PROPAGATION OF SINGULARITIES FOR THE WAVE
EQUATION ON MANIFOLDS WITH CORNERS

ANDRAS VASY

ABSTRACT. In this paper we describe the propagation of C* and Sobolev
singularities for the wave equation on C*° manifolds with corners M equipped
with a Riemannian metric g. That is, for X = M xRy, P = D2 — A7, and u €
H (X) solving Pu = 0 with homogeneous Dirichlet or Neumann boundary
conditions, we show that WFy,(u) is a union of maximally extended generalized
broken bicharacteristics. This result is a C*° counterpart of Lebeau’s results
for the propagation of analytic singularities on real analytic manifolds with
appropriately stratified boundary, [11]. Our methods rely on b-microlocal
positive commutator estimates, thus providing a new proof for the propagation
of singularities at hyperbolic points even if M has a smooth boundary (and no
corners).

1. INTRODUCTION

In this paper we describe the propagation of C* and Sobolev singularities for the
wave equation on a manifold with corners M equipped with a smooth Riemannian
metric g. We first recall the basic definitions from [12] — and refer to [20, Section 2]
as a more accessible reference. Thus, a tied (or t-) manifold with corners X of
dimension n is a paracompact Hausdorff topological space with a C*> structure
with corners. The latter simply means that the local coordinate charts map into
[0,00)¥ x R"™* rather than into R". Here k varies with the coordinate chart.
We write 0, X for the set of points p € X such that in any local coordinates
¢ = (¢1,..., Pk, Pk+1,-..,¢n) near p, with k as above, precisely ¢ of the first
k coordinate functions vanish at ¢(p). We usually write such local coordinates
as (1, .., TkyY1,-- -, Yn—k)- A boundary face of codimension ¢ is the closure of a
connected component of 9y X. A boundary face of codimension 1 is called a boundary
hypersurface. A manifold with corners is a tied manifold with corners such that all
boundary hypersurfaces are embedded submanifolds. This implies the existence of
global defining functions pgy for each boundary hypersurface H (so pg € C*(X),
pr > 0, pg vanishes exactly on H and dpg # 0 on H) — in each local coordinate
chart intersecting H we may take one of the z;’s (j = 1, ..., k) to be py. While our
results are local, and hence hold for t-manifolds with corners, it is convenient to
use the embeddedness occasionally to avoid overburdening the notation. Moreover,
in a given coordinate system, we often write H; for the boundary hypersurface
whose restriction to the given coordinate patch is given by x; = 0, so the notation
H; depends on a particular coordinate system having been chosen (but we usually
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ignore this point). If X is a manifold with corners, X° denotes its interior, which
is thus a C* manifold (without boundary).

Returning to the wave equation, let M be a manifold with corners equipped with
a smooth Riemannian metric g. Let A = A, be the positive Laplacian of g, let
X =M xRy, P=D? — A, and consider the Dirichlet boundary condition for P:

PU,ZO, U|8X=0a

with the boundary condition meaning more precisely that u € H&_ (X). Here

H}(X) is the completion of C2°(X) (the vector space of C*° functions of compact
support on X, vanishing with all derivatives at 9X) with respect to HuH%p(X) =
ldull 2cx) + Jull L2cx), L2(X) = L*(X, dg dt), and H{100(X) is its localized version,
ie. u € HY(X) if for all ¢ € C°(X), ¢pu € HY(X). At the end of the introduction
we also consider Neumann boundary conditions.

The statement of the propagation of singularities of solutions has two additional
ingredients: locating singularities of a distribution, as captured by the wave front
set, and describing the curves along which they propagate, namely the bicharac-
teristics. Both of these are closely related to an appropropriate notion of phase
space, in which both the wave front set and the bicharacteristics are located. On
manifolds without boundary, this phase space is the standard cotangent bundle. In
the presence of boundaries the phase space is the b-cotangent bundle, PT* X, (‘b’
stands for boundary) which we now briefly describe following [19], which mostly
deals with the C* boundary case, and especially [20].

Thus, V,(X) is, by definition, the Lie algebra of C* vector fields on X tangent
to every boundary face of X. In local coordinates as above, such vector fields have
the form

loc

Z aj(x,y)r;0y, + Z bj(x,y)0,,
J

wit a;, b; smooth. Correspondingly, Vi, (X) is the set of all C* sections of a vector
bundle "T'X over X: locally z;0,, and 8y, generate V;,(X) (over C*°(X)), and thus
(x,y,a,b) are local coordinates on PTX.

The dual bundle of PT'X is PT* X; this is the phase space in our setting. Sections
of these have the form

(1.1) Zaj(x,y)% +ZCj(x,y)dyj,

and correspondingly (x,y, o, () are local coordinates on it. Let o denote the zero
section of PT*X (as well as other related vector bundles below). Then PT*X \ o is
equipped with an RT-action (fiberwise multiplication) which has no fixed points. It
is often natural to take the quotient with the RT-action, and work on the b-cosphere
bundle, PS* X.

The differential operator algebra generated by Vy, (X) is denoted by Diffy,(X), and
its microlocalization is Uy, (X), the algebra of b-, or totally characteristic, pseudodif-
ferential operators. For A € Uy'(X), op,m(A) is a homogeneous degree m function
on PT*X \ 0. Since X is not compact, even if M is, we always understand that
U (X) stands for properly supported ps.d.o’s, so its elements define continuous
maps C(X) — C®(X) as well as C~°(X) — C~°°(X). Here C*°(X) denotes the
subspace of C*°(X) consisting of functions vanishing at 0X with all derivatives,
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Cgo (X)) the subspace of Co° (X)) consisting of functions of compact support. More-
over, C~>°(X) is the dual space of C>°(X); we may call its elements ‘tempered’ or
‘extendible’ distributions. Thus, C2°(X°) € C*°(X) and C~>(X) C C~>°(X°).

We are now ready to define the wave front set WFy,(u) for u € H\L (X). This
measures if v has additional regularity, locally in PT* X, relative to H'. For u €
HL (X), ¢ € PT*X \ 0, m > 0, we say that ¢ ¢ WFp"(u) if there is A € U} (X)
such that o4, (A4)(q) # 0 and Au € H(X). Since compactly supported elements
of WY (X) preserve HL (X), it follows that for u € HL (X), WFp°(u) = 0. For any
m, WFim(u) is a conic subset of PT* X \ o; hence it is natural to identify it with a
subset of PS*X. Its intersection with PT%. X \ o, which can be naturally identified
with 7*X° \ o, is WE™ ¥ (u). Thus, in the interior of X, WF} '™ (u) measures if u
is microlocally in H™*!. The main result of this paper, stated at the end of this
section, is that for u € HY(X) with Pu = 0, WF_"™(u) is a union of maximally
extended generalized broken bicharacteristics, which are defined below. In fact,
the requirement u € H}(X) can be relaxed and m can be allowed to be negative,
see Definitions 3.15-3.17. We also remark that for such u, the H'(X)-based b-
wave front set, WFtl)’m(u), could be replaced by an L?(X)-based b-wave front set,
see Lemma 6.1. In addition, our methods apply, a fortiori, for elliptic problems
such as Ay on (M, g), e.g. showing that u € Hy (M) and (A; — A)u = 0 imply
RS Hif;oc(M), so u is conormal — see the end of Section 4.

This propagation result is the C* (and Sobolev space) analogue of Lebeau’s
result [11] for analytic singularities of u when M and g are real analytic. Thus,
the geometry is similar in the two settings, but the analytic techniques are rather
different: Lebeau uses complex scaling and the analytic wave front set of the ex-
tension of u as 0 to a neighborhood of X (in an extension X of the manifold X),
while we use positive commutator estimates and b-microlocalization relative to the
form domain of the Laplacian. It should be kept in mind though that positive com-
mutator estimates can often be thought of as an infinitesimal version of complex
scaling (if complex scaling is available at all), although this is more of a moral than
a technical statement, for the techiniques involved in working infinitesimally are
quite different from what one can do if one has room to deform contours of integra-
tion! In fact, our microlocalization techniques, especially the positive commutator
constructions, are very closely related to the methods used in N-body scattering,
[24], to prove the propagation of singularities (meaning microlocal lack of decay
at infinity) there. Although Lebeau allows more general singularities than corners
for X, provided that X sits in a real analytic manifold X with g extending to X ,
we expect to generalize our results to settings where no analogous C*° extension is
available, see the remarks at the end of the introduction.

We now describe the setup in more detail so that our main theorem can be stated
in a precise fashion. Let F;, i € I, be the closed boundary faces of M (including
M), F; = F; xR, Fj g the interior (‘regular part’) of ;. Note that for each p € X,
there is a unique ¢ such that p € Fj ;eo. Although we work on both M and X, and
it is usually clear which one we mean even in the local coordinate discussions, to
make matters clear we write local coordinates on M, as in the introduction, as
(z,y) (with z = (z1,...,2%), ¥y = (Y1, -, Ydimm—k)), With z; > 0 (j = 1,...,k)
on M, and then local coordinates on X, induced by the product M x Ry, as (z,¥),
g=(y,t) (so X isgivenby z; >0, j=1,...,k).
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Let p € 0X, and let F; be the closed face of X with the smallest dimension that
contains p, so p € F;reg. Then we may choose local coordinates (z,y,t) = (z,7)
near p in which F; is defined by x1 = ... = xx = 0, and the other boundary faces
through p are given by the vanishing of a subset of the collection z1,...,xy of
functions — in particular, the & boundary hypersurfaces H; through p are locally
given by ; = 0 for j = 1,..., k. (This may require shrinking a given coordinate
chart (2',9') that contains p so that the 2, that do not vanish identically on F; do
not vanish at all on the smaller chart, and can be relabelled as one of the coordinates
Ye-)

Now, there is a natural non-injective ‘inclusion’ 7 : T*X — PT*X induced by
identifying PTX with TX (and hence also their dual bundles) with each other in
the interior of X, where the condition on tangency to boundary faces is vacuous.
In view of (1.1), in the canonical local coordinates (z,%, £, ¢) on T*X (so one forms
are Y& dzj + Y. (jdy;), and canonical local coordinates (z,7,0,() on PT*X, 7
takes the form

T((x) g? g’ g) = (x’ y7 xf? 6)7 With xg = (xlgl’ R 7$k€k)'

Thus, 7 is a C*> map, but at the boundary of X, it is not a local diffeomorphism.
Moreover, the range of 7 over the interior of a face F; lies in T*F; (which is well-
defined as a subspace of PT* X)) while its kernel is N*F;, the conormal bundle of F;
in X. In local coordinates as above, in which F; is given by = 0, the range T*F;
over F;is given by x =0,0 =0 (ie.byz; =... =2, =0,01 = ... = 0, = 0),
while the kernel N*F; is given by = 0, ( = 0. Then we define the compressed
b-cotangent bundle PT" X to be the range of :

DT X = 1(T*X) = Ui, T* Fipog C "T*X.
We write o for the ‘zero section’ of PT" X as well, so
b7 X \ 0 =UierT" Fireg \ 0,
and then 7 restricts to a map
T*X \U;N*F; — T X \ o.

Now, the characteristic set Char(P) C T*X \ o of P is defined by p=1({0}),
where p € C*°(T* X \ 0) is the principal symbol of P, which is homogeneous degree
2 on T*X \ o. Notice that Char(P)NN*F; = () for all 7, i.e. the boundary faces are

all non-characteristic for P. Thus, w(Char(P)) C b7 X \ 0. We define the elliptic,
glancing and hyperbolic sets by

£={qe®T X\ o: 7 '(g) N Char(P) = 0},
G={qe b7 X \o: Card(r~!(q) N Char(P)) = 1},
H={qe b7 X \o: Card(r~!(q) N Char(P)) > 2},

with Card denoting the cardinality of a set; each of these is a conic subset of
b7 X \ 0. Note that in 7*X°, 7 is the identity map, so every point ¢ € T*X° is
either in £ or G depending on whether ¢ ¢ Char(P) or ¢ € Char(P).

Local coordinates on the base induce local coordinates on the cotangent bundle,
namely (z,y,t,&,¢(,7) on T*X near 771(q), ¢ € T*F; veg, and corresponding coor-
dinates (y,%,(,7) on a neighborhood U of ¢ in T*F; ;es. The metric function on
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T*M has the form
9@y, &0 = > A 9)&& + > 205, 9)&¢ + > Bij(2,9)G¢
i i i.j

with A, B, C smooth. Moreover, these coordinates can be chosen (i.e. the y; can
be adjusted) so that C(0,y) = 0. Thus,

Plo—o =72 — € A(y)€ — - B(y)¢,
with A, B positive definite matrices depending smoothly on y, so

ENU={(y,t,¢,7): 7 < (- By), () # 0},
gnu={(y.t,¢,7): 7° =(-B(y)¢, (¢,7) # 0},
HOU={(y.t.¢,7): 7> By)¢, (C,7) #0}.
The compressed characteristic set is
> = 7(Char(P)) = GUH,

and
7 : Char(P) — %

is the restriction of 7 to Char(P). Then ¥ has the subspace topology of PT* X, and
it can also be topologized by 7, i.e. requiring that C' C 3 is closed (or open) if and
only if #71(C) is closed (or open). These two topologies are equivalent, though the
former is simpler in the present setting — e.g. it is immediate that 3 is metrizable.
Lebeau [11] (following Melrose’s original approach in the C* boundary setting, see
[17]) uses the latter; in extensions of the present work, to allow e.g. iterated conic
singularities, that approach will be needed. Again, an analogous situation arises
in N-body scattering, though that is in many respects more complicated if some
subsystems have bound states [24, 25].

We are now ready to define generalized broken bicharacteristics, essentially fol-
lowing Lebeau [11]. We say that a function f on T* X\ o is m-invariant if f(q) = f(¢)
whenever 7(q) = 7(¢’). In this case f induces a function f, on T X which satisfies
f = fr om. Moreover, if f is continuous, then so is f;. Notice that if f = @*fy,
fo € C®(PT*X), then f € C®(T*X) is certainly 7-invariant.

Definition 1.1. A generalized broken bicharacteristic of P is a continuous map
~v: 1 — %, where I C R is an interval, satisfying the following requirements:

(1) If go =7(to) € G then for all m-invariant functions f € C*(T*X),

d SN
(1.2) E(f” o) (to) = Hpf(d), do=7""(q0)-
(ii) If go = v(to) € H NT*F; reg then there exists € > 0 such that
(1.3) tel, 0<|t—to <e=(t) & T"Fireg-

(ili) If go = v(to) € G NT*Fireg, and F; is a boundary hypersurface (i.e. has
codimension 1), then in a neighborhood of ¢y, 7 is a generalized broken
bicharacteristic in the sense of Melrose-Sjostrand [13], see also [4, Defini-
tion 24.3.7].



