,∞), φ > ε̃ near (−∞,−ε1], φ′ < 0
when φ takes values in [ε−, ε+]. Then t = ρ+ φ(v) has the property that

t ≤ ε+ ⇒ ρ, φ(v) ≤ ε+ ⇒ ρ < ε̃, v > −ε1,

and

v ≥ −ε0 ⇒ t = ρ.

Thus, if v ≥ −ε0 and t ≤ ε+ then dt is timelike as dρ is such, while if v < −ε0,
t ≤ ε+ then

Ĝ(dt, dt) = ρ2Ĝ
(dρ
ρ
,
dρ

ρ

)
+ 2φ′(v)ρĜ

(dρ
ρ
, dv
)

+ (φ′(v))2Ĝ(dv, dv)

and all terms are ≥ 0 in view of −ε1 < v < −ε0, ρ ≤ ε̃, with the inequality being
strict when t ∈ [ε−, ε+]. Thus, near t−1([ε−, ε+]), t is a timelike function. Further,

ρ is also timelike, with dρ
ρ and dt in the same component of the timelike cone; see

Figure 6. Correspondingly, one can apply energy estimates using the timelike vector
field V = (χ ◦ t)ρ−`Ĝ(dρρ , .), where χ ∈ C∞(R) with χ′ ≤ 0, χ = 1 near (−∞, ε−],

χ = 0 near [ε+,∞), cf. [41, Section 3.3] leading up to Equation (3.24) and the
subsequent discussion, which in turn is based on [44, Sections 3-4]. Here one needs
to make both −χ′ large relative to χ and ` > 0 large (making the b-derivative of
ρ−` large relative to ρ−`), as discussed in the Mellin transformed setting in [41,
Section 3.3], in [44, Sections 3-4], as well as Section 2.1 here (with τ in place of ρ,
but with the sign of ` reversed due to the difference between b-saddle points and
b-sinks/sources). Notice that taking ` large is exactly where the rapid decay near
C+ is used.

While the existence of appropriate timelike functions, such as t, in a neighbor-
hood of C+ and C− was automatic (in a slightly degenerate sense at C± themselves)
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Figure 6. Setup for energy esimates near C−: The shaded region
is the support of χ′ ◦ t, where −χ′ is used to dominate χ to give
positivity in the energy estimate; near ρ = 0 and on supp(χ◦t), i.e.
in the region between ρ = 0 and the shaded region, a sufficiently
large weight ρ−` gives positivity.

when dρ
ρ is timelike in these regions, and indeed these functions could be extended

to a neighborhood of C0 if v is appropriately chosen, it does not seem clear how
the non-trapping assumption on nullbicharacteristics implies the global existence
of a time function. Thus, we assume the existence of such a C∞ function t̃ on
M \ (C+ ∪ C−) (where C+ ∪ C− could be replaced by a neighborhood). Then the
standard energy estimates apply and yield that any element of KerL that vanishes
near C− vanishes identically, and similarly with C+.

In summary:

Theorem 5.2. If (M, g) is a non-trapping Lorentzian scattering metric in the sense
of [2], |l| < 1, and

(1) The induced asymptotically hyperbolic resolvents RC± have no poles in
Imσ ≥ −|l|,

(2) dρ
ρ is timelike near C+ ∪ C−,

(3) there is a time-function t̃ on M \ (C+ ∪ C−),

then for l ∈ R and for order functions m ∈ C∞(bS∗M) satisfying (5.1) and (5.9),
the forward problem for the conjugated wave operator L, i.e. with L considered as
a map

L : Xm,l → Ym−1,l,

is invertible.

Extending the notation of [2], especially Section 4, we denote by Hm,l,k
b (M),

where m, l ∈ R, k ∈ N0, the space of all u ∈ Hm,l
b (M) (i.e. u ∈ ρlHm

b (M),

where ρ is the boundary defining function of M) such that Mju ∈ Hm,l
b (M) for

all 0 ≤ j ≤ k. Here, M ⊂ Ψ1
b(M) is the Ψ0

b(M)-module of pseudodifferential
operators with principal symbol vanishing on the radial set R+ of the operator
L = ρ−(n−2)/2ρ−2�gρ(n−2)/2; in the coordinates ρ, v, y as in [2] (ρ being as above,
v a defining function of the light cone at infinity within ∂M , y coordinates within in
the light cone at infinity),M has local generators ρ∂ρ, ρ∂v, v∂v, ∂y. Then the results
of [2], concretely Proposition 4.4, extend our theorem to the spaces with module

regularity. Namely the reference guarantees the module regularity u ∈ Hm,l,k
b (M)
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of a solution u of Lu = f if f has matching module regularity62 f ∈ Hm−1,l,k
b (M)

and if u is in Hm+k,l
b (M) near C−. If f ∈ Hm−1,l,k

b (M), then in particular f is

locally in Hm+k−1,l
b near C−, thus, taking into account that m + l > 1/2 already

there, u is in Hm+k,l
b in that region by Proposition 5.1 (by the first case there, i.e.

in the high regularity regime). Thus, an application of the closed graph theorem
gives the following boundedness result:

Theorem 5.3. Under the assumptions of Theorem 5.2, L−1 has the property that
it restricts to

L−1 : Hm−1,l,k
b → Hm,l,k

b , k ≥ 0,

as a bounded map.

In particular, letting Ω = {̃t ≥ 0}, where we normalized t̃ so that it attains
the value 0 within M \ (C+ ∪ C−), we have a forward solution operator S of L

which maps Hm−1,l,k
b (Ω)• into Hm,l,k

b (Ω)•, given that m + l < 1/2; let us assume

that m is constant in Ω. Here, Hm,l,k
b (Ω)• consists of supported distributions at

∂Ω ∩ C◦0 = {̃t = 0}.

5.2. Algebra properties of Hm,−∞,k
b . In order to discuss non-linear wave equa-

tions on Minkowski space, we need to discuss the algebra properties of Hm,−∞,k
b =⋃

l∈RH
m,l,k
b . Even though we are only interested in Hm,−∞,k

b (Ω)•, we consider

Hm,−∞,k
b (M), where m is constant on M for notational simplicity, and the results

we prove below are valid for Hm,−∞,k
b (Ω)• by the same proofs.

We start with the following lemma:

Lemma 5.4. Let l1, l2 ∈ R, k > n/2. Then H0,l1,k
b ·H0,l2,k

b ⊂ H0,l1+l2−1/2,k
b .

Proof. The generators ρ∂ρ, ρ∂v, v∂v, ∂y of M take on a simpler form if we blow up
the point (ρ, v) = (0, 0). It is most convenient to use projective coordinates on the
blown-up space, namely:

(1) Near the interior of the front face, we use the coordinates ρ̃ = ρ ≥ 0 and
s = v/ρ ∈ R. We compute ρ∂ρ = ρ̃∂ρ̃ − s∂s, v∂v = s∂s, ρ∂v = ∂s; and since
dρ
ρ dv dy = dρ̃ ds dy (this is the b-density from H0,l,k

b ), the space H0,l,k
b becomes

Al,k := {u ∈ ρ̃lL2(dρ̃ ds dy) : Aju ∈ ρ̃lL2(dρ̃ ds dy), 0 ≤ j ≤ k},
where A is the C∞-module of differential operators generated by ∂s, ρ̃∂ρ̃, ∂y.

Now, observe that ρ̃lL2(dρ̃ ds dy) = ρ̃l−1/2L2(dρ̃ρ ds dy); therefore, we can
rewrite

Al,k = {u ∈ ρ̃l−1/2L2(dρ̃ρ ds dy) : Aju ∈ ρ̃l−1/2L2(dρ̃ρ ds dy), 0 ≤ j ≤ k}

= ρ̃l−1/2Hk
b (dρ̃ρ ds dy).

In particular, by the Sobolev algebra property, Lemma 2.25, and the locality
of the multiplication, choosing k > n/2 ensures that ρ̃l1−1/2Hk

b · ρ̃l2−1/2Hk
b ⊂

ρ̃l1+l2−1Hk
b , which is to say Al1,k ·Al2,k ⊂ Al1+l2−1/2,k.

62This Proposition in [2] is stated making the stronger assumption, f ∈ Hm−1+k,l
b (M). How-

ever, the proof goes through for just f ∈ Hm−1,l,k
b (M) in a completely analogous manner to the

result of Haber and Vasy [20, Theorem 6.3], where (in the boundaryless setting, for a Lagrangian
radial set) the result is stated in this generality.
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(2) Near either corner of the blown-up space, we use ṽ = v and t = ρ/v (say,
ṽ ≥ 0, t ≥ 0). We compute ρ∂ρ = t∂t, v∂v = ṽ∂ṽ − t∂t, ρ∂v = tṽ∂ṽ − t2∂t; and

since dρ
ρ dv dy = dt

t dṽ dy, the space H0,l,k
b becomes

Bl,k := {u ∈ (tṽ)lL2(dtt dṽ dy) : Bju ∈ (tṽ)lL2(dtt dṽ dy), 0 ≤ j ≤ k},
where B is the C∞-module of differential operators generated by t∂t, ṽ∂ṽ, ∂y.
Again, we can rewrite this as

Bl,k = tlṽl−1/2Hk
b (dtt

dṽ
ṽ dy),

which implies that for k > n/2,

Bl1,k ·Bl2,k ⊂ tl1+l2vl1+l2−1Hk
b (dtt

dṽ
ṽ dy) ⊂ Bl1+l2−1/2,k.

