
ON THE POSITIVITY OF PROPAGATOR DIFFERENCES

ANDRÁS VASY

Abstract. We discuss positivity properties of ‘distinguished propagators’, i.e.

distinguished inverses of operators that frequently occur in scattering the-

ory and wave propagation. We relate this to the work of Duistermaat and
Hörmander on distinguished parametrices (approximate inverses), which has

played a major role in quantum field theory on curved spacetimes recently.

1. Introduction and main results

In this short paper we discuss positivity properties of the differences of ‘propaga-
tors’, i.e. inverses of operators of the kind that frequently occur in scattering theory
and wave propagation. Concretely, we discuss various settings in which there are
function spaces, corresponding to the ‘distinguished parametrices’ of Duistermaat
and Hörmander [6], on which these operators are Fredholm; in the case of actual
invertibility one has inverses and one can ask about the positivity properties of
their differences. As we recall below, Duistermaat and Hörmander analyzed possi-
bilities for choices of parametrices (approximate inverses modulo smoothing) pos-
sessing such positivity properties; here we show that certain of the actual inverses
possess these properties, and we give a new proof of the Duistermaat-Hörmander
theorem when our Fredholm setup is applicable. Such a result is relevant to quan-
tum field theory on curved spacetimes, with work in this direction, relying on the
Duistermaat-Hörmander framework, initiated by Radzikowski [25]; see the work
of Brunetti, Fredenhagen and Köhler [2, 3], of Dappiaggi, Moretti and Pinamonti
[4, 24, 5] and of Gérard and Wrochna [10, 11] for more recent developments. It
turns out that the positivity properties are closely connected to the positivity of
spectral measure for the Laplacian in scattering theory.

As background, we first recall that in elliptic settings, or microlocally (in T ∗X\o)
where a pseudodifferential operator P on a manifold X is elliptic, there are no
choices to make: parametrices (as well as inverses when one has a globally well-
behaved ‘fully elliptic’ problem and these exist) are essentially unique; here for
parametrices uniqueness is up to smoothing terms. On the other hand, if P is scalar
with real principal symbol p (with a homogeneous representative), or simply has
real scalar principal symbol, then Hörmander’s theorem [20] states that singularities
of solutions to Pu = f propagate along bicharacteristics (integral curves of the
Hamilton vector field Hp) in the characteristic set Σ, in the sense that WFs(u) \
WFs−m+1(Pu) ⊂ Σ is invariant under the Hamilton flow; here m is the order of P .
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In terms of estimates, the propagation theorem states that one can estimate u in
Hs microlocally at a point α ∈ T ∗X \ o if one has an a priori estimate for u in Hs

at γα(t) for some t > 0, where γα is the bicharacteristic through α, and if one has
an a priori estimate for Pu in Hs−m+1 microlocally along γα|[0,t]; the analogous
statement for t < 0 also holds.

Such a propagation statement is empty where Hp is radial, i.e. is a multiple of
the radial vector field in T ∗X \ o, with the latter being the infinitesimal generator
of dilations in the fibers of T ∗X \ o. However, these radial points also have been
analyzed, starting with the work of Guillemin and Schaeffer [12] in the case of
isolated radial points, further explored by Hassell, Melrose and Vasy [14, 15] inspired
by the work of Herbst [17] and Herbst and Skibsted [18] on a scattering problem,
by Melrose [22] for Lagrangian submanifolds of normal sources/sinks in scattering
theory, and by Vasy [31] in a very general situation (more general than radial
points), with a more detailed analysis by Haber and Vasy in [13]; see also the
work of Dyatlov and Zworski [7] for their role in dynamical systems. (In a more
complicated direction, in N -body scattering these correspond to the propagation
set of Sigal and Soffer [26]; see [9] for a discussion that is microlocal in the radial
variable and see [28] for a fully microlocal discussion.)

In order to make the picture very clear, consider the Hamilton flow on S∗X =
(T ∗X \o)/R+ rather than on T ∗X \o. This is possible if m = 1 since the Hamilton
vector field then is homogeneous of degree 0 and thus can be thought of as a vector
field on S∗X. For general m one can reduce to this case by multiplying by a
positive elliptic factor; the choice of the elliptic factor changes the Hamilton vector
field but within Σ only by a positive factor; in particular the bicharacteristics only
get reparameterized. Thus a radial point is a critical point for the Hamilton vector
field on S∗X (i.e. where the vector field vanishes); in the cases discussed here it is
a non-degenerate source or sink.

In fact, it is better to think of S∗X as ‘fiber infinity’ ∂T ∗X on the fiber com-
pactification of T ∗X. Here recall that if V is a k-dimensional vector space, it has
a natural compactification V obtained by gluing a sphere, namely (V \ 0)/R+ to
infinity. Explicitly this can be done e.g. by putting a (positive definite) inner prod-
uct on V , so V \ 0 is identified with R+

r × Sk−1, with r the distance from 0, and
using ‘reciprocal polar coordinates’ (ρ, ω) ∈ (0,∞)× Sk−1, ρ = r−1, to glue in the
sphere at ρ = 0, so that the resulting manifold is covered with the two (generalized)
coordinate charts V and [0,∞)ρ × Sk−1 with overlap V \ 0, resp. (0,∞)ρ × Sk−1,
identified as above. This process gives a smooth structure independent of choices,
and correspondingly it can be applied to compactify the fibers of T ∗X. For stan-
dard microlocal analysis the relevant location is fiber infinity, so one may instead
simply work with S∗X × [0, ε)ρ, if one so desires, with the choice of a homogeneous
degree −1 function ρ on T ∗X \ o giving the identification.

The advantage for this point of view is that the Hamilton vector field in fact
induces a vector field Hp = ρm−1Hp on T ∗X, tangent to ∂T ∗X, whose linearization

at radial points in ∂T ∗X is well defined. This includes the normal to the fiber
boundary behavior, i.e. that on homogeneous degree −1 functions on T ∗X \ o, via
components ρ∂ρ of the vector field; this disappears in the quotient picture. We
are then interested in critical points that are sources/sinks within Σ even in this
extended sense, so Hpρ = ρ−m+2β0, where ρ is a boundary defining function, e.g. a

positive homogeneous degree −1 function on T ∗X \o near ∂T ∗X, and where β0 > 0
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at sources, β0 < 0 at sinks. Such behavior is automatic for Lagrangian submanifolds
of radial points (these are the maximal dimensional sets of non-degenerate radial
points). The typical basic result is that there is a threshold regularity s0 such
that for s < s0 one has a propagation of singularities type result: if a punctured
neighborhood U \ Λ of a source/sink type radial set Λ is disjoint from WFs(u)
and the corresponding neighborhood U is disjoint from WFs−m+1(Pu), then Λ ∩
WFs(u) = ∅, i.e. one can propagate estimates into Λ, while if s > s1 > s0, and
WFs1(u)∩Λ = ∅ then one can gets ‘for free’ Hs regularity at Λ, i.e. WFs(u)∩Λ = ∅.

Here we emphasize that all of the results below hold in the more general set-
ting discussed in [31, Section 2.2], where Λ are ‘normal sources/sinks’, but need
not consist of actual radial points, i.e. there may be a non-trivial Hamilton flow
within Λ — this is the case for instance in problems related to Kerr-de Sitter spaces.
Furthermore, the setup is also stable under general pseudodifferential (small!) per-
turbations of order m (with real principal symbol), even though the dynamics can
change under these; this is due to the stability of the estimates (and the correspond-
ing stability of the normal dynamics in a generalized sense) see [31, Section 2.7].