6 ANDRAS VASY

Remark 1.2. Note that for g0 € G, #71({qo}) consists of a single point, so (1.2)
makes sense. Moreover, (iii) implies (i) if go is in a boundary hypersurface, but
it is stronger at diffractive points, see [4, Section 24.3]. The propagation of an-
alytic singularities, as in Lebeau’s case, does not distinguish between gliding and
diffractive points, hence (iii) can be dropped to define what we may call analytic
generalized broken bicharacteristics. It is an interesting question whether in the
C* setting there are also analogous diffractive phenomena at higher codimension
boundary faces, i.e. whether the following theorem can be strengthened at certain
points.

We remark also that there is an equivalent definition (presented in lecture notes
about the present work, see [26]), which is more directly motivated by microlocal
analysis and which also works in other settings such as N-body scattering in the
presence of bound states.

Our main result is:

Theorem. (See Corollary 8.4.) Suppose that Pu = 0, u € H&ZOC(X). Then

WF})OO(U) C Y, and it is a union of mazximally extended generalized broken bichar-
acteristics of P in 2.

The analogue of this theorem was proved in the real analytic setting by Lebeau
[11], and in the C* setting with C* boundaries (and no corners) by Melrose,
Sjostrand and Taylor [13, 14, 22]. In addition, Ivrii [8] has obtained propagation
results for systems. Moreover, a special case with codimension 2 corners in R? had
been considered by P. Gérard and Lebeau [3] in the real analytic setting, and by
Ivrii [5] in the smooth setting. It should be mentioned that due to its relevance,
this problem has a long history, and has been studied extensively by Keller in the
1940s and 1950s in various special settings, see e.g. [1, 10]. The present work (and
ongoing projects continuing it, especially joint work with Melrose and Wunsch [15],
see also [2, 16]) can be considered a justification of Keller’s work in the general
geometric setting (curved edges, variable coefficient metrics, etc).

A more precise version of this theorem, with microlocal assumptions on Pu,
is stated in Theorem 8.1. In particular, one can allow Pu € C*°(X), which im-
mediately implies that the theorem holds for solutions of the wave equation with
inhomogeneous C*° Dirichlet boundary conditions that match across the boundary
hyperfaces, see Remark 8.2. In addition, this theorem generalizes to the wave oper-
ator with Neumann boundary conditions, which need to be interpreted in terms of
the quadratic form of P (i.e. the Dirichlet form). That is, if u € H} (X)) satisfies

<CZMU7 dM’U>X — <8tu, 8,5’U>X =0

for all v € HY(X), then WFp™(u) C 3, and it is a union of maximally extended
generalized broken bicharacteristics of P in 3. In fact, the proof of the theorem for
Dirichlet boundary conditions also utilizes the quadratic form of P. It is slightly
simpler in presentation only to the extent that one has more flexibility to integrate
by parts, etc., but in the end the proof for Neumann boundary conditions simply
requires a slightly less conceptual (in terms of the traditions of microlocal analy-
sis) reorganization, e.g. not using commutators [P, A] directly, but commuting A
through the exterior derivative dy; and 0 directly.

It is expected that these results will generalize to iterated edge-type structures
(under suitable hypotheses), whose simplest example is given by (isolated) conic
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points, recently analyzed by Melrose and Wunsch [16], extending the product cone
analysis of Cheeger and Taylor [2]. This is subject of an ongoing project with
Richard Melrose and Jared Wunsch [15].

It is an interesting question whether this propagation theorem can be improved
in the sense that, under certain ‘non-focussing’ assumptions for a solution u of
the wave equation, if a bicharacteristic segment carrying a singularity of u hits a
corner, then the reflected singularity is weaker along ‘non-geometrically related’
generalized broken bicharacteristics continuing the aforementioned segment than
along ‘geometrically related’ ones — roughly, ‘geometrically related’ continuations
should be limits of bicharacteristics just missing the corner. In the setting of (iso-
lated) conic points, such a result was obtained by Cheeger, Taylor, Melrose and
Wunsch [2, 16]. While the analogous result (including its precise statement) for
manifolds with corners is still some time away, significant progress has been made,
since this original version of this manuscript was written, on analyzing edge-type
metrics (on manifolds with boundaries) in the project [15]. The outline of these
results, including a discussion how it relates to the problem under consideration
here, is written up in the lecture notes of the author on the present paper [26].

To make it clear what the main theorem states, we remark that the propagation
statement means that if u solves Pu = 0 (with, say, Dirichlet boundary condition),
and q € T3 X \ o is such that u has no singularities on bicharacteristics entering
q (say, from the past), then we conclude that v has no singularities at ¢, in the
sense that g ¢ WFllj’Do(u), i.e. we only gain b-derivatives (or totally characteristic
derivatives) microlocally. In particular, even if WFtl)oo(u) is empty, we can only
conclude that u is conormal to the boundary, in the precise sense that Vi ... Viu €
HE (X) for any Vi,..., Vi € Vu(X), and not that u € HE (X) for all k. Indeed,
the latter cannot be expected to hold, as can be seen by considering e.g. the wave
equation (or even elliptic equations) in 2-dimensional conic sectors.

This already illustrates that from a technical point of view a major challange is
to combine two differential (and pseudodifferential) algebras: Diff (X) and Diff},(X)
(or Up(X)). The wave operator P lies in Diff(X), but microlocalization needs to
take place in Wy (X): if ¥(X) is the algebra of usual pseudodifferential operators on
an extension X of X, its elements do not even act on C>°(X): see [4, Section 18.2]
when X has a smooth boundary (and no corners). In addition, one needs an
algebra whose elements A respect the boundary conditions, so e.g. Au|gx depends
only on u|sx — this is exactly the origin of the algebra of totally characteristic
pseudodifferential operators, denoted by ¥,(X), in the C* boundary setting [18].
The interaction of these two algebras also explains why we prove even microlocal
elliptic regularity via the quadratic form of P (the Dirichlet form), rather than by
standard arguments, valid if one studies microlocal elliptic regularity for an element
of an algebra (such as ¥y, (X)) with respect to the same algebra.

The ideas of the positive commutator estimates, in particular the construction
of the commutants, are very similar to those arising in the proof of the propagation
of singularities in N-body scattering in previous works of the author — the wave
equation corresponds to the relatively simple scenario there when no proper sub-
systems have bound states [24]. Indeed, the author has indicated many times in
lectures that there is a close connection between these two problems, and it is a
pleasure to finally spell out in detail how the N-body methods can be adapted to
the present setting.
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The organization of the paper is as follows. In Section 2 we recall basic facts
about U, (X) and analyze its commutation properties with Diff (X). In Section 3 we
describe the mapping properties of ¥y,(X) on H'(X)-based spaces. We also define
and discuss the b-wave front set based on H'(X) there. The following section
is devoted to the elliptic estimates for the wave equation. These are obtained
from the microlocal positivity of the Dirichlet form, which implies in particular
that in this region commutators are negligible for our purposes. In Section 5 we
describe basic properties of bicharacteristics, mostly relying on Lebeau’s work [11].
In Sections 6 and 7, we prove propagation estimates at hyperbolic, resp. glancing,
points, by positive commutator arguments. Similar arguments were used by Melrose
and Sjostrand [13] for the analysis of propagation at glancing points for manifolds
with smooth boundaries. In Section 8 these results are combined to prove our
main theorems. The arguments presented there are very close to those of Melrose,
Sjostrand and Lebeau.

Here we point out that Ivrii [8, 6, 7, 9] also used microlocal energy estimates
to obtain propagation results of a different flavor for symmetric systems in the
smooth boundary setting, including at hyperbolic points. Roughly, Ivrii’s results
give conditions for hypersurfaces ¥ through a point ¢y under which the following
conclusion holds: the point ¢ is absent from the wave front set of a solution pro-
vided that, in a neighborhood of gg, one side of ¥ is absent from the wave front set
— with further restrictions on the hypersurface in the presence of smooth bound-
aries. In some circumstances, using other known results, Ivrii could strengthen the
conclusion further.

Since the changes for Neumann boundary conditions are minor, and the argu-
ments for Dirichlet boundary conditions can be stated in a form closer to those
found in classical microlocal analysis (essentially, in the Neumann case one has to
pay a price for integrating by parts, so one needs to present the proofs in an appro-
priately rearranged, and less transparent, form) the proofs in the body of the paper
are primarily written for Dirichlet boundary conditions, and the required changes
are pointed out at the end of the various sections.

In addition, the hypotheses of the propagation of singularities theorem can be

relaxed to u € Hé}’gfloc(X), m < 0, defined in Definition 3.15. Since this simply

requires replacing the H'(X) norms by the Hg’m norms (which are only locally
well defined), we suppress this point except in the statement of the final result, to
avoid overburdening the notation. No changes are required in the argument to deal
with this more general case. See Remark 8.3 for more details.

To give the reader a guide as to what the real novelty is, Sections 2-3 should be
considered as variations on a well-developed theme. While some of the features of
microlocal analysis, especially wave front sets, is not discussed on manifolds with
corners elsewhere, the modifications needed are essentially trivial (cf. [4, Chap-
ter 18]). A slight novelty is using H'(X) as the point of reference for the b-wave
front sets (rather than simply weighted L? spaces), which is very useful later in
the paper, but again only demands minimal changes to standard arguments. The
discussions of bicharacteristics in Section 5 essentially quotes Lebeau’s paper [11,
Section III]. Moreover, given the results of Sections 4, 6 and 7, the proof of prop-
agation of singularities in Section 8 is standard, essentially due to Melrose and
Sjostrand [14, Section 3]. Indeed, as presented by Lebeau [11, Proposition VIIL.1],
basically no changes are necessary at all in this proof.
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The novelty is thus the use of the Dirichlet form (hence the H!-based wave front
set) for the proof of both the elliptic and hyperbolic/glancing estimates, and the
systematic use of positive commutator estimates in the hyperbolic/glancing regions,
with the commutants arising from an intrinsic pseudodifferential operator algebra,
Uy, (X). This approach is quite robust, hence significant extensions of the results
can be expected, as was already indicated.

I would like to thank Richard Melrose for his interest in this project, for reading,
and thereby improving, parts of the paper, and for numerous helpful and stimulating
discussions, especially for the wave equation on forms. While this topic did not
become a part of the paper, it did play a role in the presentation of the arguments
here. T am also grateful to Jared Wunsch for helpful discussions and his willingness
to read large parts of the manuscript at the early stages, when the background
material was still mostly absent; his help significantly improved the presentation
here. T would also like to thank Rafe Mazzeo for his continuing interest in this
project and for his patience when I tried to explain him the main ideas in the early
days of this project, and Victor Ivrii for his interest in, and his support for, this
work. At last, but not least, I am very grateful to the anonymous referee for a
thorough reading of the manuscript and for many helpful suggestions.

2. INTERACTION OF Diff (X) WITH THE B-CALCULUS

One of the main technical issues in proving our main theorem is that unless
dX = (), the wave operator P is not a b-differential operator: P ¢ Diff (X). In this
section we describe the basic properties of how Diff*(X), which includes P for k = 2,
interacts with Wy, (X). We first recall though that for p € F; ;g local coordinates in
PT*X over a neighborhood of p are given by (z,y,t,0,(,7) with o; = x;&;. Thus,
the map 7 in local coordinates is (z,y,t,&,(,7) — (z,y,t,2€,(, 7), where by z€ we
mean the vector (211, ..., 2x&k)-

In fact, in this section y and ¢ play a completely analogous role, hence there is
no need to distinguish them at all. The difference will only arise when we start
studying the wave operator P in Section 4. Thus, we let § = (y,t) and ¢ = ((, 7)
here to simplify the notation.

We briefly recall basic properties of the set of ‘classical’ (one-step polyhomoge-
neous, in the sense that the full symbols are such on the fibers of *T* X) pseudo-
differential operators ¥y(X) = U, Up'(X) and the set of standard (conormal)
b-pseudodifferential operators, ¥po(X) = Uy, UPi(X). The difference between
these two classes is in terms of the behavior of their (full) symbols at fiber-infinity
of PT*X: elements of Wy.(X) have full symbols that satisfy the usual symbol
estimates, while elements of ¥L(X) have in addition an asymptotic expansion
in terms of homogeneous functions, so Up'(X) C U (X). Conceptually, these
are best defined via the Schwartz kernel of A € Uy (X) in terms of a certain
blow-up X? of X x X, see [20] — the Schwartz kernel is conormal to the lift
diag,, of the diagonal of X? to X? with infinite order vanishing on all bound-
ary faces of X? which are disjoint from diag,. Modulo ¥, *°(X), however, the
explicit quantization map we give below describes P7L(X) and Up'(X). Here
U, 20(X) = O, 7(X) = Ny Upe(X) = Ny, Up'(X) is the ideal of smoothing op-
erators. The topology of ¥y,.(X) is given in terms the conormal seminorms of the
Schwartz kernel K of its elements; these seminorms can be stated in terms of the
Besov space norms of L1 Lo ... LK as k runs over non-negative integers, and the L;
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over first order differential operators tangential to diagy, see [4, Definition 18.2.6].
Recall in particular that these seminorms are (locally) equivalent to the C*° semi-
norms away from the lifted diagonal diag;,.

There is a principal symbol map oy, : ViL(X) — S™(PT*X)/S™1(PT*X);
here, for a vector bundle E over X, S¥(E) denotes the set of symbols of order
k on E (i.e. these are symbols in the fibers of F, smoothly varying over X). Its
restriction to U}'(X) can be re-interpreted as a map oy, : ¥p'(X) — C*(PT* X\ 0)
with values in homogeneous functions of degree m; the range can of course also be
identified with C>(*S*X) if m = 0 (and with sections of a line bundle over " S*X
in general). There is a short exact sequence

0— UPHX) — P (X) — S™(T*X)/S™H (PT*X) — 0
as usual; the last non-trivial map is o . There are also quantization maps (which
depend on various choices) ¢ = ¢, : S™(PT*X) — U] (X), which restrict to
g : ST(PT*X) — U'(X), cl denoting classical symbols, and opm 0 g, is the
quotient map S™ — S™/S™~1. For instance, over a local coordinate chart U as
above, with a supported in T X, K C U compact, we may take, with n = dim X,
(2.1)
q(a)u(z, 7)

/

= (2 [ e T (e, Cula ) da ' d

understood as an oscillatory integral, where ¢ € C°((—1/2,1/2)%) is identically 1

/ /
T1—XTy kaxk)

near 0 and T_TT/ = (Z;2,..., 75 %), and the integral in 2’ is over [0, 00)*. Here
the role of ¢ is to ensure the infinite order vanishing at the boundary hypersurfaces
of X? disjoint from diag,; it is irrelevant as far as the behavior of Schwartz kernels
near the diagonal is concerned (it is identically 1 there). This can be extended to a
global map via a partition of unity, as usual. Locally, for ¢(a), suppa C bTI”‘(X as
above, the conormal seminorms of the Schwartz kernel of ¢(a) (i.e. the Besov space
norms described above) can be bounded in terms of the symbol seminorms of a, see
the beginning of [4, Section 18.2], and conversely. Moreover, any A € Wy,.(X) with
properly supported Schwartz kernel defines continuous linear maps A : COO(X ) —

C™(X), A:C®(X) — C>®(X).