To relate these two statements to the statement of the lemma, we use cutoff func-
tions χA, χB to localize within the two coordinate systems. More precisely, choose
a cutoff function χ ∈ C∞c (Rs) such that χ(s) ≡ 1 near s = 0, χ(s) = 0 for |s| ≥ 2,
and χ1/2 ∈ C∞c (Rs). Then multiplication with χA(ρ, v) := χ(v/ρ) is a continuous

map H0,l,k
b → Al,k. Indeed, to check this, one simply observes that MjχA ∈ L∞

for all j ∈ N0. Similarly, letting χB(ρ, v) := 1− χA(ρ, v), multiplication with χB is

a continuous map H0,l,k
b → Bl,k. Finally, note that we have Al,k, Bl,k ⊂ H0,l,k

b .

To put everything together, take uj ∈ H
0,lj ,k
b (j = 1, 2), then

u1u2 = (χAu1)(χAu2) + (χBu1)(χBu2) + (χAu1)(χBu2) + (χBu1)(χAu2).

The first two terms then lie in H
0,l1+l2−1/2,k
b . To deal with the third term, write

(χAu1)(χBu2) = (χ
1/2
A u1)(χ

1/2
A χBu2) ∈ Al1,k ·Al2,k ⊂ H0,l1+l2−1/2,k

b ;

likewise for the fourth term. Thus, u1u2 ∈ H0,l1+l2−1/2,k
b , as claimed. �

Remark 5.5. The proof actually shows more, namely that

H0,l,k
b H0,l′,k

b ⊂ ρ−1/2
ff H0,l+l′,k

b , (5.10)

where ρff is the defining function of the front face ρ = v = 0, e.g. ρff = (ρ2 +v2)1/2.
The reason for (5.10) to be a natural statement is that module- and b-derivatives
are the same away from ρ = v = 0, hence regularity with respect to the moduleM
is, up to a weight, which is a power of ρff, the same as b-regularity.

More abstractly speaking, the above proof shows the following: If ρb denotes
a boundary defining function of the other boundary hypersurface of [M ;S+], i.e.
∂[M ;S+] \ ff, then

H0,l,k
b
∼= ρ
−1/2
ff (ρffρb)

lHk
b ([M ;S+]).

Note that one can also show this in one step, introducing the coordinates ρff ≥ 0
and s = v/(ρ+ρff) ∈ [−1, 1] on [M ;S+] in a neighborhood of ff, and mimicking the
above proof, which however is computationally less convenient.

Remark 5.6. We can extend the lemma to Hm,l,k
b Hm,l′,k

b ⊂ H
m,l+l′−1/2,k
b for m ∈

N0 using the Leibniz rule to distribute the m b-derivatives among the two factors,
and then using the lemma for the case m = 0.

The following corollary, which will play an important role in Section 5.5, improves
Lemma 5.4 if we have higher b-regularity.

Corollary 5.7. Let k > n/2, 0 ≤ δ < 1/n and l, l′ ∈ R. Then
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(1) H1,l,k
b H0,l′,k

b ⊂ H0,l+l′−1/2+δ,k
b .

(2) H1,l,k
b H1,l′,k

b ⊂ H1,l+l′−1/2+δ,k
b .

Proof. Take s = 1/(2δ) > n/2, then

Hs,l,k
b H0,l′,k

b ⊂ H0,l+l′,k
b ; (5.11)

indeed, using the Leibniz rule to distribute the k module derivatives among the two

factors and cancelling the weights, this amounts to showing that Hs,0,k1

b H0,0,k2

b ⊂
H0,0,0

b for k1 +k2 ≥ k; but this is true even for k1 = k2 = 0, since Hs
b is a multiplier

on H0
b provided s > n/2.

The lemma on the other hand gives

H0,l,k
b H0,l′,k

b ⊂ ρ−1/2H0,l+l′,k
b . (5.12)

Interpolating in the first factor between (5.11) and (5.12) thus gives the first state-
ment.

For the second statement, use the Leibniz rule to distribute the one b-derivative

to either factor; then, one has to show H1,l,k
b H0,l′,k

b ⊂ H0,l+l′−1/2+δ,k
b , and the same

inclusion with l and l′ switched, which is what we just proved. �

Lemma 5.4 and the remark following it imply that for u ∈ Hm,l,k
b , p ≥ 1, with

m ≥ 0, k > n/2, we have up ∈ Hm,pl−(p−1)/2,k
b ; in fact, up ∈ ρ−(p−1)/2

ff Hm,pl,k
b , see

Remark 5.5. Using Corollary 5.7, we can improve this to the statement u ∈ Hm,l,k
b

⇒ up ∈ Hm,pl−(p−1)/2+(p−1)δ,k
b for m ≥ 1.

For non-linearities that only involve powers up, we can afford to lose differentia-
bility, as at the end of Section 4.2, and gain decay in return, as the following lemma
shows.

Lemma 5.8. Let α > 1/2, l ∈ R, k ∈ N0. Then ρ−αff H0,l,k
b ⊂ ρ1/2−αH−1,l,k

b , where

ρff = (ρ2 + v2)1/2.

Proof. We may assume l = 0, and that u is supported in |v| < 1, ρ < 1. First,
consider the case k = 0. Let u ∈ ρ−αff H0

b , and put

ũ(ρ, v, y) =

∫ v

−∞
u(ρ, w, y) dw,

so ∂vũ = u. We have to prove χũ ∈ ρ1/2−αH0
b if χ ≡ 1 near suppu, which implies

u ∈ H−1
b , as ∂v : H0

b → H−1
b , and the b-Sobolev space are local spaces. But

|ũ(ρ, v, y)|2 ≤
(∫ 1

−1

ρff(ρ, w)2α|u(ρ, w, y)|2 dw
)∫ 1

−1

ρff(ρ, w)−2α dw; (5.13)

now, ∫ 1

−1

ρ−2α
ff dw = ρ1−2α

∫ 1/ρ

−1/ρ

dz

(1 + |z|2)α
. ρ1−2α

for α > 1/2, therefore, with the v integral considered on a fixed interval, say |v| < 2
(notice that the right hand side in (5.13) is independent of v!),∫∫∫

ρ2α−1|ũ(ρ, v, y)|2 dρ
ρ
dv dy .

∫∫∫
ρ2α

ff |u(ρ, w, y)|2 dρ
ρ
dw dy,

proving the claim for k = 0. Now, ρ∂ρ and ∂y just commute with this calculation,
so the corresponding derivatives are certainly well-behaved. On the other hand,
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∂vũ = u, so the estimates involving at least one v-derivative are just those for u
itself. �

Corollary 5.9. Let k, p ∈ N be such that k > n/2, p ≥ 2. Let l ∈ R, u ∈ H0,l,k
b .

Then up ∈ H−1,lp−(p−1)/2+1/2−δ,k
b with δ = 0 if p ≥ 3 and δ > 0 if p = 2.

Proof. This follows from up ∈ ρ
−(p−1)/2−δ
ff H0,lp,k

b and the previous lemma, using
that (p− 1)/2 + δ > 1/2 with δ as stated. �

In other words, we gain the decay ρ1/2−δ if we give up one derivative.

5.3. A class of semilinear equations. We are now set to discuss solutions to
non-linear wave equations on Minkowski space time. In fact, we can work in much
greater generality, as explained in and after Theorem 5.2, and obtain a forward

solution operator S : Hm−1,l,k
b (Ω)• → Hm,l,k

b (Ω)• of P = ρ−(n−2)/2ρ−2�gρ(n−2)/2

provided |l| < 1,m+ l < 1/2 and k ≥ 0.
Undoing the conjugation, we obtain a forward solution operator

S̃ = ρ(n−2)/2Sρ−2ρ−(n−2)/2,

S̃ : H
m−1,l+(n−2)/2+2,k
b (Ω)• → H

m,l+(n−2)/2,k
b (Ω)•

of �g.
Since g is a Lorentzian scattering metric, the natural vector fields to appear in a

non-linear equation are scattering vector fields; more generally, since the analysis is
carried out on b-spaces, we indeed allow b-vector fields in the following statement:

Theorem 5.10. Let

q : H
m,l+(n−2)/2,k
b (Ω)• ×Hm−1,l+(n−2)/2,k

b (Ω; bT ∗Ω)• → H
m−1,l+(n−2)/2+2,k
b (Ω)•

be a continuous function with q(0, 0) = 0 such that there exists a continuous non-
decreasing function L : R≥0 → R satisfying

‖q(u, bdu)− q(v, bdv)‖ ≤ L(R)‖u− v‖, ‖u‖, ‖v‖ ≤ R.

Then there is a constant CL > 0 so that the following holds: If L(0) < CL, then

for small R > 0, there exists C > 0 such that for all f ∈ Hm−1,l+(n−2)/2+2,k
b (Ω)•

with norm ≤ C, the equation

�gu = f + q(u, bdu)

has a unique solution u ∈ Hm,l+(n−2)/2,k
b (Ω)•, with norm ≤ R, that depends con-

tinuously on f .