Now, the estimates given by the propagation theorem let one estimate u some-
where in terms of Pu provided one has an estimate for u somewhere else. But where
can such an estimate come from? A typical situation for hyperbolic equations is
Cauchy data, which is somewhat awkward from the microlocal analysis perspec-
tive and indeed is very ill-suited to Feynman type propagators. A more natural
place is from radial sets: if one is in a sufficiently regular (above the threshold)
Sobolev space, one gets regularity for free there in terms of a weaker (but stronger
than the threshold) Sobolev norm. (This weaker norm is relatively compact in the
settings of interest, and thus is irrelevant for Fredholm theory.) This can then be
propagated along bicharacteristics, and indeed can be propagated into another ra-
dial set provided that we use Sobolev spaces which are weaker than the threshold
regularity there. This typically requires the use of variable order Sobolev spaces,
but as the propagation of singularities still applies for these, provided the Sobolev
order is monotone decreasing in the direction in which we propagate our estimates
(see [1, Appendix]), this is not a problem. Note that in order to obtain Fredholm
estimates eventually we need analogous estimates for the adjoint (relative to L2)
P ∗ on dual (relative to L2) spaces; since the dual of above, resp. below threshold
regularity is regularity below, resp. above threshold regularity, for the adjoint one
will need to propagate estimates in the opposite direction. Notice that within each
connected component one has to have the same direction of propagation relative
to the Hamilton flow, but of course one can make different choices in different
connected components. This general framework was introduced by the author in
[31], further developed with Baskin and Wunsch in [1], with Hintz in [19] and with
Gell-Redman and Haber in [8].

Returning to the main theme of the paper, we recall that in their influential
paper [6] Duistermaat and Hörmander used the Fourier integral operators they just
developed to construct distinguished parametrices for real principal type equations:
for each component of the characteristic set, one chooses the direction in which
estimates, or equivalently singularities of forcing (i.e. of f for u being the parametrix
applied to f) propagate along the Hamilton flow in the sense discussed above.
Here the direction is most conveniently measured relative to the Hamilton flow in
the characteristic set. Thus, with k components of the characteristic set, there
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are 2k distinguished parametrices. Notice that there are two special choices for
the distinguished parametrices: the one propagating estimates forward everywhere
along the Hp-flow, and the one propagating estimates backward everywhere along
the Hp-flow; these are the Feynman and anti-Feynman parametrices (defined up to
smoothing operators). Duistermaat and Hörmander showed that, if the operator
P is formally self-adjoint, one can choose these parametrices (which are defined
modulo smoothing operators a priori) so that they are all formally skew-adjoint,
and further such that ı times the difference between any of these parametrices and
the Feynman, i.e. the Hp-forward, parametrix is positive. They also stated that
they do not see a way of fixing the smoothing ambiguity, though the paper suggests
that this would be important in view of the relationship to quantum field theory,
as suggested to the authors by Wightmann.

The purpose of this paper is to show how, under a natural additional assumption
on the global dynamics, the ambiguity can be fixed for all propagators, and exact
positivity can be shown for the extreme difference of propagators. A byproduct is a
simple proof of the positivity for a suitable choice of distinguished parametrices (not
just the extreme difference), giving a different proof of the Duistermaat-Hörmander
result. However, one cannot expect in general that the differences other than the ex-
treme difference are actually positive; thus, if positivity is desired, the only natural
choice is that of the Feynman propagators.

In order to achieve this, in the simplest setting of compact manifolds without
boundary, X, we require a non-trapping dynamics for the formally self-adjoint
operator P of order m. Here non-trapping is understood in the sense that the
characteristic set Σ of P has connected components Σj , j = 1, . . . , k, in each of
which one is given smooth conic submanifolds Λj,± (with Λ± = ∪jΛj,±) which
act as normal sources (−) or sinks (+) for the bicharacteristic flow within Σj in
a precise sense described above, and all bicharacteristics in Σj except those in
Λj,±, tend to Λj,+ in the forward and to Λj,− in the backward direction (relative
to the flow parameter) along the bicharacteristic flow, see Figure 1. (As recalled
above, this setup can be generalized further, for instance it is stable under general
perturbations in Ψm(X) even though the details of the dynamics are not such
in general.) In this case, on variable order weighted Sobolev spaces Hs, with s
monotone increasing/decreasing in each component of the characteristic set along
the Hamilton flow, and satisfying threshold inequalities at Λj,±, P : X → Y is
Fredholm, where

(1) X = {u ∈ Hs : Pu ∈ Hs−m+1}, Y = Hs−m+1.

Here the Fredholm estimates take the form

(2)
‖u‖Hs ≤ C(‖Pu‖Hs−m+1 + ‖u‖Hr ),

‖v‖Hs′ ≤ C(‖P ∗v‖Hs′−m+1 + ‖v‖Hr′ ),

for appropriate r, r′ with compact inclusion Hs → Hr, Hs′ → Hr′ , where we take
s′ = −s + m − 1, so s′ −m + 1 = −s. Note that with this choice of s′ the space
on the left hand side, resp. in the first term on the right hand side, of the first
inequality is the dual (relative to L2) of the first space of the right hand side, resp.
the left hand side of the second inequality, as required for the functional analytic
setup. Here (2) is an estimate in terms of Sobolev spaces (which Y is, but X is
not), but it implies the Fredholm property (1); see [31, Section 2.6].
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If P = P ∗, then the threshold regularity is (m − 1)/2, i.e. s can be almost
constant, but it has to be slightly below (m − 1)/2 at one end of each bicharac-
teristic, and slightly above (m − 1)/2 at the other. Assuming that these problems
are invertible, the inverse is independent of the choice of s in a natural sense, as
long as the increasing/decreasing direction of s is kept unchanged along each com-
ponent of the characteristic set (see [31, Remark 2.9]). Note that in the case of
invertibility, the compact term of (2) can be dropped, and one concludes that
P−1 : Hs−m+1 → Hs, (P ∗)−1 : H−s → H−s+m−1 are bounded maps, with
(P ∗)−1 = (P−1)∗. (Here invertibility is not a serious issue for our purposes; see
Remark 3.) Letting I ⊂ {1, . . . , k} = Jk be the subset on which s is increasing (i.e.
where estimates are propagated backwards), we denote by

P−1I : YI → XI
the corresponding inverse; here XI ,YI stand for the spaces X ,Y above for any
choice of s compatible with I. Thus, P−1∅ is the Feynman, or forward propa-
gator, i.e. it propagates estimates Hp-forward along the bicharacteristics, so for

φ ∈ C∞(X), WF(P−1∅ φ) ⊂ ∪jΛj,+, while P−1Jk
is the backward, or anti-Feynman,

propagator. For general φ ∈ Hs−m+1, WF(P−1∅ φ) is contained in the union of the
image of WF(φ) under the forward Hamilton flow (interpreted so that the image
of the sources under the forward flow is all bicharacteristics emanating from them)
with the sinks ∪jΛj,+; the analogous statement for the backward flow holds for

WF(P−1Jk
φ). Such a setup is explained in detail in [31, Section 2].
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Figure 1. The characteristic set Σ (here connected) and the
Hamilton dynamics for a problem satisfying our assumptions. Here
Σ is a torus, with the left and right, as well as the top and bottom,
edges identified. An example is the multiplication operator by a
real valued function on a compact manifold with non-degenerate
zeros. This is closely related to the Fourier transform of the basic
Euclidean scattering problem, ∆−λ, λ > 0, which is multiplication
by |ξ|2−λ. The dynamics is exactly as shown above when the zero
set is a circle.