Remark 2.1. We often do not state it below, but in general most pseudodifferen-
tial operators have compact support in this paper. Sometimes we use properly
supported ps.d.o’s, only for not having to state precise support conditions; these
are always composed with compactly supported ps.d.o’s or applied to compactly
supported distributions, so effectively they can be treated as compactly supported.
See also Remark 4.1.

With g being any C*° Riemannian metric on X, and K C X compact, any
A € U _(X) with Schwartz kernel supported in K x K defines a bounded operator
on L?(X) = L*(X, dg), with norm bounded by a seminorm of A in U9 _(X). Indeed,
this is true for A € ¥, °°(X) with compact support, as follows from the Schwartz
lemma and the explicit description of the Schwartz kernel of A on X?. The standard
square root argument then shows the boundedness for A € W9 (X), with norm
bounded by a seminorm of A in ¥ _(X) - see [20, Equation (2.16)]. In fact, we get
more from the argument: letting a = o4,0(A), there exists A’ € W, '(X) such that
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for all v € L?(X),
[ Av]| < 2suplal [[v] + [[A"]|.

(The factor 2 of course can be improved, as can the order of A’.) This estimate
will play an important role in our propagation estimates — it will take the place
of constructing a square root of the commutator, which would be difficult here as
we will commute P with an element of Wy, (X), so the commutator will not lie in
UL (X). We remark here that it is more usual to take a ‘b-density’ in place of dg,
i.e. a globally non-vanishing section of Qf X = Q, X, which thus takes the form
(21 ...7,)" 1 dg locally near a codimension k corner, to define an L2?-space, namely

L3(X) = L*(X, wj?mk ); then L3(X) = xfl/Q . a:,?l/?L%(X) appears as a weighted
space. Elements of \I!gC(X ) are bounded on both L? spaces, in the manner stated
above. The two boundedness results are very closely related, for if A € ¥ (X)),
then so is x?‘Ax;)‘, AxeC.

There is an operator wave front set associated to Wp.(X) as well: for A €

" (X), WF{ (A) is a conic subset of PT* X \ o, and has the interpretation that A

is ‘in W, 2°(X) outside WF} (A). (We caution the reader that unlike the previous
material, as well as the rest of the background in the next three paragraphs, WFy, is
not discussed in [20]. This discussion, however, is standard; see e.g. [4, Section 18.1],
esp. after Definition 18.1.25, in the boundariless case, and [4, Section 18.3] for the
case of a C* boundary, where one simply says that the operator is order —oco on
certain open cones, see e.g. the proof of Theorem 18.3.27 there.) In particular, if
WF; (A) = 0, then A € ¥, *°(X). For instance, if A = g(a), a € S™("T*X), q as in
(2.1), WF} (A) is defined by the requirement that if p ¢ WF} (A) then p has a conic
neighborhood U in PT*X \ o such that A = ¢(a), a is rapidly decreasing in U, i.e.
la(x,7,0,0)] < Cn(1+|o|+|¢))~N for all N. Thus, WF; (A) is a closed conic subset
of PT*X \ 0. Moreover, if K C PS*X is compact, and U is a neighborhood of K,
there exists A € ¥P(X) such that A is the identity on K and vanishes outside U, i.e.
WFL(A) C U, WFL(Id —A)NK = () — we can construct a to be homogeneous degree
zero outside a neighborhood of o, such that this homogeneous function regarded as
a function on "S*X (and still denoted by a) satisfies @ = 1 near K, suppa C U,
and then let A = g(a). (This roughly says that ¥, (X) can be used to localize in
bS* X, i.e. to b-microlocalize.)

WUpo(X) forms a filtered *-algebra, so A; € U7 (X), j = 1,2, implies A1 4y €
pitm2(X), and A7 € Uy (X) with

Ob,m1+mao (AlAQ) = Ob,m, (A1)0b7m2 (AQ)a Ob,m; (A;) = Ob,m; (A)

Here the formal adjoint is defined with respect to L?(X), the L2-space of any C*
Riemannian metric on X; the same statements hold with respect to L2(X) as well,
since conjugation by xj...xy preserves ¥y (X) (as well as ¥7'(X)), as already
remarked for m = 0. Moreover, [A, As] € U7 T2~ 1(X) with

1
Ob,my+ma—1([A1, A2]) = —{a1, a2}, aj = ov,m; (4;);
7

{-,-} is the Poisson bracket lifted from T*X via the identification of T*X° with
PT%.X. If Aj € U1V (X), then Aj Ay € U T™2(X), A% € U1V (X), and [41, A5] €

\I/{)nlerTl(X). In addition, operator composition satisfies

W (A1 42) € WFL(Ar) N WEF(A2).
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If A e Upi(A) is elliptic, i.e. opm(A) is invertible as a symbol (with inverse
in ST™(PT*X \ 0)/S™™L(PT*X \ 0)), then there is a parametrix G € ¥, ™(X)
for A, i.e. GA —1d,AG —1d € ¥, °(X). This construction microlocalizes, so if
op.m(A) is elliptic at ¢ € PT*X \ o, i.e. opm(A) is invertible as a symbol in an
open cone around ¢, then there is a microlocal parametrizc G € ¥, (X) for A at
q, so ¢ ¢ WF(GA —1d), ¢ ¢ WF(AG — 1d), so GA, AG are microlocally the
identity operator near q. More generally, if K C "S*X is compact, and oy, ,,, (A)
is elliptic on K then there is G € ¥, ™(X) such that K N WF,(GA — 1d) = 0,
KNWF{ (AG—1d) = ). For A € ¥7'(X), 0b.m(A) can be regarded as a homogeneous
degree m function on PT* X \ o, and ellipticity at ¢ means that oy, (A)(q) # 0. For
such A, one can take G € ¥, ™ (X) in all the cases described above.

The other important ingredient, which however rarely appears in the following
discussion, although when it appears it is crucial, is the notion of the indicial
operator. This captures the mapping properties of A € Uy(X) in terms of gaining
any decay at 0X. It plays a role here as P ¢ Diff,(X), so even if we do not
expect to gain any decay for solutions u of Pu = 0 say, we need to understand the
commutation properties of Diffy,(X) with ¥y, (X), which will in turn follow from
properties of the indicial operator. There is an indicial operator map (which can
also be considered as a non-commutative analogue of the principal symbol), denoted
by N;, for each boundary face F;, i € I, and N; maps U (X) to a family of b-
pseudodifferential operators on F;. For us, only the indicial operators associated
to boundary hypersurfaces H; (given by z; = 0) will be important; in this case the
family is parameterized by o;, the b-dual variable of x;. It is characterized by the
property that if f € C°°(H;) and u € C*°(X) is any extension of f, i.e. u|lg, = f,
then

Nj(A) (o)) f = (] Az u) | u,,

where xj_wj Aw?”-i € Upe(X), hence xj_wj ij-”-ju € C*(X), and the right hand
side does not depend on the choice of u. (In this formulation, we need to fix x;,
at least mod z5C™(X), to fix N;(A). Note that the radial vector field, x; Dy, is
independent of this choice of z;, at least modulo z;V,(X).) If A € Uy (X) and
N;(A) = 0, then in fact A € C3(X) ¥pL(X), where C(X) is the ideal of C*(X)
consisting of functions that vanish at F;. In particular, for a boundary hypersurface
H; defined by z;, if A € U/ (X) and N;(A) = 0, then A = ;A" with A’ € U (X).
The indicial operators satisty N;(AB) = N;(A)N;(B). The indicial family of z; D,,
at Hj is multiplication by o, while the indicial family of xx D, , k # 7, is xDg,
and that of Dy, is Dy,. In particular, ]\Afj([a:ijj,A]) = []\Afj(ijmj),Nj(A)] =0,
SO

(2.2) [2j Dy, Al € 25 Wi (X),

which plays a role below. All of the above statements also hold with Wy.(X)
replaced by Uy (X).

The key point in analyzing smooth vector fields on X, and thereby differential
operators such as P is that while D,, ¢ V,(X), for any A € U7'(X) there is an
operator A € UI"(X) such that

(2.3) D,,A— AD,, € ¥J"(X),
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and analogously for U'(X) replaced by W7 (X). Indeed,
D, A= xj_l(ijmj)A = xj_l[a?ijj,A] + ﬂ?j_leijj-
By (2.2), applied for ¥}, rather than ¥y,
z; ' [1; Dy, A] € UP(X).

Thus, we may take A= x;lej, proving (2.3). We also have, more trivially, that
(2.4) Dy, A— ADy, € U7(X), A€ UP(X), opm(A) = opm(A).
Since op,m (A) = ab,m(a:j_lej), we deduce the following lemma.
Lemma 2.2. Suppose V € V(X), A € ¥'(X). Then [V, A] =" A;V; + B with
A5 € W), Vi € V(X), B e Wy (X).

Similarly, [V, A] = SV, A) + B’ with A; € WP~Y(X), V; € V(X), B' € UJ(X).

Analogous results hold with Wy (X) replaced by Wy (X).

Proof. Tt suffices to prove this for the coordinate vector fields, and indeed just for
the D,,. Then with the notation of (2.3),

D, A— AD,, = (A— A)D,, + B,
and oy (A) = 0p,m(A), so A — A € U H(X), proving the claim. O
More generally, we make the definition:
Definition 2.3. Diff* ¥ (X) is the vector space of operators of the form

(2.5) Y PjA;, P; € Diff*(X), A; € B} (X),
J
where the sum is locally finite in X.
Remark 2.4. Since any point ¢ € PT*X \ 0 has a conic neighborhood U in PT*X \ o
on which some vector field V' € W, (X) is elliptic, i.e. 051(V) # 0 on U, we can
always write A; € \Ili+k7kj (X) with WF,(A) C U, kj < k, as Aj = Q;A) + R,
with Q; € Diﬁﬁ_k'j (X), A € U§(X), Rj € ¥, *°(X). Thus, any operator which is
given by a locally finite sum of the form
Y PiA;, Py e Diftti(X), Ay € 0N (X),
J
can in fact be written in the form (2.5). In particular, Diff* \Ilf)'C(X) C Diff* ¥y (X)
provided that &' < k and k' +s' < k+s, and Diff® ¥} (X) C Diff* ¥{ (X) provided
that ¥ <k, k' + s’ <k + s and s — s’ is an integer.
Lemma 2.5. Dift* ¥} (X) is filtered algebra with respect to operator composition,
with Bj € Diff" U} (X), j = 1,2, implying B1Ba € Diff™ ™ w8152 (X) - More-
over, with B, By as above,
[Bi, By € DiffF1Hh2 goits=1(x),

Proof. To prove that Diff* U} (X) is an algebra, we only need to prove that if
A € Ui (X), P e Diff*(X), then AP e Diff*(X) ¥} (X). Writing P as a sum of
products of vector fields in V(X), the claim follows from Lemma 2.2.

Writing B; = Vj1...Vj i, Aj, Aj € ¥7(X), V;; € V(X), and expanding the
commutator [Bi, Bs], one gets a finite sum, each of which is a product of the
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factors Vj1,...Vjk,A; with two factors (one with j = 1 and one with j = 2)
removed and replaced by a commutator. In view of the first part of the lemma, it
suffices to note that

[Vi,i, Vo] € V(X), Diff TRt (x) ¢ DiffFrth gpitee =1 x),
[Ar, Ao] € U7 H(X)

[V, As—j] € Diff W= 7H(X),
where the last statement is a consequence of Lemma 2.2, taking into account that

UP(X) C Diff o (X)), O

We can also define the principal symbol on Diff* ¥§ (X). Thus, using 7 : T*X —
bT* X, we can pull pack o 5(A4), A € Ui (X), to T*X, and define:

Definition 2.6. Suppose B = Y. PjA; € Diff* ¥j(X), P; € Diff*(X), 4; ¢
U7 (X). The principal symbol of B is the C* homogeneous degree k + s function
on T* X \ o defined by

(2.6) Ok+s(B Zak )T op s (Aj).

Lemma 2.7. oy14(B) is independent of all choices.

Proof. Away from 0X, B is a pseudodifferential operator of order k+s, and o+ (B)
is its invariantly defined symbol. Since the right hand side of (2.6) is continuous up
to 80X, and is independent of all choices in T*X°, it is independent of all choices
inT*X. ([l

We are now ready to compute the principal symbol of the commutator of A €
U (X) with Dy,

Lemma 2.8. Let 0,;, O,; denote local coordinate vector fields on bT*X in the
coordinates (x,y,0,(). For A € W' (X) with Schwartz kernel supported in the
coordinate patch, a = oy m(A) € C®(*T*X \ 0), we have [D,,, Al = A1 D,, + Ao €
Diff' W 1(X) with Ay € U7 (X), Ay € ¥ H(X) and

1 1
(2.7) Obm—1(41) = ;&,Ja, ob,m(Ag) = ;amja.
This result also holds with VU,(X) replaced by V(X)) everywhere.

Remark 2.9. Notice that o,,([Dy,, A]) = 1{&, m*a} = 10,,le, {.,.} denoting the
Poisson bracket on 7* X and 0,,|¢ denoting the appropriate coordinate vector field
on T* X, i.e. where ¢ is held ﬁxed (rather than o), since both sides are continuous
funct1onb on T*X \ o which agree on T*X° \ 0. A simple calculation shows that
the lemma is consistent with this result. The statement of the lemma would follow
from this observation if we showed that the kernel of o, on Diff' U7"~1(X) is
Diff! \IIE"‘_Q(X ) — the proof given below avoids this point by reducing the calculation
to \I’b(X)

Proof. The lemma follows from
Dy, A— ADy, = x; 'x; Dy, Al + 25 A, 2] D
Indeed, letting
(2.8) Ag =2 oDy Al € UPN(X), Ay =27 [A 2] € U7 H(X),
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the principal symbols can be calculated in the b-calculus. Since they are given by
the standard Poisson bracket in 7% X°, hence in bT;}C,X , by continuity the same
calculation gives a valid result in PT*X. As O, =00,, Or,le = Ozl +£50s,, We
see that for b = o; or b = z;, the Poisson bracket {b,a} is given by

2j(05,0)(0z;|0a + £05,0) — 2j(05,a)(0z,; |ob + €05, b)
= 2j(00;0)0z;|ca — 2j(05;a)0z,|5b
so we get
{oj,a} = 20,50, {z;,a} = —2;0,,q,
so (2.7) follows from (2.8). O

3. FUNCTION SPACES AND MICROLOCALIZATION

We now turn to action of Uy, (X) on function spaces related to differential opera-
tors in Diff (X), and in particular H!(X) which corresponds to first order differential
operators, such as the exterior derivative d. We first recall that C3°(X) is the space
of C* functions of compact support on X (which may thus be non-zero at 9X),
while C2°(X) is the subspace of C2°(X) consisting of functions which vanish to
infinite order at 0X. Although we will mostly consider local results, and any C*°
Riemannian metric can be used to define L2 (X)), LZ(X) (as different choices give
the same space), it is convenient to fix a global Riemmanian metric, § = g + dt?,
on X, where g is the metric on M. With this choice, L?(X) is well-defined as a
Hilbert space. For u € C2°(X), we let

”'U‘H%F(X) = Hdu||2L2(X) + ||U||2L2(X)~
We then let H'(X) be the completion of C2°(X) with respect to the H'(X) norm.
Then we define Hg(X) as the closure of C2°(X) inside H'(X).