Proof. Use the Banach fixed point theorem as in the proof of Theorem 2.24. �

Remark 5.11. Here, just as in Theorem 4.10, we can also allow q to depend on �gu
as well.
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5.4. Semilinear equations with polynomial non-linearity. Next, we want to
find a forward solution of the semilinear PDE

�gu = f + cupX(u),

where c ∈ C∞(M), p ∈ N0, and X(u) =
∏q
j=1 ρVj(u) is a q-fold product of deriva-

tives of u along scattering vector fields; here, Vj are b-vector fields. Let us assume
p+ q ≥ 2 in order for the equation to be genuinely non-linear. We rewrite the PDE
as

L(ρ−(n−2)/2u) = ρ−(n−2)/2−2f + cρ−2ρ(p−1)(n−2)/2(ρ−(n−2)/2u)p

×
q∏
j=1

ρVj(ρ
(n−2)/2ρ−(n−2)/2u).

Introducing ũ = ρ−(n−2)/2u and f̃ = ρ−(n−2)/2−2f yields the equation

Lũ = f̃ + cρ(p−1)(n−2)/2−2ũp
q∏
j=1

ρn/2(fj ũ+ Vj ũ)

= f̃ + cρ(p−1)(n−2)/2+qn/2−2ũp
q∏
j=1

(fj ũ+ Vj ũ), (5.14)

where the fj are smooth functions. Now suppose that ũ ∈ Hm,l,k
b (Ω)• with m+ l <

1/2,m ≥ 1, k > n/2 (so that Hm−1,−∞,k
b (Ω)• is an algebra), then the second

summand of the right hand side of (5.14) lies in Hm−1,`,k
b (Ω)•, where

` = (p− 1)(n− 2)/2 + qn/2− 2 + pl − (p− 1)/2 + ql − (q − 1)/2− 1/2.

For this space to lie in Hm−1,l,k
b (Ω)• (which we want in order to be able to apply

the solution operator S and land in Hm,l,k
b (Ω)• so that a fixed point argument as

in Section 2 can be applied), we thus need ` ≥ l, which can be rewritten as

(p− 1)(l + (n− 3)/2) + q(l + (n− 1)/2) ≥ 2. (5.15)

For m = 1 and l < 1/2−m less than, but close to −1/2, and 0 ≤ δ < 1/n, we thus
get the condition

(p− 1)(n− 4) + q(n− 2) > 4.

If there are only non-linearities involving derivatives of u, i.e. p = 0, we get the
condition q > 1 + 2/(n− 2), i.e. quadratic non-linearities are fine for n ≥ 5, cubic
ones for n ≥ 4.

Note that if q = 0, we can actually choose m = 0 and l < 1/2 close to 1/2, and we
have Corollary 5.9 at hand. Thus we can improve (5.15) to (p−1)(1/2+(n−3)/2) >
2 − 1/2, i.e. p > 1 + 3/(n − 2), hence quadratic non-linearities can be dealt with
if n ≥ 6, whereas cubic non-linearities are fine as long as n ≥ 4. Observe that this
condition on p always implies p > 1, which is a natural condition, since p = 1 would
amount to changing �g into �g −m2 (if one chooses the sign appropriately). But
the Klein-Gordon operator naturally fits into a scattering framework, as mentioned
in the Introduction, i.e. requires a different analysis; we will not pursue this further
in this paper.

To summarize the general case, note that ũ ∈ Hm,l,k
b (Ω)• is equivalent to u ∈

H
m,l+(n−2)/2,k
b (Ω)•, and f̃ ∈ Hm−1,l,k

b (Ω)• to f ∈ Hm−1,l+(n−2)/2+2,k
b (Ω)•; thus:
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Theorem 5.12. Let |l| < 1,m + l < 1/2, k > n/2, and assume that p, q ∈ N0,
p + q ≥ 2, satisfy condition (5.15); let m ≥ 0 if q = 0, otherwise let m ≥ 1.
Moreover, let c ∈ C∞(M) and X(u) =

∏q
j=1Xju, where Xj is a scattering vector

field on M . Then for small enough R > 0, there exists a constant C > 0 such that

for all f ∈ Hm−1,l+(n−2)/2+2,k
b (Ω)• with norm ≤ C, the equation

�gu = f + cupX(u)

has a unique solution u ∈ Hm,l+(n−2)/2,k
b (Ω)•, with norm ≤ R, that depends con-

tinuously on f .
The same conclusion holds if the non-linearity is a finite sum of terms of the

form cupX(u), provided each such term separately satisfies (5.15).

Proof. Reformulating the PDE in terms of ũ and f̃ as above, this follows from an
application of the Banach fixed point theorem to the map

Hm,l,k
b (Ω)• 3 ũ 7→ S

(
f̃ + cρ(p−1)(n−2)/2+qn/2−2ũp

q∏
j=1

(fj ũ+ Vj ũ)

)
∈ Hm,l,k

b (Ω)•

with m, l, k as in the statement of the theorem. Here, p+q ≥ 2 and the smallness of

R ensure that this map is a contraction on the ball of radius R in Hm,l,k
b (Ω)•. �

Remark 5.13. If the derivatives in the non-linearity only involve module derivatives,

we get a slightly better result since we can work with ũ ∈ H0,l,k
b (Ω)•: Indeed, a

module derivative falling on ũ gives an element of H0,l,k−1
b (Ω)•, applied to which

the forward solution operator produces an element of H1,l,k−1
b (Ω)• ⊂ H0,l,k

b (Ω)•.
The numerology works out as follows: In condition (5.15), we now take l < 1/2

close to 1/2, thus obtaining

(p− 1)(n− 2) + qn > 4.

Thus, in the case that there are only derivatives in the non-linearity, i.e. p = 0, we
get q > 1 + 2/n, which allows for quadratic non-linearities provided n ≥ 3.

Remark 5.14. Observe that we can improve (5.15) in the case p ≥ 1, q ≥ 1, m ≥ 1
by using the δ-improvement from Corollary 5.7, namely, the right hand side of

(5.14) actually lies in Hm−1,`,k
b (Ω)•, where now

` = (p− 1)(n− 2)/2 + qn/2− 2 + pl− (p− 1)/2 + (p− 1)δ+ ql− (q− 1)/2− 1/2 + δ,

which satisfies ` ≥ l if

(p− 1)(l + (n− 3)/2 + δ) + q(l + (n− 1)/2) + δ ≥ 2,

which for l < −1/2 close to −1/2 means: (p− 1)(n− 4 + 2δ) + q(n− 2) + 2δ > 4,
where 0 < δ < 1/n.

Remark 5.15. Let us compare the above result with Christodoulou’s [7]. A spe-
cial case of his theorem states that the Cauchy problem for the wave equation on
Minkowski space with small initial data in Hk,k−1(Rn−1) 63 admits a global solution

u ∈ Hk
loc(Rn) with decay |u(x)| . (1 + (v/ρ)2)−(n−2)/2; here, k = n/2 + 2, and n is

assumed to ≥ 4 and even; in case n = 4, the non-linearity is moreover assumed to
satisfy the null condition. The only polynomial non-linearity that we cannot deal
with using the above argument is thus the null-form non-linearity in 4 dimensions.

63Note that n is the dimension of Minkowski space here, whereas Christodoulou uses n+ 1.
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To make a further comparison possible, we express Hk,δ(Rn−1) as a b-Sobolev
space on the radial compactification of Rn−1: Note that u ∈ Hk,δ(Rn−1) is equiv-
alent to (〈x〉Dx)αu ∈ 〈x〉−δL2(Rn−1), |α| ≤ k. In terms of the boundary defining

function ρ of ∂Rn−1 and the standard measure dω on the unit sphere Sn−2 ⊂ Rn−1,
we have L2(Rn−1) = L2(dρρ2

dy
ρn−2 ) = ρ(n−1)/2L2(dρρ dy), and thus Hk,δ(Rn−1) =

ρ(n−1)/2+δHk
b (̃t = 0). Therefore, converting the Cauchy problem into a forward

problem, the forcing lies in H
k,(n−1)/2+k−1,0
b (Ω)• = H

n/2+2,n+1/2,0
b (Ω)•. Compar-

ing this with the spaceH
0,l+(n−2)/2+2,n/2+1
b (with l < 1/2) needed for our argument,

we see that Christodoulou’s result applies to a regime of fast decay which is disjoint
from our slow decay (or even mild growth) regime.

Remark 5.16. In the case of non-linearities up, the result of Christodoulou [7] im-
plies the existence of global solutions to �gu = f +up if the spacetime dimension n
is even and n ≥ 4 if p ≥ 3; in even dimensions n ≥ 6, p ≥ 2 suffices; the above result
extends this to all dimensions satisfying the respective inequalities. In a somewhat
similar context, see the work of Chruściel and  Lȩski [9], it has been proved that
p ≥ 2 in fact works in all dimensions n ≥ 5.

5.5. Semilinear equations with null condition. With g the Lorentzian scat-
tering metric on Minkowski space as before, define the null form Q(scdu, scdv) =
gjk∂ju∂kv, and write Q(scdu) for Q(scdu, scdu). We are interested in solving the
PDE

�gu = Q(scdu) + f.