We recall an example, which will also be used below, from [31], given in this
form in [33]. If one considers the Minkowski wave operator �g on Rn+1

z,t , or more

conveniently x−(n−2)/2−2�gx(n−2)/2, with x = (|z|2 + t2)−1/2, then the Mellin
transform of this operator in the radial variable on Rn+1, or its reciprocal x, is
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a family of operators on the sphere Sn; here Sn arises as a smooth transversal to
the dilation orbits on Rn+1 \ o. This family Pσ, depending on the Mellin dual
parameter σ, is an example of this setup with X = Sn. As explained in [33], in
fact Pσ is elliptic/hyperbolic in the region of Sn interior/exterior of the Minkowski
light cone; it turns out to be related to the spectral family of the Laplacian on
hyperbolic space, resp. the d’Alembertian on de Sitter space. This example, and
natural generalizations, such as the spectral family of Laplacian and the Klein-
Gordon operator on even asymptotically hyperbolic and de Sitter spaces (even on
differential forms), respectively, discussed in [30] and [29], will arise again later in
this paper.

The basic idea of such a compact dynamical setup first appeared in Melrose’s
work on scattering [22], where P = ∆−λ, ∆ is the Laplacian of a scattering metric
(large end of a cone), λ > 0. In that case there are only two propagators, whose
difference is essentially the spectral measure, so the positivity statement is that of
the spectral measure for ∆. In some sense then, while one should not think of P as a
self-adjoint operator in our general setting (though it is formally self-adjoint), since
the adjoint propagates estimates always the opposite way (corresponding to having
to work in dual function spaces), one still has a positivity property analogous to
these spectral measures. Indeed, from a certain perspective, the proof given below is
inspired by an analogous proof in scattering theory, related to Melrose’s ‘boundary
pairing’ [22, Section 13], though in that setting there are more standard proofs as
well. We refer to the discussion around Theorem 8 for more detail.

The main result is the following.

Theorem 1. Suppose P = P ∗ ∈ Ψ(X) is as above (i.e. X is compact, the principal
symbol p is real, the Hamilton dynamics is non-trapping), possibly acting on a vector
bundle with scalar principal symbol. If P−1Jk

, P−1∅ exist (rather than P being merely

Fredholm between the appropriate spaces) then the operator ı(P−1Jk
−P−1∅ ) is positive,

i.e. it is symmetric

(3) 〈ı(P−1Jk
− P−1∅ )φ, ψ〉 = 〈φ, ı(P−1Jk

− P−1∅ )ψ〉, φ, ψ ∈ C∞(X),

and for all φ ∈ C∞(X),

(4) 〈ı(P−1Jk
− P−1∅ )φ, φ〉 ≥ 0.

Remark 2. Note that this is the same formula (in particular the sign matches) as
in the work of Duistermaat and Hörmander [6, Theorem 6.6.2] (taking into account
that we have inverses, while they had parametrices) when Sñ of [6, Theorem 6.6.2]
is replaced by E+

Ñ
− E+

∅ . Indeed, the statement obtained by replacing Sñ of [6,

Theorem 6.6.2] by E+

Ñ
− E+

∅ is an immediate consequence of the theorem in view

of [6, Equation (6.6.4)]; for the signs we need to keep in mind that in that paper
Sñ is ‘relative to’ the backward, anti-Feynman, propagator (parametrix), denoted
by E+

∅ there, i.e. it is E+
(ñ) − E

+
∅ .

Note also that the proof given below also shows the symmetry of ı(P−1Ic − P
−1
I )

for any I ⊂ Jk, assuming these inverses exist (rather than P being just Fredholm
between the corresponding spaces) although positivity properties are lost. However,
see Corollary 4 for a parametrix statement, and Remark 3 regarding invertibility.

Remark 3. As the following proof shows, only minor changes are needed if P is
merely Fredholm between the appropriate spaces. Namely for each I let WI be
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a complementary subspace to the finite dimensional subspace KerIP = KerP of
XI . Then for φ ∈ RanI P = RanP ⊂ YI there exists a unique u ∈ WI such
that Pu = φ; we may define P−1I φ = u. Then (3) holds if we require in addition
φ, ψ ∈ Ran∅ P ∩ RanJk P and (4) holds if we require φ ∈ Ran∅ P ∩ RanJk P , as
follows immediately from the proof we give below. (These are finite codimension
conditions!) Note that different choices of WI do not affect either of the inner
products (3)-(4) since P−1I applied to an element φ of RanI P is being paired with
an element of RanIc P , and the latter annihilates (i.e. is orthogonal with respect
to the L2 pairing) KerIP , i.e. changing P−1I φ by an element of KerIP leaves the
inner product unchanged.

We now discuss what happens under an additional hypothesis, Ker∅P,KerJkP ⊂
C∞(X). In this case, Ker∅P = KerJkP (since elements of both are simply elements
of C∞(X) which are mapped to 0 by P ); denote this finite dimensional space by F .
In this case one can use the L2-orthocomplements of F to define W∅ and WJk in
X∅, resp. XJk . That is,W∅, resp.WJk are the subspaces of X∅, resp. XJk , consisting
of distributions L2-orthogonal to F (which is a subset of both of these spaces!); this
makes sense since F is a subspace of C∞(X). Similarly, F gives orthocomplements
to Ran∅ P and RanJk P in Y∅, resp, YJk . Thus, one can define P−1I φ, φ ∈ YI ,
I = ∅, Jk, by defining it to be P−1I φ1, φ = φ1 + φ2 ∈ RanI P + F , where P−1I

takes values in WI . In this case, the inner products (3)-(4) are unaffected by the
second component of the function in both slots, and thus they remain true for all
φ, ψ ∈ C∞(X).

While the assumption Ker∅P,KerJkP ⊂ C∞(X) may seem unnatural, one ex-
pects it to hold in analogy with scattering theory: there incoming or outgoing
elements of the tempered distributional nullspace of the operator necessarily van-
ish, giving that any such element is necessarily Schwartz. This can in fact be proved
in the present setting as well using the functional calculus for an elliptic operator;
since this is a bit involved we defer this to another paper, and we choose to discuss
this here only in the setting of Theorem 8 for differential operators, where this is
straightforward since the role of the elliptic operator is played by the weight x.

Proof. The symmetry statement is standard; one can arrange the function spaces
so that P−1Jk

is exactly the inverse of P ∗ = P on (essentially) the duals of the spaces

(in reversed role) on which P−1∅ inverts P , so P−1Jk
= (P−1∅ )∗, see [31, Section 2] and

(2) above. Here ‘essentially’ refers to the fact that the Fredholm estimates (2), with
the compact terms dropped as remarked above, due to invertibility, give bounded
maps P−1 : Hs−m+1 → Hs, (P ∗)−1 : H−s → H−s+m−1, with (P ∗)−1 = (P−1)∗.
Correspondingly, the symmetry actually holds for any φ, ψ ∈ H−s ∩ Hs−m+1, s
satisfying the requirements for the ∅-inverse.