Remark 3.1. We recall alternative viewpoints of these Sobolev spaces. Good ref-
erences for the C* boundary case (and no corners) include [4, Appendix B.2] and
[23, Section 4.4]; only minor modifications are needed to deal with the corners for
the special cases we discuss below.

We can define H!(X°) as the subspace of L?(X) consisting of functions u such
that du, defined as the distributional derivative of v in X°, lying in L?(X, A'X);
we then equip it with the above norm — this is locally equivalent to saying that
Vu € L3 (X) for all C* vector fields V on X, where Vu refers to the distributional
derivative of u on X°.

In fact, H'(X°) = H'(X), since H'(X°) is complete with respect to the H*
norm and C°(X) is easily seen to be dense in it. For instance, locally, if X is given
by z; > 0,5 =1,...,k, and u is supported in such a coordinate chart, one can take
us(z,§) = u(z1+s,...,21+85,9) for s > 0, and see that us|x — win H}(X®). Then
a standard regularization argument on R™, n = dim X, gives the claimed density
of C*(X) in H}(X®). Thus, H!(X°) = H(X) indeed, which shows in particular
that H'(X) C L*(X). (Note that |lul[z2(x) < [lul| g1 (x) only guarantees that there
is a continuous ‘inclusion’ H!(X) — L?(X), not that it is injective, although that
can be proved easily by a direct argument, cf. the Friedrichs extension method for
operators, see e.g. [21, Theorem X.23].)

If X is a manifold without boundary, and X is embedded into it, one can also
extend elements of H'(X) to elements HL_(X) exactly as in the C> boundary
case (or simply locally extending in x; first, then in zo, etc., and using the C*°
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boundary result), see [23, Section 4.4]. Thus, with the notation of [4, Appendix B.2],
Hy,(X) = Hy,.(X°). As is clear from the completion definition, Hj,,.(X) can be

identified with the subset of Hﬁ) C(f( ) consisting of functions supported in X. Thus,
H10o(X) = Hy,.(X) with the notation of [4, Appendix B.2].
All of the above discussion can be easily modified for H™ in place of H!, m > 0

an integer.

We are now ready to state the action on Sobolev spaces. These results would be
valid, with similar proofs, if we replace H*(X) by H™(X), m > 0 integer. We also
refer to [4, Theorem 18.3.13] for further extensions when X has a C* boundary
(and no corners).

Lemma 3.2. Any A € U9 (X) with compact support defines a continuous linear
maps A : HY(X) — HY(X), A : HY(X) — H(X), with norms bounded by a
seminorm of A in W9 (X).

Moreover, for any K C X compact, any A € \I!(zc(X) with proper support de-
fines a continuous map from the subspace of H'(X) (resp. H}(X)) consisting of
distributions supported in K to H}(X) (resp. Hy .(X)).

Remark 3.3. Note that all smooth vector fields V' of compact support define a con-
tinuous operator H*(X) — L?(X), so in particular V' € V,(X) do so. Now, any
A € U] (X) can be written as Z(ijxj)Aj:" > Dy, Al + A" with A;, AL, A" €
TP (X) by writing 041(A) = Y oja; + >_¢jaj, and taking Aj;, A} with princi-
pal symbol a;,a’;. Therefore the lemma implies that any A € Wi (X) defines a

continuous linear operator H'(X) — L?(X), and in particular restricts to a map
H}(X) — L*(X).

Proof. For A € W) (X), by (2.3) Dy, Au = AD,,u + Bu, with A € ¥} (X),
B € ) (X) the seminorms of both in ¥} (X) bounded by seminorms of A in
) (X)), so by the first half of the proof

D2, Aull 2x) < | Alls(z2(x), 22000 1Dyl 2 (x) + 1Blls(z2x0), 200y el 2 x)-

Since there is an analogous formula for D, replaced by Dy,, we deduce that for
some C > 0, depending only on a seminorm of A in ¥ (X),

ldx Aullp2(x) < C(lldxullLz2x) + lull2(x))-

Thus, A € ¥ (X) extends to a continuous linear map from the completion
of C2°(X) with respect to the H'(X) norm to itself, i.e. from H'(X) to itself as
claimed. As it maps C°(X) — C2°(X), it also maps the H'-closure of C*°(X) to
itself, i.e. it defines a continuous linear map Hg(X) — HE(X), finishing the proof
of the first half of the lemma.

For the second half, we only need to note that Au = A¢u if ¢ = 1 near K and
has compact support; now A¢ has compact support so the first half of the lemma
is applicable. (Il

Note that H'(X) C L?(X) C C~°°(X), with C~>°(X) denoting the dual space
of C2°(X), i.e. the space of extendible distributions. Since for any m, A € ¥ (X)
maps C~°(X) — C~°°(X), we could view A already defined as a map H'(X) —
C™%°(X); then the above lemma is a continuity result for m = 0.
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We let H'(X) be the dual of H}(X) and H~(X) be the dual of H'(X), with
respect to an extension of the sesquilinear form (u,v) = fX uTdg, i.e. the L? inner
product. As H}(X) is a closed subspace of H'(X), H~(X) is the quotient of
H~'(X) by the annihilator of H}(X). In terms of the identification of the H'
spaces in the penultimate paragraph of Remark 3.1, H ;! (X) = H;}(X°) in the
notation of [4, Appendix B.2], i.e. its elements are the restrictions to X ° of elements

of H . (X). Analogously, H;!(X) consists of those elements of H, ! (X) which are
supported in X.

Any V e Diff'(X) of compact support defines a continuous map L2(X) —
H=Y(X) via (Vu,v) = (u, V*v) for u € L*(X), v € H}(X); this is the same map
as induced by extending V' to an element V of Diff 1(5( ), extending u to X , say as
0, and letting Vu = Vﬁ|xo. Thus, any P € Diffz(X) of compact support defines
continuous maps H!(X) — H~!(X), and in particular H}(X) — H~1(X), since we
can write P = 3 V;W; with V;, W; € Diff!(X). Similarly, any P € Diff?(X) defines
continuous maps HY (X) — H; ! (X), and in particular H&IOC(X) — H NX).
Thus, for P = Ag + 1, (u,v)p1(x) = (u,Pv) if u € Hj(X) and v € H'(X).
Similarly, for P = D? — Ay, (Dyu, D) — (daru, dyv) = (u, Po), if u € H} (X) and
ve HY(X).

We also remark that as H!'(X) and H}(X) are Hilbert spaces, their duals are
naturally identified with themselves via the inner product. Thus, if f is a continuous
linear functional on Hj(X), then there is a v € HJ(X) such that f(u) = (u,v) +
(du,dv). Thus, regarding H}(X) as a subspace of H'(X), for an extension X of
X, as in Remark 3.1, we deduce that f(u) = (u, (Az + 1)v), so the identification
of H71(X) with H}(X) (regarded as its own dual) is given by H}(X) 3> v —
(A +1)v e HHX).

Since W), (X) is closed under taking adjoints, the following result is an immediate
consequence of Lemma 3.2.

Corollary 3.4. Any A € U9 (X) with compact support defines a continuous linear
maps A : H-Y(X) - H Y(X), A: H-YX) — H-YX), with norm bounded by a
seminorm of A in W9 (X).

We now define subspaces of H'(X) which possess additional regularity with
respect to ¥L(X).

Definition 3.5. For m > 0, we define Hblpm(X) as the subspace of H'(X) con-

sisting of u € H'(X) with suppu compact and Au € H(X) for some (hence any,
as shown below) A € U7'(X) (with compact support) which is elliptic over supp u,
i.e. A such that such that o ,,,(A4)(g) # 0 for any ¢ € 7%, ., X \ o.

We let Hbl”g‘c (X) be the subspace of H{\ (X) consisting cF))fI’)u € H! (X) such that
for any ¢ € C°(X), ¢u € Hblcm(X)

We also let H;:OT?‘C(X) = Hblcm(X) N H}(X), and similarly for the local space
Hy Goc(X):

Remark 3.6. The definition is independent of the choice of A, as can be seen by
taking a parametrix G € ¥ (X) for A in a neighborhood of suppu, so GA—1d =
E € U)(X), and WF} (E)NPTZ, . X \o=0. Indeed, let p € C2°(X) be identically

supp u

1 near suppu, WF{(E) NPT X = (). Then any A’ with the properties of A

supp p
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can be written as A’ = A'GA — A'Ep — A'E(1 — p), A'G, A'Ep € ¥)(X), while
(1= p)u =0, so by Lemma 3.2, A'u € H'(X) provided that u, Au € H*(X).

It is useful to note that if Au € H*(X) and u € Hg(X), then in fact Au € H}(X):

Lemma 3.7. Suppose that u € H}(X), A € ¥ (X) and Au € HY(X). Then
Au € HY(X).

Proof. Suppose that u € H}(X), A € ¥7*(X) and Au € HY(X). Let A, r € (0,1],
be a uniformly bounded family in WP (X) with A, € ¥, *(X) for 7 > 0, A, — Id
in Ui(X), e>0,asr — 0.

Then, for r > 0, A, A € U, >°(X), so u € H}(X) implies that A, Au € H}(X) by
Lemma 3.2. As Au € H'(X), and A, is uniformly bounded as a family of operators
on H'(X), we deduce that A, Au is uniformly bounded in H'(X). Thus, there is a
weakly convergent sequence A,; Au, with r; — 0, in H}(X), as the latter is a closed
subspace of H*(X); let v be the limit. But A, Au — Auin C~°°(X) as r — 0, since
ArA — Ain UPT(X). As Ay, Au — v in C7°(X) as well, Au = v € H}(X) as
claimed. d

The following wave front set microlocalizes H ;_’IZLC (X).

Definition 3.8. Suppose u € HL_(X), m > 0. We say that ¢ € "T*X \ 0 is not in
WFtl)m(u) if there exists A € U'(X) such that o4, (A4)(q) # 0 and Au € H(X).

For m = oo, we say that ¢ € PT*X \ o is not in WFlljm(u) if there exists
A € U)(X) such that op0(A)(q) # 0 and LAu € H'(X) for all L € Diff,(X), i.c.
if Au € H)™(X).

We note that, by the preceeding lemma, if u € Hg,.(X) then Au € Hg,,.(X),
etc. (here A € W*(X)). Moreover, in the m infinite case we may equally allow
L € ¥,(X), and we can also rewrite the finite m definition analogously, i.e. to
state that there exists A € W (X) such that o0(A)(¢) # 0 and LAu € H'(X)
for all L € ¥7'(X) — this follows immediately from the next lemma. Although
we do not need this here, so we do not comment on it any more, we could also
allow A € U7 (X) in the definition, provided we replace oy, (A)(¢) # 0 by the
assumption that A is elliptic at ¢ — this follows from the next results.

The following lemma shows that the action of elements of ¥y, (X) is indeed mi-
crolocal.

Lemma 3.9. Suppose that u € HL (X), B € U (X). Then WFé’mfk(Bu) C
WF, ™ (u) N WF},(B).

Proof. We assume that m is finite; the proof for m infinite is similar.

Suppose ¢ ¢ WFL(B). As WFL(B) is closed, there is a neighborhood U of ¢ such
that U NWF(B) = 0. Let A € U"*(X) satisfy WF} (A) C U, 0pn—x(A)(q) # 0.
Then AB € W, ™(X) C ¥)(X), so ABu € H'(X) by Lemma 3.2. Thus, ¢ ¢
WFé’m_k(Bu) by definition of the wave front set.

On the other hand, suppose that ¢ ¢ WFlljm(u) Then there is some A €
U (X) such that Au € HY(X) and op,m(A)(q) # 0. Let G € ¥,™(X) be a
microlocal parametrix for A, so GA = Id+E with F € UV)(X), ¢ ¢ WF} (E).
Let C € U™ %(X) be such that WF},(C) N WF}(E) = 0 and oy, 1(C)(q) # 0.
Then CBE € ¥, *(X), so CBEu € H'(X) by Lemma 3.2. On the other hand,
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CBG € ¥) (X) and Au € H'(X), so CBGAu € H'(X) also by Lemma 3.2. We
thus deduce that CBu = CBGAu — CBEu € HY(X), so ¢ ¢ WF%}’mfk(u). O

We will need a quantitative version of this lemma giving actual estimates, but
first we state the precise sense in which this wave front set provides a refined version
of the conormality of w.

Lemma 3.10. Suppose u € H} (X), m >0, p € X. If bS;X N WFém(u) =0,
then in a neighborhood of p, u lies in H;’m(X), i.e. there is ¢ € C°(X) with ¢ =1
near p such that ¢pu € Hy"™(X).

Proof. We assume that m is finite; the proof for m infinite is similar.

For each ¢ € "S* X there is A, € 7' (X) such that oy, (Ag)(q) # 0 and Agu €
H'(X). Let U, be the set on which oy ,,(A4,) # 0; then U, is an open set containing
q. Thus, {U; : q € bS;X} is an open cover of the compact set bS;X. Let
Ug» 3 = 1,...,7 be a finite subcover. Then Ay = ZA;;j Ay, is elliptic on bS;;X
since 0p,2m(Ao) = X |0b,m(Ag,)|?, with each summand non-negative, and at any
q € bS;X at least one term is nonzero (namely one for which ¢ € U,,). Finally, we
renormalize Ay to make its order the same as that of A: this is achieved by taking
any Q@ € V. ™(X) which is elliptic on PS5 X, and letting A = QA4y € V'(X).
Thus, A is elliptic on bS;X, and Au € H'(X) as this holds for each summand
(QA7,)(Ag;u), for QA7 € U (X) and Agu € H'(X). Here we used Lemma 3.2.

Let G € Uo"(X) be a microlocal parametrix for A, so GA = Id+E and
WEFL(E) NPS5X = (. Thus, p has a neighborhood O in X such that WF,(E) N
PSEX = 0. Let ¢ € CX(X) be supported in O, identically 1 near p, and let
T € U'(X) be elliptic on ngupp¢X. Then Tou = TopGAu — TpEu. Since
WEF} (E) N WFL(¢) = 0, we see that TgE € ¥, °°(X), and thus the last term
is in H'(X) by Lemma 3.2. On the other hand, the first term is in H'(X) since
Au € HY(X) and T¢G € ¥)(X). Thus, pu € H, "™ (X) as claimed. O
Corollary 3.11. Ifu € H} (X) and WF;™ (u) = 0, then u € Hbl}’lZLC(X).

loc

In particular, if w € HL (X) and WF™(u) = () for all m, then u € H;”l?c(X),

i.e. u is conormal in the sense that Au € HL (X) for all A € Diff,(X) (or indeed
A e T, (X))

For the quantitative version of Lemma 3.9 we need a notion of the operator wave
front set that is uniform in a family of operators:

Definition 3.12. Suppose that B is a bounded subset of \I'{jc(X), and ¢ € PS*X.
We say that ¢ ¢ WF},(B) if there is some A € ¥y, (X) which is elliptic at g such
that {AB : B € B} is a bounded subset of ¥ *°(X).