The previous discussion solves this for n ≥ 5; thus, let us from now on assume
n = 4. To make the computations more transparent, we will keep the n in the
notation and only substitute n = 4 when needed. Rewriting the PDE in terms of
the operator L = ρ−2ρ−(n−2)/2�gρ(n−2)/2 as above, we get

Lũ = f̃ + ρ−(n−2)/2−2Q(scd(ρ(n−2)/2ũ)),

where ũ = ρ−(n−2)/2u and f̃ = ρ−(n−2)/2−2f . We can write Q(scdu) = 1
2�g(u

2)−
u�gu, thus the PDE becomes

Lũ = f̃ + ρ−(n−2)/2−2
(

1
2�g(ρ

n−2ũ2)− ρ(n−2)/2ũ�g(ρ
(n−2)/2ũ)

)
= f̃ + 1

2L(ρ(n−2)/2ũ2)− ρ(n−2)/2ũLũ.

Since the results of Section 5.2 give small improvements on the decay of products
of H1,∗,∗

b functions with Hm,∗,∗
b functions (m ≥ 0), one wants to solve this PDE on

a function space that keeps track of these small improvements.

Definition 5.17. For l ∈ R, k ∈ N0 and α ≥ 0, define the space X l,k,α := {v ∈
H1,l+α,k

b (Ω)• : Lv ∈ H0,l,k
b (Ω)•} with norm

‖v‖X l,k,α = ‖v‖H1,l+α,k
b (Ω)• + ‖Lv‖H0,l,k

b (Ω)• . (5.16)

By an argument similar to the one used in the proof of Theorem 2.24, we see
that X l,k,α is a Banach space.

On X l,k,α, which α > 0 chosen below, we want to run an iteration argument:

Start by defining the operator T : X l,k,α → H1,−∞,k
b (Ω)• by

T : ũ 7→ S
(
f̃ − ρ(n−2)/2ũLũ

)
+ 1

2ρ
(n−2)/2ũ2.
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Note that ũ ∈ X l,k,α implies, using Corollary 5.7 with δ < 1/n,

ρ(n−2)/2ũ2 ∈ ρ(n−2)/2H
1,2(l+α)−1/2+δ,k
b (Ω)• = H

1,2l+α+(n−3)/2+δ+α,k
b (Ω)•,

ρ(n−2)/2ũLũ ∈ H0,2l+α+(n−3)/2+δ,k
b (Ω)•, (5.17)

S(ρ(n−2)/2ũLũ) ∈ H1,2l+α+(n−3)/2+δ,k
b (Ω)•,

where in the last inclusion, we need to require 1 + (2l + α+ (n− 3)/2 + δ) < 1/2,
which for n = 4 means

l < −1/2− (α+ δ)/2; (5.18)

let us assume from now on that this condition holds. Furthermore, (5.17) implies

T ũ ∈ H1,2l+α+(n−3)/2+δ,k
b (Ω)•. Finally, we analyze

L(T ũ) ∈ H0,2l+α+(n−3)/2+δ,k
b (Ω)• +

1

2
L(ρ(n−2)/2ũ2).

Using that L is a second-order b-differential operator, we have

ρ(n−2)/2L(ũ2) ∈ 2ρ(n−2)/2ũLũ+ ρ(n−2)/2H0,l+α,k
b (Ω)•H0,l+α,k

b (Ω)•

⊂ H0,2l+α+(n−3)/2+δ,k
b (Ω)• +H

0,2(l+α)+(n−3)/2,k
b (Ω)•

= H
0,2l+α+(n−3)/2+min{α,δ},k
b (Ω)•,

which gives

L(ρ(n−2)/2ũ2) ∈ L(ρ(n−2)/2)ũ2 + ρ(n−2)/2L(ũ2)

+ ρ(n−2)/2H1,l+α,k
b (Ω)•H0,l+α,k

b (Ω)•

⊂ H1,2l+α+(n−3)/2+δ+α,k
b (Ω)• +H

0,2l+α+(n−3)/2+min{α,δ},k
b (Ω)•

+H
0,2l+α+(n−3)/2+δ+α
b (Ω)•

= H
0,2l+α+(n−3)/2+min{α,δ},k
b (Ω)•.

Hence, putting everything together,

L(T ũ) ∈ H0,2l+α+(n−3)/2+min{α,δ},k
b (Ω)•.

Therefore, we have T ũ ∈ X l,k,α provided

2l + α+ (n− 3)/2 + δ ≥ l + α

2l + α+ (n− 3)/2 + min{α, δ} ≥ l,

which for 0 < α < δ and n = 4 is equivalent to

l ≥ −1/2− δ, l ≥ −1/2− 2α. (5.19)

This is consistent with condition (5.18) if −1/2 − (α + δ)/2 > −1/2 − 2α, i.e. if
α > δ/3.

Finally, for the map T to be well-defined, we need Sf̃ ∈ X l,k,α, hence f̃ ∈
RanX l,k,α L, which is in particular satisfied if f̃ ∈ H0,l+α,k

b (Ω)•. Indeed, since

1 + l + α < 1 − 1/2 − (δ − α)/2 < 1/2 by condition (5.18), the element Sf̃ ∈
H1,l+α,k

b (Ω)• is well-defined.
We have proved:
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Theorem 5.18. Let c ∈ C, 0 < δ < 1/4, δ/3 < α < δ, and let −1/2 − 2α ≤ l <
−1/2 − (α + δ)/2. Then for small enough R > 0, there exists a constant C > 0

such that for all f ∈ H0,l+3+α,k
b (Ω)• with norm ≤ C, the equation

�gu = f + cQ(scdu)

has a unique solution u ∈ X l+1,k,α, with norm ≤ R, that depends continuously on
f .

Appendix A. Non-trapping estimates near normally hyperbolic
trapping

First consider a semiclassical operator Ph(z) with normally hyperbolic trapping
on a manifold without boundary X, with trapped set Γ, as was done by Wunsch
and Zworski [47]. Wunsch and Zworski studied this setting, imposing other global
assumptions, the most important one being adding complex absorption W in such
a way that all bicharacteristics outside Γ either enter the elliptic set of W in finite
time or tend to Γ in both the forward and backward directions, and in at least one of
the two directions they tend to the elliptic set of W . The bicharacteristics tending
to Γ in the forward/backward directions are forward/backward trapped; denote by
Γ−, resp. Γ+ the forward, resp. backward trapped set64, and assume that these are
smooth codimension one submanifolds of the semiclassical characteristic set Σ~,z,
intersecting transversally.

In this normally hyperbolic setting Wunsch and Zworski [47] have shown poly-
nomial semiclassical resolvent estimates

‖u‖ ≤ Ch−N‖Ph(z)u‖, 0 < h < h0, (A.1)

in small strips | Im z| ≤ ch, c > 0 sufficiently small, N > 1, and indeed for z real,
the loss is merely logarithmic, i.e. one has

‖u‖ ≤ Ch−1(log h−1)‖Ph(z)u‖, 0 < h < h0, (A.2)

where ‖.‖ is the L2-norm.
In this appendix we are concerned with improved estimates if one localizes u

and Ph(z)u away from the trapping Γ in a rather weak sense, such as by applying
pseudodifferential operators with symbols vanishing at Γ. To place this into context,
recall that Datchev and Vasy [13, 14] have shown that under our assumptions, with
Im z = O(h∞), if A,B ∈ Ψ~(X) with WF′~(A) ∩ Γ = WF′~(B) ∩ Γ = ∅, B elliptic
on WF′~(A), then for all M there is N such that

‖Au‖ ≤ Ch−1‖BPh(z)u‖+ C ′hM‖u‖+ C ′′h−N‖(Id−B)Ph(z)u‖, (A.3)

i.e. if Ph(z)u is O(hN−1) at Γ, where Id−B is elliptic, then on the elliptic set of
A, hence off Γ by appropriate choice of A, u satisfies non-trapping semiclassical
estimates:

‖APh(z)−1Av‖ ≤ Ch−1‖v‖,
with A as above (take B as above with WF′~(Id−B) ∩WF′~(A) = ∅). Here the
O(h∞) bound on Im z arises from the a priori estimate, (A.1), and if 1 < N <
3/2, e.g. as is on, and sufficiently near, the real axis65, then one can take Im z =

64In the notation of Wunsch and Zworski [47], Γ± are the backward/forward trapped sets for

all (not necessarily null) bicharacteristics near the, say, zero level set of the semiclassical principal
symbol p~,z , Γλ± are the corresponding sets within the λ-level set of p~,z .

65In the latter case by the Phragmén-Lindelöf theorem.
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O(h−1+2N ). The purpose of this appendix is to improve this result by relaxing the
conditions on WF′~(A) and WF′~(B) in (A.3).

The main point of the next theorem is thus that its estimate degenerates only at,
as opposed to near, Γ. The proof given here is closely related to the proof of Wunsch
and Zworski [47, Section 4], but being suboptimal in terms of the L2-estimate,
even though it is optimal (non-trapping) when a pseudodifferential operator with
vanishing principal symbol at Γ is applied from both sides, it can take place in a
significantly simpler, standard, semiclassical pseudodifferential algebra. To set this
up, let Q± ∈ Ψ~(X) be self-adjoint and have symbols which are defining functions
of Γ± near Γ, within the characteristic set Σ~,z, say on a neighborhood O of Γ. Also
let p = p~,z be the semiclassical principal symbol of Ph(z). Here we recall from the
work of Wunsch and Zworski [47, Lemma 4.1], with a corrected argument in [46],
that for defining functions φ± of Γ± (near Γ) one can take φ± with

Hpφ± = ∓c2±φ±
with c± > 0 near Γ, and with66

{φ+, φ−} > 0

near Γ. By shrinking O if necessary we may assume that this Poisson bracket as
well as c± have positive lower bounds on O. Then notice that

Hpφ
2
+ = −2c2+φ

2
+, Hpφ

2
− = 2c2−φ

2
−.