We turn to the proof of positivity, with I = Jk to minimize double subscripts.
Let Jr, r ∈ (0, 1) be a family of (finitely) smoothing operators, converging to
J0 = Id as r → 0 in the usual manner, so Jr ∈ Ψ−N (X), N > 1 for r ∈ (0, 1),
Jr, r ∈ (0, 1) is uniformly bounded in Ψ0(X), converging to Id in Ψε(X) for all

ε > 0. Concretely, with ρ a defining function of S∗X = ∂T
∗
X (e.g. homogeneous

of degree −1 away from the zero section), we can let the principal symbol jr of Jr
be (1 + rρ−1)−N , N > 1. Let uI = P−1I φ, u∅ = P−1∅ φ. Then for φ ∈ C∞(X), as
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PuI = φ = Pu∅,

〈ı(P−1I − P−1∅ )φ, φ〉 = 〈ı(uI − u∅), Pu∅〉
= lim
r→0
〈ıJr(uI − u∅), Pu∅〉 = lim

r→0
〈ı[P,Jr](uI − u∅), u∅〉.

Now note that [P,Jr] is uniformly bounded in Ψm−1(X), converging to [P, Id] = 0 in
Ψm−1+ε(X), ε > 0, so [P,Jr]→ 0 strongly as a bounded operator Hσ → Hσ−m+1.
By a standard microlocal argument about distributions with disjoint wave front
set, using also the above statements on [P,Jr], we have

(5) lim
r→0
〈ı[P,Jr]uI , u∅〉 = 0.

To see this claim, let Λ± = ∪jΛ±,j , Q+ ∈ Ψ0(X) be such that WF′(Id−Q+)∩Λ+ =
∅, WF′(Q+) ∩ Λ− = ∅, i.e. Q+ is microlocally the identity at Λ+, microlocally
0 at Λ−, we have (as I = Jk) Q+uI ∈ C∞(X), (Id − Q+)u∅ ∈ C∞(X) since
WF(u∅) ⊂ Λ+, WF(uI) ⊂ Λ−. Define Q− similarly, with Λ± interchanged, and
such that WF′(Id−Q+)∩WF′(Id−Q−) = ∅ (so at each point at least one of Q± is
microlocally the identity); then Q−u∅ ∈ C∞(X) and (Id−Q−)uI ∈ C∞(X). Thus,

〈ı[P,Jr]uI , u∅〉 =〈ı[P,Jr]Q+uI , u∅〉+ 〈Q∗−[P,Jr](Id−Q+)uI , u∅〉
+ 〈(Id−Q∗−)[P,Jr](Id−Q+)uI , u∅〉.

Now the first term goes to 0 as r → 0 since Q+uI ∈ C∞(X) in view of the stated
strong convergence of the commutator to 0, while the second term goes to 0 similarly
due to Q−u∅ ∈ C∞(X) and the stated strong convergence of the commutator to 0.
Finally, in view of the disjoint wave front set of Id−Q+ and Id−Q−, thus Id−Q+

and Id − Q∗−, (Id − Q∗−)[P,Jr](Id − Q+) is in fact uniformly bounded in Ψ−k(X)

for any k, and indeed converges to 0 in Ψ−k(X), so the third term also goes to 0.
This proves (5).

So it remains to consider −〈ı[P,Jr]u∅, u∅〉. But the principal symbol of ı[P,Jr]
is

Hpjr = Nrρ−2(1 + rρ−1)−1(Hpρ)jr

which takes the form c2rjr at the sources (as Hpρ = ρ−m+2β0 with β0 positive
there), and −c2rjr at the sinks. In our case, the wave front set of u∅ is at the sinks
Λ+, so are concerned about the second region. Let cr be a symbol with square
−Nrρ−2(1+rρ−1)−1(Hpρ)χ2

+, where χ+ is a cutoff function, identically 1 near Λ+,
supported close to Λ+, and letting Cr be a quantization of this with the quantization
arranged using local coordinates and a partition of unity; these are being specified so
that Cr is uniformly bounded in Ψ(m−1)/2(X), and still tends to 0 in Ψ(m−1)/2+ε(X)
for ε > 0. Similarly, let Er be a quantization of Nrρ−2(1 + rρ−1)−1(Hpρ)(1−χ2

+).
Then we have

ı[P,Jr] = −C∗r J̃ ∗r J̃rCr + Er + Fr,

where the principal symbol of J̃r is the square root of that of Jr, where the family
Er is uniformly bounded in Ψm−1(X), has (uniform!) wave front set disjoint from
Λ+, while Fr is uniformly bounded in Ψm−2(X), and further both Er and Fr tend
to 0 in higher order pseudodifferential operators. The disjointness of the uniform
wave front set of Er from Λ+, thus from the wave front set of u∅, and further that
it tends to 0 as r → 0 in the relevant sense, shows by an argument similar to the
proof of (5) that

lim
r→0
〈Eru∅, u∅〉 = 0.
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On the other hand, as u∅ is in H(m−1)/2−ε for all ε > 0, the fact that Fr → 0 in
Ψm−2+ε, ε > 0, and thus Fr → 0 strongly as a family of operators H(m−1)/2−ε →
H−(m−1)/2+ε, ε < 1/2, yields that

lim
r→0
〈Fru∅, u∅〉 = 0.

Finally,
〈C∗r J̃ ∗r J̃rCru∅, u∅〉 ≥ 0

for all r, so
〈ı(P−1I − P−1∅ )φ, φ〉 = lim

r→0
〈ı[P,Jr](uI − u∅), u∅〉

= lim
r→0
〈C∗r J̃ ∗r J̃rCru∅, u∅〉 ≥ 0.

This proves the theorem. �

Before proceeding, we now discuss generalized inverses for PI when PI is not
invertible, rather merely Fredholm. Note that since C∞(X) is dense in YI =
HsI−m+1, the closed subspace of finite codimension RanI P has a complementary
subspace ZI ⊂ C∞(X) in YI : indeed, the orthocomplement of RanI P in the Hilbert
space YI is finite dimensional, and approximating an orthonormal basis for it by
elements of C∞(X) gives the desired complementary space. We now can decompose
an arbitrary f ∈ YI as f = f1 + f2, f1 ∈ RanI P , f2 ∈ ZI and then, letting WI

be a complementary subspace of XI to KerIP , f1 = Pu for a unique u ∈ WI ; we
let P−1I f = u, so P−1I is a generalized inverse for P . Note that as ZI ⊂ C∞(X),
WFσ(f1) = WFσ(f) for all σ. The propagation of singularities, for f ∈ Hσ,
σ > −(m−1)/2, Pu = f1, u ∈ XI shows that WFσ+m−1(u) ⊂ ∪j∈IΛj,−∪∪j∈IcΛj,+.
This suffices for all the arguments below.

An immediate corollary of Theorem 1 is the Duistermaat-Hörmander theorem:

Corollary 4. (cf. Duistermaat and Hörmander [6, Theorem 6.6.2]) Suppose that
P is as in Theorem 1 (in particular, P∅, PJk are invertible). For all I, there

exists an operator S̃I such that P−1I − P−1∅ differs from S̃I by an operator that is

smoothing away from Λ± in the sense that φ ∈ C−∞(X), WFσ(φ)∩ (Λ+∪Λ−) = ∅,
σ > −(m− 1)/2, implies WF((P−1I −P−1∅ − S̃I)φ) ⊂ Λ+ ∪Λ−, and such that S̃I is

skew-adjoint and ıS̃I is positive.
Here, if PI is not invertible (i.e. is only Fredholm), the statement holds if in

addition φ ∈ RanPI in the sense of Remark 3, and more generally for all φ as
above if P−1I is a generalized inverse of PI defined on YI using a complement ZI
to RanPI which is a subspace of C∞, as defined above.