Note that the wave front set of a family B is only defined for bounded families.
It can be described directly in terms of quantization of (full) symbols, much like the
operator wave front set of a single operator. All standard properties of the operator
wave front set also hold for a family; e.g. if E € Uy, (X) with WFL,(E)NWFL(B) = 0
then {BE : B € B} is bounded in ¥ *°(X).

A quantitative version of Lemma 3.9 is the following result.

Lemma 3.13. Suppose that K C beX is compact, and U a neighborhood of K
in "S*X. Let K C X compact, and U be a neighborhood of K in X with compact
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closure. Let Q € W5(X) be elliptic on K with WF},(Q) C U, with Schwartz kernel
supported in K x K. Let B be a bounded subset of U¥ (X) with WF,(B) € K and
Schwartz kernel supported in K x K. Then there is a constant C' > 0 such that for
Be B, ue HL (X) with WFy (u) nU =0,

1Bull i x) < Cllull s g + 1Qull s x)-

Proof. Let ¢ € C2°(U) be identically 1 near K. We may replace u by ¢u in the
estimate since B¢ = B, Q¢ = Q; then ||¢u||H1(U) = |lpul| g1 (x)-

By Lemma 3.9 and Lemma 3.10, all terms in the estimate are finite, since e.g.
WFL(Q) N WFL (u) = 0 so WF%(u) = 0, so Qu € Hyp (X) = H (X), and
indeed Qu € H}(X), as the Schwartz kernel of Q has compact support.

Let G be a microlocal parametrix for Q, so GQ = Id+FE with E € ¥)(X),
WF(E) N K = 0. Thus, Bu = BGQu — BEu. Now, BE € ¥, *(X) since
WF(E) N K = () and WFL,(B) C K, and it lies in a bounded subset of ¥} *°(X)
for B € B. Thus, ||BEu||g1(x) < Cillul|g1(x) by Lemma 3.2. On the other hand,
BG € ¥} (X) and indeed in a bounded subset of ¥ (X) for B € B, so Lemma 3.2
also gives that for some Cy > 0 (independent of B € B), [|[BGQulg1(x) <
C2||Qul| g1 (x). Combining these proves the lemma. O

We can similarly microlocalize H;_!(X):

Definition 3.14. Suppose u € ngg(X), m > 0. We say that ¢ € PT*X \ o
is not in WFgl’m(u) if there exists A € 7' (X) such that o3,.,(A)(¢) # 0 and
Au e H71(X).

Then the analogues of Lemma 3.9-3.13 remain valid with H'(X) replaced by
H~Y(X) and WF%)" replaced by WE, L with analogous proofs using Corollary 3.4
in place of Lemma 3.2.

These results can be extended in another way, by considering Sobolev spaces
with a negative order of regularity relative to H*(X).

Definition 3.15. Let k£ be an integer, m < 0, and A € ¥, ™(X) be elliptic on
b§* X with proper support. We let H{f:n(X) be the space of all u € C~*°(X) of
the form u = uq + Aus with uy,us € Hé“(X) We let

||U||H§;g"(X) = inf{[[urllgrx) + [uzllmrx) o v =ur + Aug}.

We also let H™ (X)) be the space of all u € C~>°(X) such that ¢u € H{f;n(X)
for all ¢ € C°(X). ’

We also define H{f:n(X) and H{ff:c (X) analogously, replacing H*(X) by H¥(X)
throughout the above discussion. Here, for k > 0, H*(X) stands for HE(X), see
Remark 3.1, so we also write H{f;n(X) = H{f”étlc(X) for k > 0.

Remark 3.16. In this paper we are only concerned with the cases £ = +1. There
is no difference between these two cases for the ensuing discussion, except for the
boundary values considered in the next paragraph. For the sake of definiteness,
we will use k& = 1 throughout the discussion. We will also not consider H k(X)
explicitly for most of the discussion; there is no difference for the treatment of
these spaces either.
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We also remark that we can talk about the boundary values of u € H&Z"L(X ) at
boundary hypersurfaces (codimension 1 boundary faces) H; for m < 0, although
we do not need this here. One way to do this is to define, for u = wu; + Aus,
ulg, = uilg; + Nj(A)(O)(u2|Hj), regarded e.g. as an element of C™°°(H;) (note
that N;(A)(0) : C~>°(H;) — C~°°(H,)), and this is independent of the choices of
u1, ug and A. Of course, for u € Hg:g’j‘c(X), in the sense just sketched, u|y, = 0 for
all j. It is straightforward to see that for u € Hézn with u|g; = 0 for all j, there
exist uy,us € H&C(X) with © = uj + Aug, so u € H&)’gfc(X).

We also remark that Lemma 3.7 still holds if one only assumes u € Hégl (X).

First note that given any K C X compact there is another K’ C X compact
such that u € Hé:"(X) with suppu C K can be written as u = u; + Aus with
uy,uz € HY(X) both supported in K’. Indeed, let ¢ € C°(X) be identically 1 on
a neighborhood of K, and let G € ¥}'(X) be a properly supported parametrix for
A, s0 AG = Id+E, E € ¥[>(X), E also properly supported. By definition, if
u € Htl):;n(X) then there are u},u, € HX(X) with u = v} + Au), and as ¢ =1 on
a neighborhood of supp u, ¢u = u. Thus,

u=du = ¢u) — E¢AusH + AGPAuYH = uy + ua,
uy = puy — BEQAub, us = GpAus,

so ui,uz € HY(X) as E¢pA,GoA € ) (X), and suppu;, j = 1,2, is bounded in
terms of supp ¢, supp £ and supp G. Namely,

suppu; C K,
K' = supp ¢ Uy (supp E N 7y" (supp ¢)) U mr (supp G Ny (supp ¢)),

where 7, mr : X x X — X are the projections to the left and right factors; K’ is
compact as E and G are properly supported, so supp £ N W}_zl(supp @), supp G N
75 (supp ¢) are compact. Note also that, by Lemma 3.2, |luy || g1 (x) + || w2| g (x) <
C(luy [l (x) + lub|l a1 (x))- Since this holds for any u), uy with u = )} + Auj, we
deduce that with this K, if we restrict suppu; C K’, and take inf just over these
uj, we get an equivalent norm on the subspace of H(X) consisting of elements
supported in K.

In fact, as supp G, supp E can be made to lie in any neighborhood of the diagonal
in X x X, and supp ¢ can be made to lie in any neighborhood of K, this argument
shows that given any K compact and any U open with K C U, suppu; may be
assumed to lie in K’ = U, with the resulting norm equivalent to the H!(X) norm
of the definition (with the equivalence constant of course depending on U!).

Moreover, Definition 3.15 is independent of the choice of A. Indeed, if A’ €
U, ™(X) is elliptic and has proper support, then it has a parametrix G’ € Up'(X)
with B/ = A’G’ —1d € ¥ *°(X), all with proper support. Then u = u; + Auy =
u1 — E'Aus + A'G' Aus, and v} = uy — E' Aup € HY (X)) since E'A € ¥ *°(X), and
uhy = G'Aug € H}(X) since G’A € U)(X). Moreover, if we fix K C X compact,
then for u with suppu C K, the norms | ull HIm(x) Are equivalent for different
choices of A — this follows from Lemma 3.2 and the preceeding remark that we may
take the support of w1, us lie in a compact set depending on K only.

Note also that for F' € Uy (X) with compactly supported Schwartz kernel,
F Hi:n(X) — HY(X) is continuous. Indeed, Fu = Fuj + FAuy € H}(X)
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by Lemma 3.2 since F,FA € ¥ (X) and u;,us € H}(X), and this also gives a
bound for || Fu| g1 (x) in terms of |‘u|‘Hi""”(X) and a seminorm of F in V7. (X). In

particular, ¥, °°(X) maps Hi;n(X) — H'(X), and indeed into the conormal space
Hy ™ (X).

Since any A € Ut (X) defines a map A : C~°(X) — C~*°(X), our definition of
the wave front set makes sense for m < 0 as well; it is independent of s if we take
u € HL*(X) since the action of Wy,(X) is well-defined on the larger space C~°°(X)

loc
already.
Definition 3.17. Suppose u € Hﬁjj(X) for some s < 0, and suppose that m € R.
We say that ¢ € PT*X \ 0 is not in WFé’m(u) if there exists A € Up'(X) such that
obm(A)(q) #0 and Au € HY(X).

For m = oo, we say that ¢ € PT*X \ o0 is not in WFL"™ (u) if there exists
A € U)(X) such that op0(A)(q) # 0 and LAu € H'(X) for all L € Diff,(X), ie.
if Aue Hp™(X).

Again, the analogues of Lemma 3.9-3.13 remain valid with H'(X) replaced by
ng(X) for some s, and m allowed to be negative in WFi’m(u). In particular,
Lemma 3.13 takes the form:

Lemma 3.18. Suppose that K C bS:"X is compact, and U a neighborhood of K
in *S*X. Let K C X compact, and U is a neighborhood of K in X with compact
closure. Let Q € \I!k(X) be elliptic on K with WF (Q) C U, with Schwartz kernel
supported in K x K. Let B be a bounded subset of U (X) with WF}(B) C K and
Schwartz kernel supported in K x K. Then for any s < 0 there is a constant C > 0
such that for B € B, u € H;foc(X) with WFék(u) nU =0,
1Bull sy < Clllul gy + 1 Qullan x)):
. ' oo L

1i1he7“e ||u||Hb1.s(U) stands for ||(bu~||Hb1‘.5(X) for some fized ¢ € C°(X) with supp ¢ C
U, » =1 on a neighborhood of K.

Finally, connecting HQ’{ZC(X) for k = +1, we remark that any P € Difff(X)
(X)) — Hb_llozn (X), as discussed before
the statement of Corollary 3.4; now we need to use (2.3) as well to deduce this.

defines a continuous linear map P : Hb

4. THE ELLIPTIC SET

We first prove an estimate that microlocally controls the Dirichlet form for mi-
crolocalized solutions Pu = 0, u € H}(X), in terms of a lower order microlocal
information and a global bound in HJ(X). In fact, as it does not require much
additional effort, we consider microlocal solutions, i.e. we make assumptions on
WEF; "> (Pu), or indeed WF, "*(Pu).

Remark 4.1. Since X is non-compact and our results are microlocal, we may al-
ways fix a compact set K C X and assume that all ps.d.o’s have Schwartz kernel
supported in K x K. We also let U be a neighborhood of K in X such that U
has compact closure, and use the H'(U) norm in place of the H'(X) norm to ac-
commodate u € H&’]OC(X). (We may instead take ¢ € C°(U) identically 1 in a
neighborhood of K, and use [¢ull 1 (x).) Below we use the notation |||z (x) for

|-l 2 (¢7) to avoid having to specify U. We also use ”UHHlZi(X) for ||pv| g1 (x)-
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We give two versions of the Dirichlet estimates: the first one suffices for most
purposes, but it does not give the optimal estimates in terms of the order m in
WFgl’m(Pu). The second one takes care of this issue.

Lemma 4.2. Suppose that K C *S*X is compact, U C *S*X is open, K C U.
Suppose that A = {A, : r € (0,1]} is a bounded family of ps.d.o’s in ¥;.(X)
with WF,(A) C K, and with A, € W5 (X)) for r € (0,1]. Then there are G €
\Ilzfl/z(X), Ge \I/ZH/Q(X) with WF(G), WF,(G) C U and Cy > 0 such that for
re (0,1), u € H . (X) with WE,* " *(w)nU = 0, WF, "*TV2(Pu)nU =0, we
have

| / (Ida Avul? — Dy Aul?) |
X
< ColllulBsy oy + Gl ) + 1Pl ) + 1G Pl ).

In particular, if the assumption on Pu is strengthened to Pu = 0, we have
[ (ldasdeul? = D rul?) | < Collluliy x) + IGalf )

The meaning of ||ul] and HPuHiI is stated above in Remark 4.1.

2
H (X) 1;3,(X)

Remark 4.3. The point of this lemma is G is 1/2 order lower (s — 1/2 vs. s) than
the family A. We will later take a limit, » — 0, which gives control of the Dirichlet
form evaluated on Agu, Ag € Ui (X), in terms of lower order information.

The role of A,., r > 0, is to regularize such an argument, i.e. to make sure various
terms in a formal computation, in which one uses Ay directly, actually make sense.

Proof. Then for r € (0,1], A,u € H(X), so
/ (ldas Avul? — | Dy Ayuf?) = _/ P A A,
X X

Here the right hand side is the pairing of H1(X) with H}(X). Writing PA, =
AP + [P, A,], and (v,w) = fX vw for the L?-pairing on X, we see that the right
hand side can be estimated by

(4.1) [(A,Pu, Aru)| + ([P, Ar]u, Apu)).
The lemma is thus proved if we show that the first term of (4.1) is bounded by
(42) bl oo+ 1Guln o) + IPul? 1) + 1GPUIy 2 ),
the second term is bounded by C(’)'(HUH?{llOC(X) + ||Gu|\§{1(x)). (Recall that the ‘local’
norms were defined in Remark 4.1.)

The first term is straightforward to estimate. Let A € ¥ 1/ 2(X ) be elliptic with
A" € \Ilé/Q(X) a parametrix, so

E=A\N" —-Id,E' =A"A—-1d € I, *(X).

Then

/ APy = / (AA~ — E)A, PuZdu
X X

:/ A_ATPuA*ATu—/ A, PuFE*A,u.
X X
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Since A~ A, is uniformly bounded in \I/f)j;l/ 2 (X), and A*A, is uniformly bounded
in \I/f)zl/Q(X), [x A=A, PuA*A,u is uniformly bounded, with a bound like (4.2)
using Cauchy-Schwartz and Lemma 3.13. Indeed, by Lemma 3.13, choosing any
G e \I/f;l/?(X) which is elliptic on K, there is a constant C7 > 0 such that

1A Ayl ) < Ol ) + 1Gul ).

Similarly, by Lemma 3.13 and the remark following Definition 3.14, choosing any
G e \I!f)+1/2(X) which is elliptic on K, there is a constant C] > 0 such that
HA*ATPuH%{_l(X) < C{(HPuH?{;cl(X) + ||GPu||§{_1(X)). Combining these gives,
with C} = C1 + C1,

|/ A=A, Pul+A,u| < |A~A, Pul| |A*Aul| < [|A~ A, Pul® + | A* Ayul?
X

< Ch(llulln_x) + 1Gul3n ) + 1Pl + IGPul - x).

toe (X)
as desired.

A similar argument, using that A, is uniformly bounded in \I/f;crl/ 2(X ) (in fact
in ¥y (X)), and E*A, is uniformly bounded in \I/f)zlﬂ(X) (in fact in ¥, °(X)),
shows that f  Ar Pu E* Apu is uniformly bounded.