Let Q0 ∈ Ψ~(X) have WF′~(Q0) ∩ Γ = ∅ and be elliptic on Oc (and thus on a
neighborhood of Oc), with real principal symbol for convenience. One considers
normally isotropic spaces at Γ, H~,Γ, with squared norms given by

‖Q0u‖2 + ‖Q+u‖2 + ‖Q−u‖2 + h‖u‖2;

this is just the standard L2-space microlocally away from Γ as one of Q+, Q− or
Q0 is elliptic there, and it does not depend on the choice of Q0 as on O \ Γ one of
Q+ and Q− is elliptic at every point. Notice that in fact

(Q+ − iQ−)∗(Q+ − iQ−) = Q∗+Q+ +Q∗−Q− − i[Q+, Q−]

and if B ∈ Ψ~(X) with WF′~(B) ⊂ O then

h‖Bv‖2 ≤ C Re〈i[Q+, Q−]Bv,Bv〉+ hN
′
‖Bv‖2,

C > 0, in view of {φ+, φ−} > 0 on O, so

Q∗+Q+ +Q∗−Q− =
1

2
(Q∗+Q+ +Q∗−Q− + (Q+ − iQ−)∗(Q+ − iQ−) + i[Q+, Q−])

shows that, for h > 0 small, the norm on H~,Γ is equivalent to just the norm

‖u‖2H~,Γ,2
= ‖Q0u‖2 + ‖Q+u‖2 + ‖Q−u‖2.

The dual space relative to L2 is then67

H∗~,Γ = h1/2L2 +Q+L
2 +Q−L

2 +Q0L
2

66These defining functions exist globally when Γ± is orientable; but even if Γ± is not such,
the square is globally defined. There is only a minor change required below if φ± are not well

defined; see Footnote 69.
67One really has Q∗± and Q∗0 in this formula, but the reality of the principal symbols assures

that one may replace them by Q± and Q0 modulo hL2. See [31, Appendix A] for a general

discussion of the underlying functional analysis.
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(which is L2 as a space, but with this norm); Ph(z)u will then be measured in H∗~,Γ.

Then Ψ~(X) acts on H~,Γ, and thus on H∗~,Γ, for B ∈ Ψ~(X) preserves h−1/2L2

and gives

‖Q+Bu‖ ≤ ‖BQ+u‖+ ‖[Q+, B]u‖ ≤ C‖Q+u‖+ h‖u‖L2 ,

with a similar result for Q− and Q0. We remark that the notation H~,Γ is justified
as the space depends only on Γ, not on the particular defining functions φ± as any
other defining functions would change Q± by an elliptic factor modulo an element of
hΨ~(X), whose contribution to the squared norm can be absorbed into Ch2‖u‖2L2 ,
and thus dropped altogether (for h small) in view of the equivalence of the two
norms discussed above.

Theorem A.1. Let P = Ph(z), Q± be as above, z real.68 Then

‖Q+u‖+ ‖Q−u‖ ≤ Ch−1‖Pu‖H∗~,Γ + C ′h1/2‖u‖, (A.4)

and thus by (A.2),
‖u‖H~,Γ ≤ Ch−1‖Pu‖H∗~,Γ . (A.5)

Note that this theorem in particular implies the main result of [13] in this setting,
in that the estimates are of the same kind, except that in [13] Pu is assumed to be
microlocalized away from, and u is estimated microlocally away from, Γ.

We also remark that the microlocal version of the two estimates of the theorem
is that given any neighborhood O′ of Γ with closure in O, there exist B0 ∈ Ψ~(X)
elliptic at Γ, B1, B2 ∈ Ψ~(X) with WF′~(B2)∩Γ+ = ∅, WF′~(Bj) ⊂ O′ for j = 0, 1, 2
such that

‖B0Q+u‖+ ‖B0Q−u‖ ≤ h−1‖B1Pu‖H∗~,Γ + ‖B2u‖L2 + C ′h1/2‖u‖L2 , (A.6)

respectively

‖B0u‖H~,Γ ≤ h−1‖B1Pu‖H∗~,Γ + ‖B2u‖L2 + C ′h‖u‖L2 ; (A.7)

see (A.13). The theorem is proved by controlling the B2u term using the backward
non-trapped nature of Γ− \ Γ.

Proof. We first prove (A.4), which proves (A.5) by (A.2). Then we modify the
proof slightly to show (A.5) directly, and in particular prove a weaker version of
the Wunsch-Zworski estimate (A.2), namely

‖u‖L2 ≤ Ch−2‖Pu‖L2 .

Let χ0(t) = e−1/t for t > 0, χ0(t) = 0 for t ≤ 0, χ ∈ C∞c ([0,∞)) be identically 1
near 0 with χ′ ≤ 0, and indeed with χ′χ = −χ2

1, χ1 ≥ 0, χ1 ∈ C∞c ([0,∞)), and let
ψ ∈ C∞c (R) be identically 1 near 0. Let

a = χ0(φ2
+ − φ2

− + κ)χ(φ2
+)ψ(p),

κ > 0 small. Notice that on supp a, if χ is supported in [0, R],

φ2
+ ≤ R, φ2

− ≤ φ2
+ + κ = R+ κ,

so a is localized near Γ if R and κ are taken sufficiently small. Then

1

4
Hp(a

2) =− (c2+φ
2
+ + c2−φ

2
−)(χ0χ

′
0)(φ2

+ − φ2
− + κ)χ(φ2

+)2ψ(p)2

− c2+φ2
+(χ′χ)(φ2

+)χ0(φ2
+ − φ2

− + κ)2ψ(p)2.

68An inspection of this argument gives that Im z = O(h2) suffices.
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Now χ′0 ≥ 0, so the two terms have opposite signs. Let69

a± = φ±

√
(χ0χ′0)(φ2

+ − φ2
− + κ)χ(φ2

+)ψ(p),

and

e− = c+φ+χ1(φ2
+)χ0(φ2

+ − φ2
− + κ)ψ(p);

then
1

4
Hp(a

2) = −c2+a2
+ − c2−a2

− + e2
−. (A.8)

Here

supp e− ⊂ supp a,

supp e− ∩ Γ+ = ∅,

with the last statement following from φ2
+ taking values away from 0 on suppχ1;

see Figure 7.

Figure 7. Supports of the commutant a and the error term e−
in the positive commutator argument of the non-trapping estimate
near the trapped set Γ, Theorem A.1. The support of a is indicated
in light gray; on supp a\supp e−, darker colors correspond to larger
values of a. Also shown are the forward, resp. backward, trapped
set Γ−, resp. Γ+, and the bicharacteristic flow nearby. The figure
already suggests that Hp(a

2) is non-positive away from supp e−,
and actually negative away from supp e− ∪ Γ; see equation (A.8).

One then takes A ∈ Ψ~(X) with principal symbol a, and with WF′~(A) ⊂ supp a,
A± ∈ Ψ~(X) with principal symbols of a±, and with WF′~(A±) ⊂ supp a±, C±

69If φ± is not defined globally, a± are not defined as stated. (The term e2− need not have a sign,

so this issue does not arise for it; see the Weyl quantization argument below.) However, a± need

not be real below, so as long as one can choose ψ± complex valued with |ψ±|2 = φ2
±, replacing the

first factor of φ± with ψ± in the definition of a± allows one to complete the argument in general.
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have symbol c± and with WF′~(C±) ⊂ supp c±; one similarly lets E− ∈ Ψ~(X)
have principal symbol e−, and wave front set in the support of e−. This gives that

i

4h
[P,A∗A] = −(C+A+)∗(C+A+)− (C−A−)∗(C−A−) + E∗−E− + hF, (A.9)

for some F ∈ Ψ~(X) with

WF′~(F ) ⊂ supp a.

Thus

i

4h
〈[P,A∗A]u, u〉 = −‖C+A+u‖2 − ‖C−A−u‖2 + ‖E−u‖2 + h〈Fu, u〉.

Expanding the left hand side gives

〈PA∗Au, u〉 − 〈A∗APu, u〉
= 〈Au,APu〉 − 〈APu,Au〉+ 〈(P − P ∗)A∗Au, u〉.

As we are assuming that P − P ∗ is O(h2) near Γ, we may also assume that this
holds on supp a, thus the last term is O(h2)‖u‖2. Thus,

‖C+A+u‖2 + ‖C−A−u‖2 ≤ ‖E−u‖2 + h−1|〈APu,Au〉|+ C1h‖u‖2. (A.10)

Now, by the duality of H~,Γ and H∗~,Γ relative to the L2 inner product,

|〈APu,Au〉| ≤ ‖APu‖H∗~,Γ‖Au‖H~,Γ ≤
hε

2
‖Au‖2H~,Γ

+
1

2hε
‖APu‖H∗~,Γ .