Thus, here smoothing is understood e.g. as a statement that for φ ∈ Hσ(X),
where σ > −(m − 1)/2, the operator in question maps to C∞(X), microlocally
away from Λ±. In fact, as all the operators in question can naturally be applied
to distributions with wave front set away from Λ± (by suitable choice of the or-
der function s), which is the context of the Duistermaat-Hörmander result, and
smoothing holds in this extended context as well, as stated in the corollary.

Remark 5. In the case of P∅ and PJk , in Remark 3 we showed that if Ker∅P,KerJkP ⊂
C∞(X), then we have canonical generalized inverses P−1∅ , P−1Jk

which satisfy the

properties (3)-(4). Thus, relaxing the invertibility hypothesis for P∅, PJk , but un-
der this additional assumption on the kernels of these operators, conclusion of this
Corollary still holds.
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Proof. In the following discussion we assume that PI is invertible. In fact, all the
arguments go through for a generalized inverse as in the statement of the theorem,
but it is more convenient to not have to write out repeatedly decompositions with
respect to which the generalized inverse is taken.

We use a microlocal partition of unity
∑k
j=0Bj , Bj = B∗j , with B0 having wave

front set in the elliptic set, Bj , j ≥ 1 having wave front set disjoint from the
components Σl, l 6= j, of the characteristic set. Let

Tj = Bj(P
−1
Jk
− P−1∅ )Bj .

Then for any I,

S̃I =
∑
j∈I

Tj

has the required properties, with skew-adjointness of S̃I and positivity of ıS̃I fol-
lowing from the main theorem above.

To see the parametrix property, note that for j 6= 0, Bj = Id microlocally near
Σj , while Bl = 0 microlocally near Σj for l 6= j. Thus, for φ ∈ Hσ(X), where
σ > −(m− 1)/2,

P (P−1∅ + S̃I)φ = φ+
∑
j∈I

[P,Bj ](P
−1
Jk
− P−1∅ )Bjφ,

with the wave front set of the commutator, and thus of all but the first term, being
in the elliptic set. But P (P−1Jk

− P−1∅ )Bjφ = 0, so microlocal elliptic regularity

shows that [P,Bj ](P
−1
Jk
− P−1∅ )Bjφ ∈ C∞(X).

Notice that microlocal elliptic regularity also shows that all parametrices are
microlocally the same in the elliptic set: if Pu−Pv ∈ C∞(X), then u− v has wave
front set disjoint from the elliptic set of P . So in order to analyze our parametrix,
it suffices to consider the characteristic set.

Microlocally near Σj , P
−1
∅ f , resp. P−1Jk

f , f ∈ Hσ(X), solve Pu − f ∈ C∞(X),

with WFσ+m−1(u) ⊂ Λ+,j , resp. WFσ+m−1(u) ⊂ Λ−,j . Further P−1I f has the same
property as one of these, depending on whether j /∈ I or j ∈ I. In particular, for
j /∈ I, u = P−1I φ − P−1∅ φ solves Pu = 0, with WFσ+m−1(u) ∩ Σj ⊂ Λ+,j , which
implies by propagation of singularities (including the version at the radial points in
Λ−,j , where u is a priori in a better space than the threshold Sobolev regularity)

that in fact WF(u) ∩ Σj ⊂ Λ+,j . Since microlocally near Σj , (P−1∅ + S̃I)φ is the

same as P−1∅ φ if j /∈ I, we deduce that P−1I − (P−1∅ + S̃I) is smoothing near such j,

in the sense that in this neighborhood of Σj , WF(P−1I φ−(P−1∅ + S̃I)φ) is contained
in Λ+,j , so we only need to consider j ∈ I.

Since Bjφ and φ are the same microlocally near Σj , by the propagation of singu-
larities, again using the a priori better than threshold Sobolev regularity at Λ+,j ,

u = P−1Jk
(φ − Bjφ) has WF(u) ∩ Σj ⊂ Λ−,j , and similarly for P−1∅ (φ − Bjφ) (for

Λ+,j). In view of Bj being microlocally the identity near Σj , and trivial near Σk,

k 6= j, we deduce that the intersection of the wave front set of P−1∅ φ−BjP−1∅ Bjφ
with Σj is in Λ+,j . Similar arguments give that for j ∈ I the intersection of the

wave front set of P−1I φ−BjP−1Jk
Bjφ with Σj is in Λ−,j . The conclusion is that, mi-

crolocally near Σj , j ∈ I, the wave front set of (P−1∅ +S̃I)φ−P−1I φ is in Λ+,j∪Λ−,j .

This proves that P−1I −P
−1
∅ differs from S̃I by an operator that is smoothing away

from Λ±, completing the proof of the corollary. �
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Notice that while it is a distinguished parametrix in the Duistermaat-Hörmander
sense, P−1∅ +S̃I is in principle not necessarily one of our distinguished inverses, P−1I .

Indeed, while P−1I maps φ ∈ C∞(X) to have wave front set disjoint from Λj,+ for

j ∈ I, on the other hand, for j ∈ I the difference of P−1∅ φ and BjP
−1
∅ Bjφ at Λj,+

is not necessarily smooth, though it does have wave front set (locally) contained
in Λj,+ (i.e. the difference is smoothing away from Λj,+ within Σj). If Bj can be
arranged to commute with P , however, this statement can be improved.

2. Positivity in Melrose’s b-pseudodifferential algebra

There are natural extensions to b- and scattering settings of Melrose (see [23]
for a general treatment of the b-setting, [22] for the scattering setting), such as the
wave equation and the Klein-Gordon equation on asymptotically Minkowski spaces,
in the sense of ‘Lorentzian scattering metrics’ of Baskin, Vasy and Wunsch, see [1]
and [19, Section 5]. This in particular includes the physically relevant example of
Minkowski space (and perturbations of an appropriate type) that motivated this
part of the Duistermaat-Hörmander work. Since no new analytic work is necessary
in these new settings (i.e. one essentially verbatim repeats the proof of Theorem 1
and Corollary 4, changing various bundles, etc.), we only briefly recall the setups
and state the corresponding theorems, explaining any (minor) new features.

Before proceeding, we recall that Melrose’s b-analysis is induced by the analy-
sis of totally characteristic, or b-, differential operators, i.e. ones generated (over
C∞(M), as finite sums of products) by vector fields V ∈ Vb(M) tangent to the
boundary of a manifold with boundary M . Locally near some point in X = ∂M ,
with the boundary defined by a function x (so it vanishes non-degenerately and
exactly at ∂M), and with yj , j = 1, . . . , n − 1, local coordinates on X, extended
to M , these vector fields are linear combinations of the vector fields x∂x and ∂yj
with smooth coefficients, i.e. are of the form a0(x∂x) +

∑
aj∂yj . Correspondingly,

they are exactly the set of all smooth sections of a vector bundle, bTM . Thus, the
dual bundle bT ∗M has smooth sections locally of the form b0

dx
x +

∑
bj dyj , with bj

smooth. Then (classical) b-pseudodifferential operators P ∈ Ψm
b (M) have principal

symbols p which are homogeneous degree m functions on bT ∗M \ o.
Thus, in the b-setting, where this setup was described by Gell-Redman, Haber

and Vasy [8], we require for the strengthened Fredholm framework that P ∈ Ψm
b (M)

is formally self-adjoint, and the bicharacteristic dynamics in bS∗M is as before,
i.e. with sources and sinks at L = L+ ∪ L− ⊂ bS∗M = (bT ∗M \ o)/R+ (with
L+ = Λ+/R+ in the previous notation, where Λ was conic). Examples include
a modified conjugate of the Minkowski wave operator, and more generally non-
trapping Lorentzian scattering metrics, namely if x is a boundary defining function,
then the relevant operator is P = x−(n−2)/2−2�gx(n−2)/2 (symmetric with respect
to the b-density xn |dg|); see [19]. The characteristic set Σ satisfies Σ ⊂ bS∗M , and
is a union of connected components Σj , j = 1, . . . , k, just as in the boundaryless
setting. Again, choosing a subset I of Jk, we require the order s to be increasing
along the Hp-flow on Σj , j ∈ I, decreasing otherwise, so in Σj , j ∈ I estimates
are propagated backwards, for j ∈ Ic forwards. The additional ingredient is to

have a weight ` ∈ R; we then work with the variable order b-Sobolev spaces Hs,`
b .