Now we turn to the second term in (4.1). Using (2.3) and Lemma 2.2,

[Pv Ar] = ZDa:lijBij,r + ZDa:ij,r + Bra
i,J J

B, € ¥i(X), B;, € Ui (X)), Bi;, € Ui ?(X), uniformly bounded in ¥ (X),
resp. U5 (X), resp. WS- (X). With A € \I!gl/Q(X) as above, utilizing (2.3), we can
write further

A" D.. Dy Bijr =Y D2 Dy Bj;, +> DB, + B,
i,J

.3

with B, ., B}, B, € ¥;”*?(X), uniformly bounded in y, "/*(X). Thus,
([P, AxJu, Apu)
=Y (A" Dy, Dy, Bij,u, A Ayu) = > (Dy Dy, Byj o, E* A
(4.3) ij ij
+ (A (O Dy, Bjy + Br)u, A" Apu) — (E* (Y Da, By + Br)u, A~ Ayu).
J J

Note that A=, A* and E* are positioned differently for the first two, resp. last two
terms; this is so that after integration by parts in the first two terms, moving D,
to A*A,u, resp. E*A,u, each of the two terms being paired involve operators of
uniform order s 4+ 1/2, when the derivatives D,,, etc., are included in the order
count. (We need to integrate by parts so that at most one normal derivative falls
on each of the two terms being paired, since we are working relative to H'(X).)
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The first two terms on the right hand side of (4.3) can be expanded as

/ Dy, Dy, Bl; u N Au = / D,,D,,Bij uE*Au

ij,r

+Z/ Dy, B}, uA*A u—|—/ BluNAu
_Z/ Dy, B, TuD;iA*ATu—Z/ D,,BijuDl E*Au
— JX

+Z/ D,,B} uA*A u—|—/ BluNA,u,

where D;i is the formal adjoint of D,, with respect to dg, and where in the last
step we used that

B/ U Bij,rua A*ATU, E*AT'LL S H&(X)

ij,r

Note that D}, = J7'D,.Jifdg = Jdx ...dx) dy; . ..dy; is the Riemannian density,
so D! =D, +b,beC®(X). Thus,

|/ ij ij, TUDt A*A u| < HDIJ UHL2(X)HD%A A 'LL”LZ(X)

ij,r

+ 1D, Bjj rull 2 ) [A™ Arull 12 x)

and both factors in both terms are uniformly bounded for r € (0, 1] since A*A,,
B, , are uniformly bounded in W) 1/2 (X) with a uniform wave front bound disjoint
from V\/FlljS 1/Q(u). Indeed, as noted above, by Lemma 3.13, choosing any G €
\I/f;l/ ?(X) which is elliptic on K, there is a constant C; > 0 such that the right
hand side is bounded by Cl(||u||H1 0T ||Gu|\%p(x)). Similar estimates apply to
the other terms on the right hand side of (4.4), and the last two terms on the
right hand side of (4.3) can be treated similarly, showing that [ [P, A.JuAqu is
uniformly bounded for r € (0, 1], indeed is bounded by Co(||u||H1 oo™ |\Gu||%[1(x)),

proving the lemma. O
The lemma which allows more precise estimates is the following.

Lemma 4.4. Suppose that K C *S*X is compact, U C *S*X is open, K C U.
Suppose that A = {A, : r € (0,1]} is a bounded family of ps.d.o’s in Uy (X)
with WF(A) C K, and with A, € W5~ 1(X) for v € (0,1]. Then there are G €

(X)), G e W(X) with WF)(G), WF}(G) C U and Cy > 0 such that for
€>0, 7€ (0,1], u€ H 1, (X) with WF,* () nU = 0, WF, *(Pu)n U =0,
we have

|/X (|dMA7«U,|2 — |DtAru|2) | < €HdXATU||%2(X) + CO(””“?—I}M(X) + ||GU'H%{1(X)

+PUR s+ HIGPUl )

(X)
Remark 4.5. The point of this lemma is that on the one hand the new term
€|ldx Arul|? can be absorbed in the left hand side in the elliptic region, hence is
negligible, on the other hand, there is a gain in the order of G (s, versus s+ 1/2 in
the previous lemma).
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Proof. We only need to modify the previous proof slightly. Thus, we need to esti-
mate the term | [ A, PuA,u| in (4.1) differently, namely

| /X A, PuTal < A Pull s o [ Avull i ooy < el Avalls oy +€APul3a .

Now the lemma follows by using Lemma 3.13 and the remark following Defini-

tion 3.14, namely choosing any G € ¥{(X) which is elliptic on K, there is a
constant C > 0 such that [|A,Pullf . ) < C{(”PuHiIgj(X) + |GPullf -1 (x))s
and finishing the proof exactly as for Lemma 4.2. O

Using the microlocal positivity of the Dirichlet form, we now prove the elliptic
estimates. Recall that 7 : T*X — PT*X is the natural ‘inclusion’ map, and

bT X C PT*X is its range.

Proposition 4.6. (Microlocal elliptic reqularity.) If u € H& (X) then

loc
WFL™(w) ¢ WFy Y"™(Pu) UMT X, and WFL™(u) N E € WF; 2™ (Pu).

In particular, if Pu=0, u € H& (X) then

loc
WFL(u) C T X, and WFL™(u) N & = 0.

Proof. We first prove a slightly weaker result in which WF 1’m(Pu) is replaced by

VVF;l’m“/2 (Pu) — we rely on Lemma 4.2. We then prove the original statement
using Lemma 4.4.

Suppose that either ¢ € PT*X \ BT X or qg € £. We may assume iteratively

that g ¢ WF%)’S_l/Q(u); we need to prove then that g ¢ WFés(u) (note that the
inductive hypothesis holds for s = 1/2 since u € H\} (X)). Let A € U} (X) be

such that WF}(A) N WFL*2(u) = 0, WF},(4) N WF.*™/2(Pu) = 0, and have
WF}(A) in a small conic neighborhood U of ¢ so that for a suitable C' > 0 or € > 0,
inU

() 2 <CY, 0% if g€ "T"X \ T X,

() o] < e(r? + [¢[)1/2 for all j, and 4 > 1+¢, if g € £,
Let A, € U, %(X) for r > 0, such that £ = {A, : r € (0,1]} is a bounded family
in U9(X), and A, — Id as r — 0 in ¥ (X), € > 0, e.g. the symbol of A, could be
taken as (1 +7(72 +[¢)? +|o|?))~!. Let A, = A, A. Let a be the symbol of A, and
let A, have symbol (14 7(72 + [¢|?> + |0|?))"'a, r > 0,50 A, € U %(X) for 7 > 0,
and A, is uniformly bounded in ¥§ (X), A, — A in UIT¢(X).

By Lemma 4.2,

/ (|alMAru|2 — |DtAru|2)

b's

is uniformly bounded for r € (0,1]. On the other hand,
/ |dar Apul? = / ZAijD.’L‘,;AT‘U’ Dy, Aru +/ Z Bi;jDy, Aru Dy, Aru
b's X X

—|—/ ZC”DT7ATUDy7ATU
X
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Using that A;;(z,y) = A4i;(0,y) + >k Ajj;. (2, y), we see that if A, is supported in
rp < 0 for all k,

(4.5) | / > ar Al Dy, Au Dy Avu| < C8 || Day, Ayl || Dar, Ay
y :

il
5]

with analogous estimates for B;j(x,y) — B;;(0,y) and for Cj;(x,y). Moreover, as
the matrix A;; is positive definite, for some ¢ > 0,

1 _
c/ §:|D%Aru|2 < —/ ZAiijiArqujAru.
X 2U/x %5

Thus, there exists C' > 0 and dy > 0 such that if § < dy and A is supported in
|z| < & then

c/ Z|ijAru|2+/ ((1=C68) > |Dy, Auli — | Dy Avul®)
x5 X J

(4.6)
< / (Idas Avuf? — | Dy Avuf?),
X

where we used the notation

Z |DyjAru|,QL = Z B;;(0,y) Dy, Avu Dy, A,
J j

i.e. h is the dual metric g restricted to the span of the dy;, j =1,...,1.

Now we distinguish the cases ¢ € £ and ¢ € PT*X \ BT X, If qgeé& A
is supported near &, we choose § € (0, %) so that (1 — C’é)‘ﬁ—‘; > 1+0 on a
neighborhood of WF{ (A), which is possible in view of (ii) at the beginning of the
proof. Then the second integral on the left hand side of (4.6) can be written as
| BA,u||?, with the symbol of B given by ((1 — C¥)|¢|*> — 72)1/2 )(which is > 67),

modulo a term

/ FAuAu, FeUl(X).
X

But this expression is uniformly bounded as r — 0 by the argument above. We
thus deduce that

¢ /X (S Ds, Aul?) + B A
J

is uniformly bounded as r — 0.
If g € PT*X \PT X, and A is supported in |z| < d,

/ 62|z Dy, Ayul? < / |Da, Ayul?,
X X
On the other hand, near PT*X \ bT*X, for > 0 sufficiently small,

/ %Z|ijmjAru|2—|DtAru|2 :HBATu||2+/FATu—ATu,
x \ 26 7 ' X

with the symbol of B given by (55 ZO'JQ» — 72)1/2 (which does not vanish on U
for § > 0 small), while F' € W} (X), so the second term on the right hand side is
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uniformly bounded as r — 0. We thus deduce in this case that
¢ 2 2
;] (10w Ar) + b

is uniformly bounded as r — 0.

We thus conclude that D, A,u, BA,u are uniformly bounded L?(X). Corre-
spondingly there are sequences D, A, u, BA, u, weakly convergent in L?(X), and
such that ry — 0, as k& — oco. Since they converge to D,; Au, BAu, respectively,
in C™*°(X), we deduce that the weak limits are D, Au, BAu, which therefore lie
in L?(X). Consequently, dAu € L?(X) proving the proposition with WFgl’m(Pu)
replaced by WF;l’mH/Q(Pu).

To obtain the optimal result, we note that due to Lemma 4.4 we still have, for
any € > 0, that

/ (ldar Avul® — |DeAvul? — eldx Ayul?)
X

= /X ((1- )|drArul? — (1+ e)|DtAru|2)

is uniformly bounded above for r € (0,1]. (Keep in mind that dx = (ds, 0;) with
respect to the product decomposition of X.) By arguing just as above, with B as
above, for sufficiently small € > 0, the right hand side gives an upper bound for

¢ 2 2
: /. (210w, A + B

which is thus uniformly bounded as r — 0. The proof is then finished exactly as
above. (]

A slightly different formulation of this argument is the following. Below w =
(z,y). Consider

ldar Apul|* || Dy Ayul|?

:/ E giijiArqujArquwdt—/ DiA,u DA J dw dt.
X < X
i,

We move the A, in the first factor of each term on the right hand side by first com-
muting it through ¢* D,,, (or D;), then taking its adjoint with respect to J dw dt,
and finally commuting it through D,;. Each of the commutator terms can be
controlled by the inductive hypothesis as above. Modulo such terms the result is

(4.7) / > 97 Du,uDyy, A7 Avu — Dyu D A7 Avu | J dw dt.
X —
iJ
But by definition, a solution of the wave equation Pu = f satisfying the Dirichlet
boundary condition is u € H& (X) with

loc

/ > 9" Du,uDyv — DyuDyo | Jdwdt = —/ foJdwdt

X \%; ) X

(X), this holds for
v = AFA,u when A, has a compactly supported Schwartz kernel. If f € COO(X),

for every v € H§7C(X ). In particular, as A A, preserves H&}IOC
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e.g. if f = 0, the right hand side now can also be estimated by the inductive
hypothesis, showing that ||dy A,ul|? — || D¢Aul/? is uniformly bounded as r — 0.
The rest of the arguments presented above apply then, so we can conclude that
q ¢ WF™(u) as above.

This argument is immediately applicable for Neumann boundary conditions as
well. Thus, we still get (4.7) modulo terms that can be estimated by the inductive
hypothesis. Now, by definition, a solution of the wave equation Pu = f satisfying
the Neumann boundary condition is u € H (X) with

(4.8) / > 9" Dy, uDyyv — DyuDyv dedt:—/ foJdwdt
x \%3 X

for every v € H!(X). Here, for f € H;!(X), the right hand side is the pairing of
HM(X) with H}(X) via duality. In particular, as A%A, preserves H. (X), this
holds for v = A% A,u, and the rest of the elliptic argument is as for the Dirichlet
boundary condition.

We use this opportunity to remark that our methods also immediately give
elliptic regularity for the Laplacian on M.

Theorem 4.7. (Microlocal elliptic reqularity for A.) Suppose that u € H& (M),

and Au = f, i.e.

loc

(du,dv)pyr = (f,v)m
Jor all v e Hj (M); here (-,-)ar is the L* inner product on M. Then WE, ™ (u) C
WE, 7 (f).
In particular, if f € Hb_llogn(M) then u € H;ZTO"C(M)
The same conclusions hold for Neumann boundary conditions, i.e. with Hg (M)
replaced by H*(M).

Corollary 4.8. Suppose that u € H&,zoc(M)7 and (A — XNu = 0. Then u €

H;ZZOP(M) The conclusion also holds if u satisfies Neumann boundary conditions.

Proof. We have Au = f with f = \u € H& (M) C Hb_l’Q(M), sou € Hg:z (M).

loc ,loc loc

. C Hgllc;zn+2(M), completes the proof. O

loc

Iterating this, using H&

5. BICHARACTERISTICS

In this section we state the basic properties of generalized broken bicharacter-
istics that are instrumental in proving the propagation of singularities theorem in
Section 8.1. The philosophy originating from the work of Melrose and Sjostrand
[13, 14] is that it is easier to analyze the bicharacteristics (i.e. the ‘classical’ system)
precisely, and prove only rough propagation estimates for the ‘quantum’ system (in
this case the wave equation), essentially merely getting the direction of the propa-
gation correct, than to prove the precise propagation statements directly, for many
different aspects (not only the classical geometry) interact in the latter setting.
The precise propagation statement is thus a combination of the rough propagation
statements with the detailed analysis of the bicharacteristics — this is the content
of Section 8 here.

Turning to the generalized broken bicharacteristics, these have been described by
Lebeau [11, Section III] in his setting, i.e. for domains M in real analytic manifolds
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M , equipped with a real analytic metric g, with the boundary of M admitting a
stratification. However, analyticity does not enter into the analysis of generalized
broken bicharacteristic (called ‘rayons’ there), and manifolds with corners, by defi-
nition, admit the desired stratification (stratified by the boundary faces), in a C*°
sense. Thus, all of Lebeau’s results on generalized broken bicharacteristics apply
in our setting, at least if one adopts his definitions.

Our definition differs from that of Lebeau in two ways. First, at boundary
hypersurfaces (i.e. codimension 1 faces), Definition 1.1, part (iii), demands more
than Lebeau’s definition (from which (iii) is missing). Thus, our bicharacteristics
are a subset of those of Lebeau’s. However, since the analysis of bicharacteristics
is local in X, the C* boundary analysis of Melrose and Sjéstrand applies. As this
only necessitates trivial changes, we point these out below after the statement of
the propositions of this section.