Further, ε > 0 small, ε‖Q+Au‖2 can be estimated in terms of ‖C+A+u‖2 +
O(h)‖u‖2, as can be seen by comparing the principal symbols, in particular us-
ing the ellipticity of C+ on supp a. One can thus absorb ε

2‖Au‖
2
H~,Γ

into the left

hand side of (A.10). This shows

‖C+A+u‖2 + ‖C−A−u‖2 ≤ C‖E−u‖2 + Ch−2‖APu‖2H∗~,Γ + Ch‖u‖2,

which together with the non-trapping control of E−u (the region supp e− is dis-
joint from Γ+, so it is backward non-trapped and thus E−u is controlled by Pu
microlocalized off Γ+, thus by Q+Pu, modulo higher order in h terms in Pu) proves
the first part of Theorem A.1. Thus, if we have a bound ‖u‖ ≤ C ′h−1−s‖Pu‖L2 ,
0 < s < 1/2, and thus h‖u‖2 ≤ C ′h−1−2s‖Pu‖2L2 ≤ C ′′h−1−2s‖Pu‖2H∗~,Γ , this

implies a non-trapping estimate:

‖u‖H~,Γ ≤ Ch−1‖Pu‖H∗~,Γ .

This completes the proof of Theorem A.1.
In fact, as mentioned earlier, a slight change of point of view proves Theorem A.1

directly. To see this, we use the Weyl quantization70 when choosing a, a±, c±, e−;
since we are on a manifold, this requires identifying functions with half-densities
via trivialization of the half-density bundle by the Riemannian metric; this iden-
tification preserves self-adjointness. We also write P~,z as the Weyl quantization

70In fact, the Weyl quantization is irrelevant. It is straightforward to see that if A ∈ Ψ~(X)
and if the principal symbol of A is real then the real part of the subprincipal symbol is defined

independently of choices. This is all that is needed for the argument below.
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of p0 + hp1 with p0, p1 real modulo O(h2). Then the principal symbol calculation
above holds with p0 in place of p, and with p1 included it yields additional terms

1

4
Hp(a

2) =− (c2+φ
2
+ + c2−φ

2
− − hφ+Hp1

φ+ + hφ−Hp1
φ−)

× (χ0χ
′
0)(φ2

+ − φ2
− + κ)χ(φ2

+)2ψ(p)2

− (c2+φ
2
+ − hφ+Hp1φ+)(χ′χ)(φ2

+)χ0(φ2
+ − φ2

− + κ)2ψ(p)2.

Now, (A.9) becomes

i

4h
[P,A∗A] =− (C+A+)∗(C+A+)− (C−A−)∗(C−A−)

+ h(A∗+G+ +G∗+A+ +A∗−G− +G∗−A−) + E + h2F,
(A.11)

with G± being the Weyl quantization of

g± = ±1

2
(Hp1

φ±)
√

(χ0χ′0)(φ2
+ − φ2

− + κ)χ(φ2
+)ψ(p),

and with F ∈ Ψ~(X) with
WF′~(F ) ⊂ supp a.

Correspondingly, (A.10) becomes

‖C+A+u‖2 + ‖C−A−u‖2 ≤ |〈Eu, u〉|+ h−1|〈APu,Au〉|
+ 2h‖A+u‖‖G+u‖+ 2h‖A−u‖‖G−u‖+ C1h

2‖u‖2.
(A.12)

The terms with G± on the right hand side can be estimated by

ε‖A+u‖2 + ε−1h2‖G+u‖2 + ε‖A−u‖2 + ε−1h2‖G−u‖2,
and for ε > 0 sufficiently small, the ‖A±u‖2 terms can now be absorbed into the
left hand side of (A.12). Proceeding as above yields

‖C+A+u‖2 + ‖C−A−u‖2 ≤ C|〈Eu, u〉|+ Ch−2‖APu‖2H∗~,Γ + Ch2‖u‖2. (A.13)

Together with the non-trapping for the E term this gives the global estimate

‖u‖2H~,Γ
≤ Ch−2‖Pu‖2H∗~,Γ + Ch2‖u‖2,

and now the last term on the right hand side can be absorbed in the left hand side
for sufficiently small h, giving the estimate (A.5). �

We now transfer this result into the b-setting; the discussion up to now is es-
sentially the dilation invariant special case of this, though in the b-setting there is
additional localization near the boundary X of M .

With the notation of Section 2.1, suppose that P ∈ Ψm
b (M) with real princi-

pal symbol p0, regarded as a homogeneous function on bT ∗M \ o, and P − P∗ ∈
Ψm−2

b (M); let Σ ⊂ bS∗M be the characteristic set of P as before. We first work
microlocally near what becomes the trapped set in the application, namely assume
that

(1) Γ ⊂ Σ∩ bS∗XM is a smooth submanifold disjoint from the image of T ∗X \o
(so τDτ is elliptic near Γ),

(2) Γ+ is a smooth submanifold of Σ ∩ bS∗XM in a neighborhood U1 of Γ,
(3) Γ− is a smooth submanifold of Σ transversal to bS∗XM ∩ Σ in U1,
(4) Γ+ has codimension 2 in Σ, Γ− has codimension 1,
(5) Γ+ and Γ− intersect transversally in Σ with Γ+ ∩ Γ− = Γ,
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(6) the rescaled Hamilton vector field V = ρ̃m−1Hp0
is tangent to both Γ+ and

Γ−, and thus to Γ.

We assume that Γ+ is backward trapped by Γ for the Hamilton flow (i.e. bicharac-
teristics in Γ+ near Γ tend to Γ as the parameter goes to −∞), i.e. is the unstable
manifold of Γ, while Γ− is forward trapped, i.e. is the stable manifold of Γ; indeed,
we assume a quantitative version of this. (There is a completely analogous state-
ment if Γ+ is forward trapped and Γ− is backward trapped: replacing P by −P
preserves all assumptions, but reverses the Hamilton flow.) To state this, let φ− be
a defining function of Γ−, and let φ+ ∈ C∞(bS∗M) be a defining function of Γ+

in bS∗XM ; thus Γ+ is defined within bS∗M by τ = 0, φ+ = 0. Notice that V being
to tangent to bS∗XM (due to (2.1)) implies that V τ is a multiple of τ ; we assume
that, near Γ,

V τ = −c2∂τ, c∂ > 0; (A.14)

this is consistent with the stability of Γ−. By the tangency requirement, with

p̂0 = ρ̃mp0,

V φ− = α−φ− + ν−p̂0, α− smooth; notice that changing φ− by a smooth non-
zero multiple f gives V (fφ−) = α−fφ− + ν−fp̂0 + (V f)φ−, so α− depends on
the choice of φ−. On the other hand, the tangency requirement gives V φ+ =
α+φ++β+τ+ν+p̂0. For the sake of conciseness, rather than stating the assumptions
on the Hamilton flow as in [47], we assume directly that φ± satisfy

V φ− = c2−φ− + ν−p̂0, V φ+ = −c2+φ+ + β+τ + ν+p̂0, (A.15)

with c± > 0 smooth near Γ, β+, ν± smooth near Γ and

{φ+, φ−} > 0 (A.16)

near Γ. However, if we merely assume the normal hyperbolicity within bS∗XM as in
[47, Section 1.2], [47, Lemma 4.1], as corrected in [46], actually gives such defining
functions φ0

± within bS∗XM (i.e. letting τ = 0); taking an arbitrary extension in
case of φ+, and an extension which is a defining function in case of Γ−, all the
requirements above are satisfied. Let U0 ⊂ U0 ⊂ U1 be a neighborhood of Γ such
that the Poisson bracket in (A.16) as well as c± have positive lower bounds.

There is an asymmetry between the roles of φ± and τ , and thus we consider the
parabolic defining function

ρ+ = φ2
+ + Mτ

for Γ+, M > 0, to be chosen. Then, near Γ,

ρ̂+ = V ρ+ = −2c2+φ
2
+ + 2β+φ+τ + 2ν+φ+p̂0 −Mc2∂τ

= −2c2+φ
2
+ − (Mc2∂ − 2β+φ+)τ + 2ν+φ+p̂0

≤ −c̃2+ρ+ + 2ν+φ+p̂0, c̃+ > 0,

(A.17)

if M > 0 is chosen sufficiently large, consistently with the forward trapped nature
of Γ−. (Here the term with p̂0 is considered harmless as one essentially restricts
to the characteristic set, p̂0 = 0.) Also, note that one can use71 the reciprocal
ρ̃ = |σ|−1 of the principal symbol σ of τDτ as the local defining function of bS∗M
as fiber-infinity in bT ∗M near Γ; then

V ρ̃ = α̃ρ̃τ (A.18)

71Indeed, in the semiclassical setting, after Mellin transforming this problem, |σ|−1 plays the
role of the semiclassical parameter h, which in that case commutes with the operator.
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for some α̃ smooth in view of (2.1).
We recall the definition of the b-normally isotropic spaces from Section 3.1. Let

Q± ∈ Ψ0
b(M) have principal symbol φ± as before, P̂0 ∈ Ψ0

b(M) have principal sym-
bol p̂0 and let Q0 ∈ Ψ0

b(M) be elliptic, with real principal symbol for convenience,
on U c0 (and thus nearby). Define the (global) b-normally isotropic spaces at Γ of
order s, Hsb,Γ, by the norm

‖u‖2Hsb,Γ = ‖Q0u‖2Hsb + ‖Q+u‖2Hsb + ‖Q−u‖2Hsb + ‖τ1/2u‖2Hsb + ‖P̂0u‖2Hsb + ‖u‖2
H
s−1/2
b

,

(A.19)

and let H∗,−sb,Γ be the dual space relative to L2 which is thus

Q0H
−s
b +Q+H

−s
b +Q−H

−s
b + τ1/2H−sb + P̂0H

−s
b +H

−s+1/2
b .