The actual numerology of the function spaces arises from the sources and sinks,
namely with x being a boundary defining function as before and ρ∞ being a defining

function of fiber infinity in bT ∗M (so e.g. can be taken as a homogenous degree −1
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function on bT ∗M away from the zero section), both Hpx and Hpρ∞ play a role. A
general numerology is discussed in [19, Proposition 2.1] for saddle points, with an
analogous numerology also available for other sources/sinks but is discussed only
for P = x−(n−2)/2−2�gx(n−2)/2 in [19, Section 5]. Thus, here for simplicity, we only

consider the numerology of P = x−(n−2)/2−2�gx(n−2)/2, though we remark that for
ultrahyperbolic equations corresponding to quadratic forms on Rn the numerology
is identical. The requirement at L then for obtaining the estimates needed to
establish Fredholm properties is s + ` > (m − 1)/2 (with m = 2 for the wave
operator) at the components L±,j from which one wants to propagate estimates,
and s + ` < (m− 1)/2 to which one wants to propagate estimates. This (plus the
required monotonicity of s along bicharacteristics) is still not sufficient, it only gives
estimates of the form

‖u‖Hs,`
b
≤ C(‖Pu‖Hs−m+1,`

b
+ ‖u‖H s̃,`

b
),

with s̃ < s; here the problem is that the inclusion Hs,`
b → H s̃,`

b is not compact,
because there is no gain in the decay order, `. Thus, one needs an additional
condition involving the Mellin transformed normal operator, P̂ (.).

One arrives at the normal operator by ‘freezing coefficients’ at X = ∂M , namely
by using a collar neighborhood X×[0, ε)x of X, including it in X×[0,∞), obtaining
an operator by evaluating the coefficients of P at x = 0 (which can be done in
a natural sense) and then regarding the resulting N(P ) as a dilation invariant
operator onX×R+, with dilations acting in the second factor. The Mellin transform
then is simply the Mellin transform in the R+-factor. Thus, the Mellin transformed
normal operator is a family of operators, C 3 σ 7→ P̂ (σ), on X = ∂M . In fact,
this is an analytic Fredholm family by the boundaryless analysis explained above
(with the dynamical assumptions on P implying those for P̂ (σ)), which in addition
has the property that for any C > 0 it is invertible in | Imσ| < C for |σ| large
(with ‘large’ depending on C), due to the high energy, or semiclassical version, of
these Fredholm estimates. The poles of the inverse are called resonances and form
a discrete set of C, with only finitely many in any strip | Imσ| < C. If ` is chosen
so that there are no resonances with Imσ = −`, and if the requirement on s is
strengthened to s+ `− 1 > (m− 1)/2 at the components from which we propagate
estimates then P : X → Y is Fredholm, where

X = {u ∈ Hs,`
b : Pu ∈ Hs−m+1,`

b }, Y = Hs−m+1,`
b .

(Here the stronger requirement s + ` − 1 > (m − 1)/2 enters when combining the
normal operator estimates with the symbolic estimates, see [19, Proposition 2.3
and Section 5] and [8, Theorem 3.3].) Again, for given `, if P is actually invertible,
P−1 only depends on the choice of I (modulo the natural identification), so we
write P−1I ; if we allow ` to vary it is still independent of ` as long as we do not
cross any resonances, i.e. if ` and `′ are such that there are no resonances σ with
− Imσ ∈ [`, `′] (if ` < `′). Then the arguments given above, with regularization Jr
needed only in the differentiability (not decay) sense, so Jr ∈ Ψ−Nb (M) for r > 0,
uniformly bounded in Ψ0

b(M), converging to Id in Ψε
b(M) for any ε > 0 apply if we

take the decay order to be ` = 0, i.e. work with spaces Hs,0
b , the point being that

[P,Jr]→ 0 in Ψm−1+ε
b then (there is no extra decay at X), so we need to make sure

that uI lie in a weighted space with weight 0 to get the required boundedness and
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convergence properties. In summary, this show immediately the following theorem
and corollary, with the analogue of Remark 3 also valid:

Theorem 6. Suppose P = P ∗ ∈ Ψm
b (M) is as above, and suppose that no res-

onances lie on the real line, Imσ = 0. If P−1Jk
, P−1∅ exist (rather than P being

merely Fredholm between the appropriate spaces) then the operator ı(P−1Jk
−P−1∅ ) is

positive, i.e. it is symmetric and for all φ ∈ Ċ∞(M),

〈ı(P−1Jk
− P−1∅ )φ, φ〉 ≥ 0.

Corollary 7. (cf. Duistermaat and Hörmander [6, Theorem 6.6.2]) Suppose that P
is as in Theorem 6 (in particular, P∅, PJk are invertible). For all I, there exists an

operator S̃I such that P−1I − P−1∅ differs from S̃I by an operator that is smoothing

away from L± in the sense that WFσ,0b (φ) ∩ (L+ ∪ L−) = ∅, σ > 1− m−1
2 , implies

that WF∞,0b ((P−1I −P−1∅ − S̃I)φ) ⊂ L+ ∪L−, and such that S̃I is skew-adjoint and

ıS̃I is positive.
If PI is not invertible, P−1I is understood as a generalized inverse, using a

Ċ∞(M)-complement to RanI P , similarly to the discussion preceding Corollary 4.

3. Positivity in Melrose’s scattering pseudodifferential algebra

The scattering setting, P ∈ Ψm
sc(M) (one can also have a weight l; this is ir-

relevant here), is analogous to the b-setting, except that all the principal sym-
bols are functions (there is no normal operator family), but they are objects on
two intersecting boundary hypersurfaces of the cotangent bundles: fiber infinity
scS∗M , and base infinity scT ∗∂MM , and (full) ellipticity is the invertibility of both
of these. (Note that these two parts of the principal symbol agree at the corner
scS∗∂MM = ∂scT ∗∂MM of scT ∗M .) While here we used the invariant formulation,
an example to which it can always be locally reduced is the radial compactification
M = Rn of Rn; in that case scT ∗M = Rn × Rn with basis of sections of scT ∗M
given by the lifts of the standard coordinate differentials dzj , j = 1, . . . , n, and
scT ∗M = Rn × Rn. This is the setting which Melrose introduced for studying
the scattering theory of asymptotically Euclidean spaces [22]; these are compact-
ified Riemannian manifolds M (so one has a Riemannian metric on M◦) which
are asymptotically the large ends of cones. For Melrose’s problem, the operator
P = ∆ − λ is elliptic at fiber infinity, scS∗M ; note that λ is not lower order than
∆ in the sense of the relevant principal symbol, namely at base infinity.