The other difference is that we defined the topology of 3 as the subspace topology
inherited from PT* X, while Lebeau defines it by requiring that 7 be continuous, so
we need to show that these are indeed the same, which we proceed to do now.

Lemma 5.1. Define the topology of Y as the subspace topology of *T*X. Then
O C X is open (resp. closed) if and only if #71(O) is open (resp. closed).

Since the bundle inclusion map 7 : T*X — PT*X is C*, hence continuous, 7 is
automatically continuous, so it only remains to show that if #71(0O) is open, then
O is open, which we do below.

First, however we remark that a basis of the subspace topology is given by

Bs(q0) = {a €2 |z(q)] <6, ly(a) — yo(a)| < 8, [t(q) — t(q0)| <6,
IT(q) — 7(q0)| <6, [¢(q) — C(qo0)| < 6},

as o and & > 0 vary. Indeed, on ¥ = 7(Char(P)), |o(q)| < Clz(q)||7(q)| over
compact subsets of X. Assuming 6 < 1, § < |7(qo)|/2, as we may, the above
inequalities imply that |o(q)| < 2C6|7(qo)|- Given d¢p > 0, this set will thus be
included in a dp-ball in PT* X, centered at go, provided we choose § < do/2C|7(qo)|,
so every neighborhood of go in 3 contains a set of the form (5.1).

(5.1)

Proof of Lemma 5.1. We now show that if #7(O) is open, then so is O. That is, we
need to show for any set O with #71(0) open, and for any g0 € ONT*F; 1eq, there is
a § > 0 such that Bs(qo) C O. But #7({qo}) is the set of points §o = (z,y,t,&,(, 7)

in T"X with (z,y,t,£,¢,7) = (0,y(q0),t(q0),€ ¢(0),7(q0)) and & - A(y(qo))§ =
7(q0)? — |§(q0)|§(q0). As A is positive definite, the last equation implies that £ is

bounded on #7%({go}), and indeed #~1({qo}) is compact. So if #7(O) open, then
for some ¢ > 0 it contains the intersection of Char(P) with the set

{GeT"X : |x(@] <6, [y(@) —ylgo)l <6, [t(q) — t(qo)| <6,
17(q) — 7(q0)| <6, I¢(q) — C(qo) <, Ip(q)] < 6},
i.e. it contains the set
Bs(qo) = {q € Char(P) : [2(@)| < 6, |y(@) — y(a0)| < 3, [t(q) — t(g0)| <5,
I7(q) — 7(q0)| <6, |¢(q) —¢(qo)| <o}

Now #(Bj) = Bs(qo), while 7#(771(0)) = O, so we deduce that Bs(go) C O, and
hence O is open as claimed. O
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Being a subset of PT*X, Y is a separable, locally compact metrizable space,
although this follows also directly using the topology induced by 7 as in Lebeau’s
paper.

A stronger characterization of generalized broken bicharacteristics at H follows
as in Lebeau’s paper.

Proposition 5.2. (Lebeau, [11, Proposition 1]) If v is a generalized broken bichar-
acteristic, to € I, qo = (o), then there exist unique §+,d— € Char(P) satisfying
m(G+) = qo and having the property that if f € C™(T*X) is w-invariant then
t— fz(y(t)) is differentiable both from the left and from the right at ty and

(5.2 () =0 hos = Ho @)

Notice that if v : I — ¥ is continuous and if in addition the conclusion of the
following proposition holds, then (i) and (ii) of Definition 1.1 follow ((ii) follows as
x;j are m-invariant), so the proposition indeed provides an alternative to (i)-(ii) of
our definition. Note that (iii) is not required for this proposition, and conversely,
it does not imply (iii). (We also remark paranthetically that there is yet another
way of phrasing (i) and (ii) in the definition of generalized broken bicharacteristics,
which is important in N-body scattering in the presence of bound states, see [25,
Definition 2.1].)

Corollary 5.3. (Lebeau, [11, Corollaire 2]) Suppose that K is a compact subset of
Y. Then there is a constant C > 0 such that for all generalized broken bicharacter-
istics y : I — K, and for all w-invariant functions f on a neighborhood of 7= 1(K)
i T*X, one has the uniform Lipschitz estimate

|f7r O’Y(sl) - f7l' 07(82” < M”f”cl |31 - 82|a 81,52 € I

In particular, (locally) the functions x, §j and { are Lipschitz on generalized broken
bicharacteristics.

We also need to analyze the uniform behavior of generalized broken bicharacter-
istics. Here we quote Lebeau’s results.

Proposition 5.4. (Lebeau, [11, Proposition 5]) Suppose that K is a compact subset
of ¥, n : [a,b] — K is a sequence of generalized broken bicharacteristics which
converge uniformly to v. Then ~ is a generalized broken bicharacteristic.

Proof. By Lebeau’s result, v is a ‘rayon’, i.e. it satisfies (i)-(ii) of Definition 1.1.
Thus, we only need to show that it satisfies (iii) in order to prove that it is a
generalized broken bicharacteristic. But if v(to) € G N T*F; req, Fi & boundary
hypersurface, then, using that the projection of 7 to X is Lipschitz by Corollary 5.3,
we see that for & > 0 sufficiently small, 5, = f)/n|[t0—6,t0+6] lie in T*X° UT*F; veg
for all n, as does 5 = (1, —s,4o+4]- Thus, 7 is a generalized broken bicharacteristic
by the results of [14], which implies that v satisfies (iii), finishing the proof. O

Proposition 5.5. (Lebeau, [11, Proposition 6]) Suppose that K is a compact subset
of ¥, [a,b] CR and

(5.3) R = {generalized broken bicharacteristics v : [a,b] — K}.

If R is not empty then it is compact in the topology of uniform convergence.
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Proof. R is equicontinuous, as in Lebeau’s proof (since every generalized broken
bicharacteristic is a rayon), so the proposition follows from the theorem of Ascoli-
Arzela and Proposition 5.4. O

Corollary 5.6. (Lebeau, [11, Corollaire 7]) If v : (a,b) — R is a generalized broken
bicharacteristic then vy extends to [a,b].

6. THE HYPERBOLIC SET

In H U G the Dirichlet form is not positive, but we can use it to estimate dp;u
microlocally in terms of Dyu and Pu. This follows immediately from Lemma 4.2
for it implies, with the notation of that lemma, that

(6.1)
ldar Avul® <[ DeAsul?

+ Co(H“H?{lloc(x) + HGUH?'—P(X) + ||PUH§{1;C1(X) + ||GPU||§{—1(X)))-
In particular, if the assumption on Pu is strengthened to Pu = 0, we have
(6.2) ldar Arull® < [ Ded sl + Colllullyy o, + 1Gul3 -

Recall here that the meaning of |ju|?, (x) and |\Pu||?{_1(X) was stated in Re-
loc loc

mark 4.1. (As an aside, we do not need the sharp elliptic version, as in Lemma 4.4,
since Lemma 4.2 is only 1/2 derivative weaker than Lemma 4.4, and at HU G, u
loses a whole derivative as compared to the elliptic estimates.)

The estimate (6.1) roughly says that D,, A,u (and also Dy, A,u, but the latter
follows more directly from general properties of the b-ps.d.o’s near HUG) is bounded
by D;A,u, modulo lower order error terms. This allows us to estimate various error
terms in the positive commutator argument below, and it shows that we only need
to find a uniform bound on ||DyA,ul|? in terms of other terms on the right hand
side in order to get a bound on ||dasA,ul?, hence conclude that points at which
b.s(A) # 0 do not lie in WF,*(u). (Here A, — A in a suitable sense.)

A related consequence of this estimate is that for microlocal solutions of Pu = 0,
u € HY(X), WF}™(u) agrees with the b-wave front set of u defined with respect
to the more traditional L? space.

10e(X), WE, 1 (Pu) = 0. Then
WE, ™ (1) = {g € "T*X \ 0: JA € UPTH(X), opmi1(A)(g) #0, Au € L*(X)}.
More generally, for u € H&’lOC(X),
WE,; ™ (u)¢ N WF, > (Pu)°
= {q e WF,;"(Pu)*: 34 € U7H(X), opmi1(A)(g) #0, Au € L*(X)}.

Lemma 6.1. Suppose u € H&

Proof. Tn T*X°, both sides are the standard wave front set, WF™ %! (u), so it suffices
to consider the case when ¢ lies over 0.X.

First we show that the left hand side is a subset of the right hand side, which is the
‘easy direction’, and does not use any condition on Pu. Now, if ¢ € WFé’m(u)c, then
there is some B € U] (X) with 03,,,(B)(q) # 0 and Bu € H}(X). We may assume
that B is supported near the projection of ¢ to X, so in particular we can use local
coordinates in the rest of the argument. If (;(¢) # 0, then A = D, B € U} (X)
with non-vanishing principal symbol at ¢ and D, Bu € L?(X) since Bu € H}(X),
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so ¢ indeed lies in the right hand side. A similar argument works of 7(q) # 0. If
0j(g) # 0, then A = ;D,, B € Uj**(X) with non-vanishing principal symbol at
g and Dy, Bu € L*(X) since Bu € Hj(X), so x;Dy, Bu € L*(X) as well — thus,
again, ¢ lies in the right hand side. Therefore the left hand side is indeed a subset
of the right hand side.

To see the converse direction, i.e. that the right hand side is a subset of the
left hand side, we note that as u € H&IOC(X), WEL™ (u)¢ D ((bT*X)C ué)\
WFgl’oo(Pu) by Proposition 4.6, so it suffices to consider ¢ € G UH. We use
induction on m to prove that if ¢ is in the right hand side then it is also in the left
hand side — with the case m = 0 being trivial as we are assuming v € H&IOC(X).
In general, suppose that the inclusion has been proved for m replaced by m — 1/2.
Suppose that ¢ € G U H is in the right hand side, so there is A € \I'{)”H(X), A
elliptic at ¢, Au € L?(X), and q ¢ VVFll)’m_l/2 (u) by the inductive hypothesis. Note
that 7(g) # 0, i.e. Dy is elliptic at ¢. We may assume that WF{ (A) lies close to g,
hence that 7 is elliptic on WF},(A), and in addition WFé’m_l/Q(u) NWFL(A) = 0.
Then we can write A = D;B + R, B € U7'(X) elliptic at ¢ and R € ¥, ™ (X).
Thus, (as u € L*(X)) Ru € L*(X), so D;Bu € L*(X). Taking B, € ¥]" '(X)
uniformly bounded with B, — B in ¥]"(X) (e > 0), and using Lemma 4.2 (in
the form of (6.1)) gives that dysB,u is uniformly bounded in L?. Since it converges
to dyrBu in C*°(X) on the one hand, and there must be a weakly convergent

sequence dy By, u in L?(X), rx — 0 as k — oo, by the uniform bound, we deduce
that dpsBu € L?(X) as well, so dx Bu € L?(X), hence Bu € H}(X). O

After these preliminary discussions, we turn to the propagation estimate at g €
H. As usual, the key ingredient is to find a C> function f on PT*X such that,
at least near ¢, H,7* f has a fixed sign. We usually drop the pull-back 7* below;

recall that 7 : T*X — PT*X is the ‘inclusion’. In our setting, we can take f =17
z€ 305

Trl Il

where n = — Indeed, the Hamilton vector field H,, of p is given by

6.3
| H)p =270, — Hy = 270, — 246 - 0y — 2BC - 0y — 2 Ci¢i0n, =2 Cij&i0,,
+2 (00, Aij)6i 06, +2) (02, Cij)6i; 06,
+2 (90, Bij) i,
+2) (9, Aij)6i&i0c, +2Y (05, Ciy)&iG 0,
+2) 9y, Bij )ik, -
Thus,
| Hpn =26+ AE+ 2 Cij&iCy — 2 (0, Aij)6ijn
-2 Z(awk Cij)&iCirr — 2 Z(akaij)Ciijka
so at x = 0, where C vanishes,
(6.4) 7| Hpn = 26 - AS = 27° — 2¢ - B¢ — 2p = 277 — 2[C[7 — 2p.
Thus, Hyn > 0 at 7! (H) N Char(P) = 771 (H).
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We only state the following propagation result for propagation in the forward
direction along the generalized broken bicharacteristics. A similar result holds in
the backward direction, i.e. if we replace 1n(§) < 0 by n(§) > 0 in (6.5); the proof
in this case only requires changes in some signs in the argument given below. The
construction of a positive commutator below closely mirrors that of [24] in the
N-body setting.

Proposition 6.2. Let go = (yo,t0,C0,70) € H N T*Freq and let n = —TT? be the
w-invariant function defined in the local coordinates discussed above, and suppose
that w € Hj 1,(X), qo ¢ WE;, "> (Pu). If there exists a conic neighborhood U of

qo n YT X such that
(6.5) q €U andn(q) < 0= q¢ WF,>(u)

then qo ¢ WEF, ™ (u).
In fact, if the wave front set assumptions are relaxed to qo ¢ WF;LSH(PU) and
the existence of a conic neighborhood U of qq in YT X such that

(6.6) qeU andn(q) < 0= q¢ WF,*(u),
then we can still conclude that gy ¢ WE*®(u).
Remark 6.3. Note that n(g) < 0 implies « # 0, so ¢ ¢ T*F.

Remark 6.4. We recall that every conic neighborhood U of ¢ = (o, to, o, 70) €
H NT*Freg in ¥ contains an open set of the form

(6.7) {a: |2@)® +ly(a) = yol* + [t(a) — tol* +1¢(a) — Gof* < 6},

[ = % Note also that (6.5) implies the same statement with U replaced by any
smaller neighborhood of ¢p; in particular, for the set (6.7), provided that ¢ is
sufficiently small. We can also assume that WE, " (Pu) N U = 0.

Proof. As in Proposition 4.6 we use an inductive argument to show that gy ¢
WF%)’S(U), provided that go ¢ WFllj’Sfl/ 2(u); again the inductive hypothesis holds
for s = 1/2 since u € H\ (X). Because of Lemma 6.1, we only need to show that
for some B € Ui (X)) with oy, 41(B)(q0) # 0, Bu € L*(X).

Below we fix a small neighborhood Uy of ¢y such that Uy is inside a coordinate
neighborhood of ¢g and WFgl’oo(Pu) NUy = 0.

The key is to construct an operator A with WF,(A) C U and i[A* A, P] positive,
modulo terms that we can estimate by the a priori assumptions, namely those on
Py and those on WFy(u), summarized in (6.5) above. Thus, we do not need to
make the commutator positive in n < 0, and also ‘away from Char(P)’, although
the latter is a moral statement as the locus of the microlocalization is 7 X \ 0, not
T*X \ 0. Our A will in fact be formally self-adjoint modulo lower order operators,
and we only take A*A to avoid having to comment on the subprincipal terms.