Recall that microlocally away from Γ, Hsb,Γ is just the standard Hs
b space while

H∗,−sb,Γ is H−sb since at least one of Q0, Q±, τ is elliptic, Ψk
b(M) 3 A : Hsb,Γ → H

s−k
b,Γ

is continuous since [Q+, A] ∈ Ψk−1
b (M) etc.; the analogous statement also holds for

the dual spaces. Further, the last term in (A.19) can be replaced by ‖u‖2
Hs−1

b

as

i[Q+, Q−] = B∗B +R, B ∈ Ψ
−1/2
b (M), R ∈ Ψ−2

b (M), using the same argument as
in the semiclassical setting (however, it cannot be dropped altogether unlike in the
semiclassical setting!). Our result is then:

Proposition A.2. With P,Hsb,Γ,H
∗,s
b,Γ as above, for any neighborhood U of Γ

and for any N there exist B0 ∈ Ψ0
b(M) elliptic at Γ and B1, B2 ∈ Ψ0

b(M) with
WF′b(Bj) ⊂ U , j = 0, 1, 2, WF′b(B2) ∩ Γ+ = ∅ and C > 0 such that

‖B0u‖Hsb,Γ ≤ ‖B1Pu‖H∗,s−m+1
b,Γ

+ ‖B2u‖Hsb + C‖u‖H−Nb
, (A.20)

i.e. if all the functions on the right hand side are in the indicated spaces: B1Pu ∈
H∗,s−m+1

b,Γ , etc., then B0u ∈ Hsb,Γ, and the inequality holds.

The same conclusion also holds if we assume WF′b(B2) ∩ Γ− = ∅ instead of
WF′b(B2) ∩ Γ+ = ∅.

Finally, if r < 0, then, with WF′b(B2) ∩ Γ+ = ∅, (A.20) becomes

‖B0u‖Hs,rb
≤ ‖B1Pu‖Hs−m+1,r

b
+ ‖B2u‖Hs,rb

+ C‖u‖H−N,rb
, (A.21)

while if r > 0, then, with WF′b(B2) ∩ Γ− = ∅,
‖B0u‖Hs,rb

≤ ‖B1Pu‖Hs−m+1,r
b

+ ‖B2u‖Hs,rb
+ C‖u‖H−N,rb

, (A.22)

Remark A.3. Note that the weighted versions (A.21)-(A.22) use standard weighted
b-Sobolev spaces; this corresponds to non-trapping semiclassical estimates if the
subprincipal symbol has the correct, definite, sign at Γ.

Proof. We may assume that U ⊂ U0 is disjoint from a neighborhood of WF′b(Q0),
and thus ignore Q0 in the definition of Hsb,Γ below.

We first prove that there exist B0, B1, B2 as above and B3 ∈ Ψ0
b(M) with

WF′b(B3) ⊂ U such that

‖B0u‖Hsb,Γ ≤ ‖B1Pu‖H∗,s−m+1
b,Γ

+ ‖B2u‖Hsb + ‖B3u‖Hs−1
b

+ C‖u‖H−Nb
. (A.23)

An iterative argument will then prove the proposition.
The proof is a straightforward modification of the construction in the semiclas-

sical setting above, replacing φ2
+ by φ2

+ + Mτ , M > 0 large, in accordance with
(A.17).
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We start by pointing out that for any B̃0 ∈ Ψ0
b(M) and any B̃3 ∈ Ψ0

b(M)

elliptic on WF′b(B̃0), ‖P̂0B̃0u‖Hsb ≤ C‖B̃0Pu‖Hs−mb
+ C ′‖B̃3u‖Hs−1

b
, by simply

using that P̂0 is an elliptic multiple of P modulo Ψ−1
b (M). Since ‖B̃0Pu‖Hs−mb

≤
C‖B̃0Pu‖H∗,s−mb,Γ

, the P̂0 contribution to ‖B̃0u‖Hsb,Γ in (A.23) is thus automatically

controlled.
So let χ0(t) = e−z/t for t > 0, χ0(t) = 0 for t ≤ 0, with z > 0 (large) to be

specified, χ ∈ C∞c ([0,∞)) be identically 1 near 0 with χ′ ≤ 0, and indeed with
χ′χ = −χ2

1, χ1 ≥ 0, χ1 ∈ C∞c ([0,∞)), and let ψ ∈ C∞c (R) be identically 1 near
0. As we use the Weyl quantization,72 we write P as the Weyl quantization of
p = p0 + ρ̃p1, with p1 order m− 1. Let

a = ρ̃−s+(m−1)/2χ0(ρ+ − φ2
− + κ)χ(ρ+)ψ(ρ̃mp), (A.24)

κ > 0 small. Notice that on supp a, if χ is supported in [0, R],

ρ+ ≤ R, φ2
− ≤ ρ+ + κ = R+ κ,

so a is localized near Γ if R and κ are taken sufficiently small. In particular, the
argument of χ0 is bounded above by R+κ, so given any M0 > 0 one can take z > 0
large so that

χ′0χ0 −M0χ
2
0 = b2χ′0χ0,

with b ≥ 1/2, C∞, on the range of the argument of χ0.
In fact, we also need to regularize, namely introduce

aε = (1 + ερ̃−1)−2a, ε ∈ [0, 1], (A.25)

which is a symbol of order s − (m − 1)/2 − 2 for ε > 0, and is uniformly bounded
in symbols of order s − (m − 1)/2 as ε varies in [0, 1]. In order to avoid more
cumbersome notation below, we ignore the regularizer and work directly with a;
since the regularizer gives the same kind of contributions to the commutator as the
weight ρ̃−s+(m−1)/2, these contributions can be dominated in exactly the same way.

Then, with p = p0 + ρ̃p1 as above, W = ρ̃m−2Hρ̃p1 , which is a smooth vector
field near bS∗M as ρ̃p1 is order m− 1, noting Wρ̃ = α̃1τ ρ̃ similarly to (A.18), and
Wτ = α∂,1τ by the tangency of W to τ = 0,

1

4
Hp(a

2) =− (−ρ̂+/2 + c2−φ
2
− + ν−φ−p̂0 − ρ̃φ+(Wφ+)− ρ̃Mα∂,1τ + ρ̃φ−(Wφ−))

× ρ̃−2s(χ0χ
′
0)(ρ+ − φ2

− + κ)χ(ρ+)2ψ(ρ̃mp)2

+
1

4
(−2s+m− 1)ρ̃−2s(α̃+ ρ̃α̃1)τχ0(ρ+ − φ2

− + κ)2χ(ρ+)2ψ(ρ̃mp)2

+
1

2
ρ̃−2s(ρ̂+ + ρ̃Wρ+)(χ′χ)(ρ+)χ0(ρ+ − φ2

− + κ)2ψ(ρ̃mp)2

+
m

2
(α̃+ ρ̃α̃1)ρ̃−2s(ρ̃mp)τχ0(ρ+ − φ2

− + κ)2χ(ρ+)2(ψψ′)(ρ̃mp).

(A.26)

A key point is that the second term on the right hand side, given by the weight
ρ̃−2s+m−1 being differentiated, can be absorbed into the first by making z > 0

72Again, the Weyl quantization is irrelevant: if A ∈ Ψmb (X) and the principal symbol of A
is real then the real part of the subprincipal symbol is defined independently of choices, which

suffices below.
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large so that ρ̂+χ
′
0(ρ+ − φ2

− + κ) dominates

| − 2s+m− 1||α̃|τχ0(ρ+ − φ2
− + κ)

on supp a, which can be arranged as |− 2s+m− 1||α̃|τ is bounded by a sufficiently
large multiple of ρ̂+ there. Thus,

1

4
Hp(a

2) = −c2+a2
+−c2−a2

−−a2
∂+2g+a+ +2g−a−+e+ ẽ+2a+j+p+2a−j−p (A.27)

with

a± = ρ̃−sφ±

√
(χ0χ′0)(ρ+ − φ2

− + κ)χ(ρ+)ψ(ρ̃mp),

a∂ = ρ̃−sτ1/2
(

(M(c2∂/2)− β+φ+)(χ0χ
′
0)(ρ+ − φ2

− + κ)

− 1

4
(−2s+m− 1)(α̃+ ρ̃α̃1)χ0(ρ+ − φ2

− + κ)2
)1/2

χ(ρ+)ψ(ρ̃mp),

g± = ±1

2
ρ̃−s+1((Wφ±)− ν±ρ̃m−1p1)

√
(χ0χ′0)(ρ+ − φ2

− + κ)χ(ρ+)ψ(ρ̃mp),

e = −1

2
ρ̃−2sρ̂+χ1(ρ+)2χ0(ρ+ − φ2

− + κ)2ψ(ρ̃mp)2,

ẽ =
m

2
ρ̃−2s(ρ̃mp)(α̃+ ρ̃α̃1)τχ0(ρ+ − φ2

− + κ)2χ(ρ+)2(ψψ′)(ρ̃mp),

j± = ±1

2
ν±ρ̃

−s+m
√

(χ0χ′0)(ρ+ − φ2
− + κ)χ(ρ+)ψ(ρ̃mp),

the square root in a∂ is that of a non-negative quantity and is C∞ for M large (so
that β+φ+ can be absorbed into M(c2∂/2)) and z large (so that a small multiple of
χ′0 can be used to dominate χ0), as discussed earlier, and

supp e ⊂ supp a, supp e ∩ Γ+ = ∅,
supp ẽ ⊂ supp a, supp ẽ ∩ Σ = ∅.