For such scattering problems the previous discussion can be repeated almost
verbatim. Here one works with variable order scattering Sobolev spaces Hs,`

sc (M),
with ` being necessarily variable now due to the ellipticity at scS∗M , see [32]. Again,
the relevant dynamical assumption is source/sink bundles L±, where now since we
have ellipticity at scS∗M , we have L± ⊂ scT ∗∂MM , where now the requirement
is ` > −1/2 at the components from which we want to propagate estimates, and
` < −1/2 at the components towards which we want to propagate estimates. (For a
general operator of order l, the threshold would be (l− 1)/2, i.e. l simply plays the
analogue of the differential order m discussed in the compact setting X.) Actually
as above, one can weaken the assumptions on the dynamics significantly, so one
does not even need a source/sink manifold: one needs a source/sink region, with
suitable behavior in the normal variables. (So for instance, the more typical lower
dimensional sources/sinks/saddles of [15] are fine as well for this analysis; one
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regards the whole region on the ‘outgoing’ side a sink, on the ‘incoming’ side a
source, regardless of the detailed dynamical behavior.) One then has that P : X →
Y is Fredholm, where

X = {u ∈ Hs,`
sc : Pu ∈ Hs−m,`−1

sc }, Y = Hs−m,`−1
sc .

Now our ‘smoothing’ Jr is actually just decay gaining, i.e. spatial regularization,
corresponding to `; this does not affect the proof of the analogue of the main
theorem. We thus have, with the above notation, with the analogue of Remark 3
also holding:

Theorem 8. Suppose P = P ∗ ∈ Ψm
sc(M) is as above, in particular elliptic at

scS∗M . If P−1Jk
, P−1∅ exist (rather than P being merely Fredholm between the ap-

propriate spaces) then the operator ı(P−1Jk
− P−1∅ ) is positive, i.e. it is symmetric

and for all φ ∈ Ċ∞(M),

〈ı(P−1Jk
− P−1∅ )φ, φ〉 ≥ 0.

Corollary 9. (cf. Duistermaat and Hörmander [6, Theorem 6.6.2]) Suppose that P
is as in Theorem 8 (in particular, P∅, PJk are invertible). For all I, there exists an

operator S̃I such that P−1I − P−1∅ differs from S̃I by an operator that is smoothing

away from L± in the sense that WFs−m,µsc (φ) ∩ (L+ ∪ L−) = ∅, µ > 1/2, implies

WFsc((P
−1
I −P−1∅ − S̃I)φ) ⊂ L+ ∪L−, and such that S̃I is skew-adjoint and ıS̃I is

positive.
If PI is not invertible, P−1I is understood as a generalized inverse, using a

Ċ∞(M)-complement to RanI P , similarly to the discussion preceding Corollary 4.

Notice that in this setting in fact P is actually self-adjoint on L2
sc(M) = H0,0

sc (M)
as an unbounded operator, which in turn follows from the invertibility of

P ± ı : Hs,`
sc → Hs−m,`

sc

for any s, `; note that P ± ı is fully elliptic so invertibility as a map between any
such pair of Sobolev spaces is equivalent to invertibility between any other pair. In
the case of P = ∆g +V −λ, g as scattering metric, V ∈ xC∞(M) real, this problem
was studied by Melrose [22], but of course there is extensive literature in Euclidean
scattering theory from much earlier. Then for λ > 0 the limits

(P ± ı0)−1 = lim
ε→0

(P ± ıε)−1

exist in appropriate function spaces (this is the limiting absorption principle), and

ı(P−1Jk
− P−1∅ ) = ı((P + ı0)−1 − (P − ı0)−1)

is, up to a positive factor, the density of the spectral measure by Stone’s theo-
rem. A direct scattering theory formula for it, implying its positivity, was given
in [16, Lemma 5.2] using the Poisson operators; this formula in turn arose from
‘boundary pairings’. This explains in detail the earlier statement that our result is
a generalization of the positivity of the spectral measure in a natural sense.

This also gives rise to another interesting example, namely an asymptotically
Euclidean space whose boundary has two connected components, e.g. two copies
of Rn glued in a compact region. Then the previous theory applies in particular,
with the Feynman and anti-Feynman propagators giving the limiting absorption
principle resolvents. However, one can also work with different function spaces,
propagating estimates forward in one component of the boundary (and hence the
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characteristic set), and backward in the other, relative to the Hamilton flow. The
resulting problem is Fredholm, though the invertibility properties are unclear. This
problem is an analogue of the retarded and advanced propagators (and thus the
Cauchy problem) for the wave equation.

We now discuss the comments in the final paragraph of Remark 3 in more detail.
For operators of the kind P = ∆g+V −λ, g as scattering metric, V ∈ xC∞(M) real,
using the boundary pairing formula Melrose showed in [22] that the nullspaces of P∅
and PJk are necessarily in Ċ∞(M); he then used Hörmander’s unique continuation
theorem to show that in fact these nullspaces are trivial. There is a more robust
proof of these results by a different commutator approach which, as far as the author
knows, goes back to Isozaki’s work in N -body scattering [21, Lemma 4.5]. In a
geometric N -body setting this proof was adapted by Vasy in [27, Proposition 17.8];
it in particular applies to operators like P = ∆g + V − λ. The argument relies on
a family of commutants given by functions which are not (uniformly) bounded in
the relevant space of (scattering) pseudodifferential operators, but for which the
commutators themselves are bounded, and have a sign modulo lower order terms.
In the general setting of pseudodifferential operators, an analogous argument works
provided one uses the functional calculus for an elliptic operator (the weight in the
commutant). One has to be rather careful here because the commutant family
is not bounded: this is the reason that the argument only implies that elements
of the nullspace are in Ċ∞(M), not that those with Pu ∈ Ċ∞(M) are such; for
pairings involving the commutant and Pu must vanish identically. This point will
be addressed in a future paper in full detail. Notice that this result only applies
to P∅ and PJk as illustrated by the two Euclidean end problem in a particularly
simple setting: the line Rz with V = 0, λ = 1. Then the complex exponentials
e±ız·ζ are incoming at one end, outgoing at the other, thus are in the nullspace of
PI , resp. PIc , for I corresponding to the appropriate non-Feynman choice.

The simplest non-elliptic (in the usual sense) interesting example in the scatter-
ing setting is the Klein-Gordon equation on asymptotically Minkowski like spaces
(in the same sense as above, in the b-case, i.e. Lorentzian scattering spaces of [1]).
Here one works with variable order scattering Sobolev spaces Hs,`

sc (M), see [32]. Let
ρ∞ be a defining function for fiber infinity, scS∗M , and ρ∂M a defining function for
base infinity scT ∗∂MM . Again, the relevant dynamical assumption is source/sink
bundles L±, where now for simplicity we assume that L± ⊂ scT ∗∂MM transversal
to the boundary of the fiber compactification and now β0 = ∓ρm−1∞ ρ−1∂MHpρ∂M
is positive at L± while ρm−2∞ Hpρ∞ vanishes there. In this case, as shown in [32,
Proposition 0.11] (where the roles of ρ∞ and ρ∂M are reversed), the requirement
for propagation estimates at the sources/sinks is ` > −1/2 at the components from
which we want to propagate estimates, and ` < −1/2 at the components towards
which we want to propagate estimates. Actually as above, one can weaken the
assumptions on the dynamics significantly, so one does not even need a source/sink
manifold: one needs a source/sink region, with suitable behavior in the normal vari-
ables. (So for instance, the more typical lower dimensional sources/sinks/saddles of
[15] are fine as well for this analysis; one regards the whole region on the ‘outgoing’
side a sink, on the ‘incoming’ side a source, regardless of the detailed dynamical
behavior.) With ` chosen monotone along the Hp-flow, satisfying these inequalities,
and with the dynamics being non-trapping in the same sense as before, one then
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has that P : X → Y is Fredholm, where

X = {u ∈ Hs,`
sc : Pu ∈ Hs−m+1,`−1

sc }, Y = Hs−m+1,`−1
sc .