This gives, with the various operators being Weyl quantizations of the correspond-
ing lower case symbols,

i

4
[P, A∗A] =− (C+A+)∗(C+A+)− (C−A−)∗(C−A−)−A∗∂A∂

+G∗+A+ +A∗+G+ +G∗−A− +A∗−G−

+ E + Ẽ +A∗+J+P + P∗J∗+A+ +A∗−J−P + P∗J∗−A− + F

(A.28)

where now A ∈ Ψ
s−(m−1)/2
b (M), A±, A∂ ∈ Ψs

b(M), G± ∈ Ψs−1
b (M), E ∈ Ψ2s

b (M),

Ẽ ∈ Ψ2s
b (M), J± ∈ Ψs−m

b (M), F ∈ Ψ2s−2
b (M) with WF′b(F ) ⊂ supp a.

After this point the calculations repeat the semiclassical argument: First using
P − P∗ ∈ Ψm−2

b (M),

‖C+A+u‖2 + ‖C−A−u‖2 + ‖A∂u‖2

≤ |〈Eu, u〉|+ |〈APu,Au〉|+ 2‖A+u‖‖G+u‖+ 2‖A−u‖‖G−u‖

+ 2|〈J+Pu,A+u〉|+ 2|〈J−Pu,A−u〉|+ C1‖F̃1u‖2Hs−1
b

+ C1‖u‖2H−Nb

,

(A.29)
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where we took F̃1 ∈ Ψ0
b(M) elliptic on WF′b(F ) and with WF′b(F̃1) near Γ. Noting

that WF′b(Ẽ) ∩ Σ = ∅, the elliptic estimates give

|〈Ẽu, u〉| ≤ C‖B1Pu‖2Hs−mb

+ C‖u‖2
H−Nb

if B1 ∈ Ψ0
b(M) is elliptic on supp ẽ. Let Λ ∈ Ψ

(m−1)/2
b (M) be elliptic with real

principal symbol λ, and let Λ− ∈ Ψ
−(m−1)/2
b (M) be a parametrix for it so that

ΛΛ− − Id = R0 ∈ Ψ−∞b (M). Then

|〈APu,Au〉| ≤ |〈Λ−APu,Λ∗Au〉‖+ |〈R0APu,Au〉|

≤ 1

2ε
‖Λ−APu‖2H∗,0b,Γ

+
ε

2
‖Λ∗Au‖2H0

b,Γ
+ C ′‖u‖2

H−Nb

As Λ∗A ∈ Ψs
b(M), for sufficiently small ε > 0, ε

2‖Λ
∗Au‖2H0

b,Γ
can be absorbed

into73 ‖C+A+u‖2 +‖C−A−u‖2 +‖A∂u‖2 plus ‖B̃0P̂0u‖2Hsb , and as discussed above,

the latter already has the control required for (A.23). On the other hand, taking
B1 ∈ Ψ0

b(M) elliptic on WF′b(A), as Λ−A ∈ Ψs−m+1
b (M),

‖Λ−APu‖2(H0
b,Γ)∗ ≤ C

′′‖B1Pu‖2H∗,s−m+1
b,Γ

+ C ′′‖u‖2
H−Nb

.

Similarly, to deal with the J± terms on the right hand side of (A.29), one writes

|〈J±Pu,A±u〉| ≤
1

2ε

(
‖B1Pu‖2Hs−mb

+ C ′′‖u‖2
H−Nb

)
+
ε

2
‖A±u‖2L2

≤ 1

2ε

(
‖B1Pu‖2H∗,s−mb,Γ

+ C ′′‖u‖2
H−Nb

)
+
ε

2
‖A±u‖2L2 ,

while the G± terms can be estimated by

ε‖A+u‖2 + ε−1‖G+u‖2 + ε‖A−u‖2 + ε−1‖G−u‖2,

and for ε > 0 sufficiently small, the ‖A±u‖2 terms in both cases can be absorbed
into the left hand side of (A.29) while the G± into the error term. This gives, with

F̃2 having properties as F̃1,

‖C+A+u‖2 + ‖C−A−u‖2 + ‖A∂u‖2

≤ |〈Eu, u〉|+ C‖B1Pu‖2H∗,s−m+1
b,Γ

+ C2‖F̃2u‖2Hs−1
b

+ C2‖u‖2H−Nb

.

By the remark before the statement of the proposition, if B0 ∈ Ψ0
b(M) is such that

χ0(ρ+ − φ2
− + κ)χ(ρ+)ψ(p) > 0 on WF′b(B0), ‖B0u‖2

H
s−1/2
b

can be added to the

left hand side at the cost of changing the constant in front of ‖F̃2u‖2Hs−1
b

+ ‖u‖2
H−Nb

on the right hand side. Taking such B0 ∈ Ψ0
b(M), and B1 elliptic on WF′b(A) as

before, B2 ∈ Ψ0
b(M) elliptic on WF′b(E) but with WF′b(B2) disjoint from Γ+, we

conclude that

‖B0u‖2Hsb,Γ ≤ C‖B1Pu‖2H∗,s−m+1
b,Γ

+ C‖B2u‖2Hsb + C‖F̃2u‖2Hs−1
b

+ C‖u‖2
H−Nb

,

73The point being that A∗+C
∗
+C+A+−εA∗ΛQ∗+Q+Λ∗A has principal symbol c2+a

2
+−εa2φ2

+λ
2

which can be written as the square of a real symbol for ε > 0 small in view of the main difference

in vanishing factors in the two terms being that χ′0 in a2
+ is replaced by χ0 in a, and thus the

corresponding operator can be expressed as C̃∗C̃ for suitable C̃, modulo an element of Ψ2s−2
b (M),

with the latter contributing to the Hs−1
b error term on the right hand side of (A.23).
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proving (A.23), up to redefining Bj by multiplication by a positive constant. Re-
call that unless one makes sufficient a priori assumptions on the regularity of u,
one actually needs to regularize, but as mentioned after (A.25), the regularizer is
handled in exactly the same manner as the weight.

Now in general, with χ as before, but supported in [0, 1] instead of [0, R], writing
χR = χ(./R), letting a = aR,κ to emphasize its dependence on these quantities,
when R and κ are decreased, supp aR,κ also decreases in Σ in the strong sense that
0 < R < R′, 0 < κ < κ′ implies that aR′,κ′ is elliptic on supp aR,κ within Σ, and

indeed globally if the cutoff ψ is suitably adjusted as well. Thus, if u ∈ H−Nb , say,
one uses first (A.23) with s = −N + 1, and with Bj given by the proof above, so
the B3u term is a priori bounded, to conclude that B0u ∈ Hsb,Γ and the estimate

holds, so in particular, u is in H
−N+1/2
b microlocally near Γ (concretely, on the

elliptic set of B0). Now one decreases κ and R by an arbitrarily small amount and
applies (A.23) with s = −N + 3/2; the B3u term is now a priori bounded by the

microlocal membership of u in H
−N+1/2
b , and one concludes that B0u ∈ H−N+3/2

b,Γ ,

so in particular u is microlocally in H−N+1
b . Proceeding inductively, one deduces

the first statement of the proposition, (A.20).
If one reverses the role of Γ+ and Γ− in the statement of the proposition, one

simply reverses the roles of ρ+ = φ2
+ + Mτ and φ2

− in the definition of a in (A.24).
This reverses the signs of all terms on the right hand side of (A.26) whose sign
mattered below, and thus the signs of the first three terms on the right hand side
of (A.28), which then does not affect the rest of the argument.

In order to prove (A.21), one simply adds a factor τ−2r to the definition of a in
(A.24). This adds a factor τ−2r to every term on the right hand side of (A.28), as
well as an additional term

r

2
τ−2rρ̃−2sc2∂χ0(ρ+ − φ2

− + κ)2χ(ρ+)2ψ(p)2,

which for r < 0 has the same sign as the terms whose sign was used above, and
indeed can be written as the negative of a square. Thus (A.27) becomes

1

4
Hp(a

2) =− c2+a2
+ − c2−a2

− − a2
∂ − a2

r

+ 2g+a+ + 2g−a− + e+ ẽ+ 2j+a+p+ 2j−a−p
(A.30)

with

ar =

√
−r
2
τ−rρ̃−sc∂χ0(ρ+ − φ2

− + κ)χ(ρ+)ψ(p),

and all other terms as above apart from the additional factor of τ−r in the definition
of a±, etc. Since ar is actually elliptic at Γ when r 6= 0, this proves the desired
estimate (and one does not need to use the improved properties given by the Weyl
calculus!).

When the role of Γ+ and Γ− is reversed, there is an overall sign change, and
thus r > 0 gives the advantageous sign; the rest of the argument is unchanged. �
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manifolds with corners. Astérisque, to appear; arXiv:0903.3208.

[32] Richard B. Melrose. The Atiyah-Patodi-Singer index theorem, volume 4 of Research Notes
in Mathematics. A K Peters Ltd., Wellesley, MA, 1993.

[33] Jason Metcalfe and Daniel Tataru. Global parametrices and dispersive estimates for variable

coefficient wave equations. Math. Ann., 353(4):1183–1237, 2012.
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