Since there are no restrictions on s, we may simply take it high enough so that
there are no issues with pairings, etc., as far as s is concerned, and so we do not
need to regularize in s. Thus, with the above notation and with the same proof,
with Jr regularizing only in decay:

Theorem 10. Suppose P = P ∗ ∈ Ψm
sc(M) is as above. If P−1Jk

, P−1∅ exist (rather

than P being merely Fredholm between the appropriate spaces) then the operator

ı(P−1Jk
− P−1∅ ) is positive, i.e. it is symmetric and for all φ ∈ Ċ∞(M),

〈ı(P−1Jk
− P−1∅ )φ, φ〉 ≥ 0.

Corollary 11. (cf. Duistermaat and Hörmander [6, Theorem 6.6.2]) Suppose that
P is as in Theorem 10 (in particular, P∅, PJk are invertible). For all I, there exists

an operator S̃I such that P−1I −P
−1
∅ differs from S̃I by an operator that is smoothing

away from L± in the sense that WFs−m+1,µ
sc (φ) ∩ (L+ ∪ L−) = ∅, µ > 1/2, implies

WFsc((P
−1
I −P−1∅ − S̃I)φ) ⊂ L+ ∪L−, and such that S̃I is skew-adjoint and ıS̃I is

positive.
If PI is not invertible, P−1I is understood as a generalized inverse, using a

Ċ∞(M)-complement to RanI P , similarly to the discussion preceding Corollary 4.

4. Asymptotically de Sitter problems

We end this paper by discussing a new direction. An interesting class of Lorentzian
spaces whose behavior is more complicated is asymptotically de Sitter spaces. As
shown in [31], [30] and [33], the Klein-Gordon operator �X0

− (n − 1)2/4 − σ2 on
these spaces X0 can be analyzed by ‘capping them off’ with asymptotically hyper-
bolic spaces X± to obtain a compact manifold without boundary X. (In general, for
topological reasons, one needs two copies of the asymptotically de Sitter spaces, see
[33, Section 3].) Then on X one has exactly the setup analyzed at the beginning of
this paper. In particular, with the characteristic set having two components (if only
a single connected asymptotically de Sitter space was used) one has forward and
backward propagators, which propagate estimates in the opposite direction relative
to the Hamilton flow in the two components, as well as Feynman and anti-Feynman
propagators which propagate either forward everywhere along the Hamilton flow
or backward everywhere. In the aforementioned papers the connection between the
forward and backward propagators on X and the resolvents of the Laplacian on
X± as well as the forward and backward propagators on X0 is explained; see in
particular [33, Section 4]. For instance, if F = {j}, where Σj is the component of Σ
on which the de Sitter time function is decreasing along the bicharacteristics, then
P−1F gives rise to the forward propagator

(�X0
− (n− 1)2/4− σ2)−1future = x

−ıσ+(n−1)/2
X0

P−1F x
ıσ−(n−1)/2−2
X0

,

where xX0 is a boundary defining function of X0 (which is thus time-like near ∂X0).
In particular, these global propagators on X can be used to analyze the local objects
on X0 and X±; this is essentially a consequence of the evolution equation nature
of the wave equation in the de Sitter region. Thus, for instance, it does not matter
how one caps off X0 above, the forward propagator on X, in the appropriate sense
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(conjugation and multiplication) restricts to the forward propagator on X0 — an
object independent of the choice of the caps X±!

A natural question is then whether this method allows one to define a canonical
Feynman propagator on X0. Certainly one choice arises by taking P−1∅ on X, and
letting

(�X0
− (n− 1)2/4− σ2)−1Feynman = x

−ıσ+(n−1)/2
X0

P−1∅ x
ıσ−(n−1)/2−2
X0

.

One expects that this operator does depend on the choice of the caps X±, and thus
it is important to understand this dependence. In particular, one would ideally
like to replace these conditions depending on the caps by boundary conditions at
∂X0. Recall that in [31] one defines µ = −x2X0

, so from the perspective of the
extended problem, on X, µ > 0 in X+ ∪X−, µ < 0 in X0, and µ vanishes simply
at ∂X0 with respect to the smooth structure of X. Now, P−1∅ is characterized by

P−1∅ ψ, ψ ∈ C∞(X), having only the (µ + ı0)ıσ-type conormal behavior at µ = 0
(i.e. potential wave front set in the corresponding half of the conormal bundle
of ∂X0 = {µ = 0}), not the (µ − ı0)ıσ behavior (i.e. no wave front set in the
corresponding half of the conormal bundle of ∂X0 = {µ = 0}), namely having the
form

(µ+ ı0)ıσb+ + b−,

with b± smooth, since (µ + ı0)ıσ has wave front set in the sink, where the dual
variable ξ of µ is positive. Restricting to X0 near the joint boundary Y+ with X+,
this has the form

x2ıσ0 a+X0,+
+ a−X0,+

,

with a±X0,+
smooth (and even), while restricting to X+ near Y+ we get the form

x2ıσ+ a+X+
+ a−X+

,

where, with tilde denoting restriction to Y+,

ã−X0,+
= b̃− = ã−X+

, ã+X0,+
= e−πσ b̃+ = e−πσã+X+

.

Thus, if φ is supported in X0, x
−ıσ+(n−1)/2
X0

P−1∅ x
ıσ−(n−1)/2−2
X0

φ is a generalized

eigenfunction of ∆X+
− (n− 1)2/4− σ2 with asymptotic behavior

x
ıσ+(n−1)/2
+ a+X+

+ x
−ıσ+(n−1)/2
+ a−X+

,

with the result that

ã−X+
= SX+

(σ)ã+X+
,

where SX+
(σ) is the scattering matrix of the asymptotically hyperbolic problem.

In terms of X0 we thus have

ã−X0,+
= eπσSX+(σ)ã+X0,+

.

Since a similar statement also holds at Y−, this Feynman propagator corresponds
to the non-local boundary conditions

a−X0,±|Y± = eπσSX±(σ)a+X0,±|Y± ,

where all ± signs are consistent on this line. The anti-Feynman propagator on X
produces (µ− ı0)ıσ type conormal distributions, with the result that

a−X0,±|Y± = e−πσSX±(σ)a+X0,±|Y± ,



18 ANDRAS VASY

then. It would then be an interesting question to study these boundary conditions
directly, as well as more general boundary conditions where the scattering matrices
are replaced by more general pseudodifferential operators on Y± of order −2ıσ,
perhaps even simply ∆−ıσY±

, which would give a canonical propagator even in this

case. Of course, if one wants to use a pseudodifferential operator that is actually
the scattering matrix for a suitable asymptotically hyperbolic space, one is set!
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