The main technical problem below is that P does not lie in ¥y, (X), so we cannot
simply use the symbol calculus on ¥y, (X) — we need to write out various expressions
semi-explicitly as elements of Diff ¥y, (X). On the other hand, while Uy,(X) is the
locus of the microlocalization, at the level of the symbol calculus one can rely on
standard ps.d.o’s on an extension X of X, i.e. work with symbols on T*X. This
has the advantage that p is a symbol on 7% X, as is the pull-back of symbols on
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bT*X via m, so one can calculate their Poisson bracket, etc. However, it is not
trivial to make this into a technically useful computation, since we need to control
various expression in Diff ¥y, (X). In order to make the argument more digestable,
we start with a symbol construction, and do a formal commutator computation in
W(X) (in fact, we will ignore that we need an extension X here and write ‘¥(X)’
at times) to show why the constructed symbol should be useful, and then give the
actual proof.

We construct the symbol of A in a few steps. The two main ingredients are a
homogeneous degree zero function that is increasing along the Hamilton flow, which
will be 7, and a homogeneous degree zero function w on a conic neighborhood of
go in PT* X \ o that roughly measures the square of the distance from ¢o in e
Note that w can also be regarded as a function on a subset of ?S* X, if desired.
Thus, we let

(6.8) w(q) = z(q)” + ly(a) — yol2 +[t(q) — tol* + 1<(q) — oI,
|.| denoting the Euclidean norm, and C = as above. Then w vanishes quadratically
1/2

at qo, in fact is a sum of squares, so |dw| S Clw
(6.9) T Hyw| < CY w2,

Were we merely using the symbol calculus for Uy (X) or ‘W(X)’, this is all that
would matter. Since this is not the case, we need that more explicitly,

1HpW—f0+Zfz 1&+Zfl]7— 515]7
(6.10) i.J
fis fi € C®(CT*X), |fil, 1 fis] < Cro/?
fi, fij homogeneous of degree 0, which follows from (6.3).

, and in particular

Next, we use the variable n = —T—f to measure propagation. Since

1
|7_| ZJ]|T|

7 is a homogeneous degree zero C* functlon on a conic neighborhood of gy in
bT* X\ 0, hence it (or more precisely its pullback by 7) is a C*°, 7-invariant function
on T*X. This function indeed measures the flow along bicharacteristics near qq
since at points go in #71({go}), where thus p = 0,

(6.11) |71 Hpn(do) = 75 — Coly, = cots > 0,

due to (6.4), where we used that gy € H. Again, if we could use ‘¥(X)’, all we would
need is that |7|H,n > co7?/2 > 0 on Up, which is automatic if the neighborhood
Up is small enough. Now, however, we need the more explicit expression

7| " Hyn =r2(27% = 2|¢|? — 2p) +go+Z&T gﬁng 265,

i,
9i»9i; € C*("T*X), |gil, |gi;| < Crw"/
i, gi; homogeneous of degree 0, which again follows from (6.3).

We are now ready to define the symbol a of A. For ¢ > 0, § > 0, with other
restrictions to be imposed later on, let

1
(6.12) p=n+ —= 5
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so ¢ is a homogeneous degree zero C* function on a conic neighborhood of ¢g in
PT*X \ 0 — we can again regard it as a 7m-invariant function on T*X \ o. (Here ¢~2
plays the role of 3 in the analogous — normal — propagation estimate of [24].)

Let xo € C*(R) be equal to 0 on (—o0,0] and xo(t) = exp(—1/t) for ¢ > 0.
Thus, x4(t) = t72x0(t). Let x1 € C®(R) be 0 on (—oc,0], 1 on [1,00), with
X1 > 0 satisfying x} € C°((0,1)). Finally, let xo € C°(R) be supported in
[—2c1,2c1], identically 1 on [—c1,c1], where ¢1 is such that if |o]?/72 < ¢1/2 in
>N Up. Thus, xa(|o|?/72) is a cutoff in || /||, with its support properties ensuring
that dx»(|o|?/72) is supported in |o]?/72 € [¢1, 2¢1] hence outside ¥ — it should be
thought of as a factor that microlocalizes near the characteristic set but effectively
commutes with P. Then, for Ag > 0 large, to be determined, let

(6.13) a = xo(Ay"' (2= ¢/8))x1(n/d + 2)x2(lo?/7°);

so a is a homogeneous degree zero C*° function on a conic neighborhood of ¢g in
PT*X . Indeed, as we see momentarily, for any € > 0, a has compact support inside
this neighborhood (regarded as a subset of PS* X i.e. quotienting out by the R*-
action) for ¢ sufficiently small, so in fact it is globally well-defined. In fact, on
suppa we have ¢ < 2§ and n > —24. Since w > 0, the first of these inequalities
implies that n < 26, so on suppa

(6.14) In| < 26.
Hence,
(6.15) w < €25(26 —n) < 4622

In view of (6.8) and (6.7), this shows that for any € > 0, a is supported in U,
provided § > 0 is sufficiently small. The role that Ag large plays is that it increases
the size of the first derivatives of a relative to the size of a, hence it allows us to
give a bound for a in terms of a small multiple of its derivative along the Hamilton
vector field. This is crucial as we need to deal with weight factors, such as |7|**1/2
in the next paragraph, if the weight factors do not commute with P. In this case,
they can be arranged to commute (at least microlocally, which suffices), so we could
eliminate Ag, but its presence is helpful if one is to weaken the assumptions on the
structure of P.

This is the point where the technical argument needs significantly more details
than the motivational one. So we start with the motivation. Thus, using (6.9),
(6.15),

_ _ 1 1
[7| " Hypp = |7 Hpny + ||~ a5 w2 co/2 — %wauz
> 60/2 — 20{’671 > 60/4 >0
provided that ¢ > sccog’, i.e. that € is not too small. We fix some such ¢ for the rest
of the arguments in this paragraph, and then we will take § > 0 sufficiently small.
With this,

Hya? = —b* +e, b= |7|"2(2|7| " Hyp)/*(A0d) "2 (xoxh) " * X1 X2,

with e arising from the derivative of y;x2. Here xq stands for xo(Ay" (2 — %)), ete.
Since 1 < 0 on supp dy; while supp dyz is disjoint from the characteristic set, both
being regions disjoint from WF}(u), i[A* A, P] is positive modulo terms that we can
a priori control, so the standard positive commutator argument gives an estimate
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for Bu, where B has symbol b. Replacing a by a|7|5+1/2, we still have a positive
commutator (in this case 7, or rather Dy, actually commutes with P, but in any
case we could use Ag to bound the additional commutator term), which now gives
(with the new B) that Bu € L?*(X), which means in particular that gy ¢ WFés(u)

This argument is of course wvery imprecise. The technically correct version is
the following. First, for €,0 > 0 still to be determined (i.e. € is not yet fixed; the
previous paragraph was motivational only)

(6.16)
_ _ 1T, -
(e~ Hy = 717 Hyi + =7l ™ Hy

= =2pr 2 72207 =22 + g0+ YT g + D> T 26915
7 i

1 _ _
+ %(fo + Zfﬂ' i+ ZT 2¢€595)
Let B € U}/%(X) with
(6.17) b= 0y1/2(B) = |7|"*(A406) "2 (xox0)2x1x2 € C(PT* X \ o),

and let A € U)(X) with o30(A) = a. Again, yo stands for yo(45'(2 — %)),
etc. Also, let C' € W) (X) have symbol o3,0(C) = |7|~1(272 — 2|C|§)1/2w where
¢ € SO(PT*X) is identically 1 on U considered as a subset of PT*X. Then an
explicit calculation using Lemma 2.8 and P = D? — A,

A=Y Aij(@,y)Da, Dy, + Y 2Cij(w,y)De, Dy, + Y Bij(w,y) Dy, Dy, + P1,

i i\ i
Py € Dift'(X), gives, in accordance with (6.16),
(6.18)
i[A*A, P]
=RP+B*(C"C+Ry+Y» DsRi+ Y Dy RijDy)B+R'+E+E
i ij
with

Ry € U)(X), R, € U, 1 (X), Rij € ¥, %(X),
R € . '(X), R" € Diff? ¥, *(X), E,E' € Diff> ¥ *(X),

with WF(E) € 5! ((—00, =0]) N U, WF(E')NY = () (E arises from the com-
mutator of P with an operator with symbol x1(n/é + 2), while E’ from the com-
mutator of P with an operator with symbol x2(|o|?/72)) and with 79 = 03,0(Ro),
ri =0op—1(Ri), Tij € op—2(Rij),

1/2

1
Irol < Co(14 w2, |7 < Co(1+ =)w'/?, [72ry| < Co(1 + 55 )w'/?,

1
€20 €20
and suppr; lying in w < 9§%€2. Thus,

1
=5)

|7"()| < 302(56 + 6_1), |T7"i| < 302(56+ 6_1), |’7’27'ij| < 302(56 + 6_1).

Having calculated the commutator, we proceed to estimate the ‘error terms’ Ry,
R;, R;; as operators. We start with Rg. As follows from the standard square root



38 ANDRAS VASY

construction to prove the boundedness of ps.d.o’s on L2, there exists R}, € \I!gl (X)
such that

[Rovll < 2sup |ro| [Jv]l + || Rovl|
for all v € L?(X). Here || - || is the L?(X)-norm, as usual. Thus, we can estimate,
for any v > 0,

[{Rov, v)| < [[Rov]| vl < 2sup [ro| [v]* + | ool [lv]]
< 6Cs(de+ e Hlvl* + 7 Rgvll* + o).
Now we turn to R;. Let T € W, '(X) be elliptic (which we use to keep track of

the orders of ps.d.o’s), T~ € W} (X) a parametrix, so T~T = Id+F, F € ¥ *(X).
Then there exist R, € ¥, '(X) such that

| Rowll = | B:(T~T = Fyw| < |[(RT™)(Tw)| + | ReFul
< 6Cy(de + € M| Tw|| + | RiTw| + || R Fw|
for all w with Tw € L?*(X). Similarly, there exist Ri; € ¥, '(X) such that
I(T7)* Rijw]| < 6Ca(3e + e[ Twl| + [| Ry Twl| + [|(T7)" Ry Fu|
for all w with Tw € L?(X). Thus,
[(RiDa,,v)| <6C3(6¢ + )| TDaol] ]
+29[[0ll* + 7T RIT Do v]|* + 77| FiDa, 1%,

and, writing Dy ,v = T~Tv — Fv in the right factor, and taking the adjoint of 77,
|<Riijiva Dﬂ?jv>| SGCQ((SG + 6_1)||TD-T7:U | ”TDT]UH
+ 29T Dy vl|* + 7RG T Dav]|* + 7| By Do vl

+ ||R/LJD'TL/U|| ”FDwgv”a

with F}, Fj; € U7 >(X).
Let A, have symbol
(6.19) [T )70, e [0,1),

so A, = AA, € U)(X) for r > 0 and it is uniformly bounded in \I/f;crl/z(X). In
similar constructions in general, the commutator [P, A,| can be controlled by the
other terms using Ay, for Ay large — in the present setting [P, A,] = 0.

Now, by (6.18),

6.20
( <i[f)l:Ar, Plu,u) = |CBAu|? + (R PAyu, Au) + (RoBAyu, BAu)
+ Y (RiDy, BAvu, BAyu) + Y (Rij Dy, BAru, Dy BAju)
+ (R"Apu, Ayu) + ((E + E")Ayu, Ayu)
On the other hand, as A, € ¥2(X) for r > 0 and u € H}(X), so A*A.u € H}(X),
([Ar Ay, Plu,u) = (A7 A Pu,u) — (PAY Ay, u)

21
(6:21) = (4, Pu, A,u) — (Ayu, A, Pu) = 2i Im(A, Pu, A,u);

the pairing makes sense for > 0 since A, € ¥{(X) then.

Assume for the moment that WF;I’S+3/2(PU) NU = () — this is certainly the

case in our setup if gy ¢ WF;LOO(PU), but this assumption is a little stronger than
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g9 ¢ WF, 1’SH(Pu), which is what we need to assume for the second paragraph
in the statement of the proposition. We deal with the weakened hypothesis gy ¢
WF;LSH(PU) at the end of the proof. Returning to (6.21), the utility of the
commutator calculation is that we have good information about Pu (this is where
we use that we have a microlocal solution of the PDE!). Namely, we estimate the
right hand side as

(A, Pu, Ayu)| < [{(T7)*ArPu, TAyu)| + |(ArPu, F A u))
(6.22) < (T™) Ar Pull g1 x) I T Aru]| 1 xy
+ | ArPull g1 x) | F Avul| 1 (x)-

Since (T'7)*A, is uniformly bounded in \I/EJCFB/ *(X), TA, is uniformly bounded
in U-%(X), both with WF} in U, with WF "*T*2(Pu), resp. WFL* /% (u)
disjoint from them, we deduce (using Lemma 3.13 and its H~! analogue) that
[{(T~)*ArPu,TAru)| is uniformly bounded. Similarly, taking into account that
FA, is uniformly bounded in ¥, *°(X), we see that |(A,Pu, FA,u)| is also uni-
formly bounded, so |(A,Pu, A,u)| is uniformly bounded for r € (0,1].

Thus, for some C5 > 0 depending only on the dimension of X,

|CBA,ul|? <2|(A,Pu, Ayu)| + | ((E + E")Ayu, Ayu)|
+ (6Co(de + €71) + Csv) || BAu|* + 7| Ry BAu|®
+6Co (0 + )| BAu| > | T Dy, B

+7 1 TR D, BAull? + || BAul®
(6.23) + (6Ca(6e + €7 1) + C3v) Z |T Dy, BA )2
+97 Y IR, T Dy, BAl?
i

+77! Z ”FiDmiBATUHQ +97! Z HFiijiBATUHQ
i ij
+ > | RijDa, BAyul| | F Dy, BAull.
ij

All terms but the ones involving Cy or v (not y~!) remain bounded as r — 0.
The Cy and v terms can be estimated by writing TD,, = D,,T] + T; for some
T/, T! € ¥, *(X), and using Lemma 4.2 (in the form (6.1)) where necessary, to
conclude that there exist v > 0, € > 0, g > 0 and Cy > 0, C5 > 0 such that for
d € (0, dp),

Cyl| BA,ul|* <2|Tm(A, Pu, A,u)| + [((E + E')Ayu, A
+ v Y RyBAul* + Csy | dx T*BA .
Letting 7 — 0 now keeps the right hand side bounded, proving that ||BATuH is uni-
formly bounded as r — 0, hence BAgu € L*(X) (cf. the proof of Proposition 4.6).

In view of Lemma 4.2 (in the form (6.1)) this proves that qo ¢ WF%)’S('LL), and hence
proves the first statement of the proposition.
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In fact, recalling that we needed gy ¢ WF, List3/ *(Pu) for the uniform bounded-
ness in (6.22), this proves a slightly weaker version of the second statement of the

proposition with VVF;LS'|r1 (Pu) replaced by WF;LHB/Q(PU). For the more precise
statement we modify (6.22) — this is the only term in (6.23) that needs modification
to prove the optimal statement. Let TeU 1/2( X) be elliptic, T~ € \Ill/Q(X) a
parametrix, F = T-T —Id € U *®(X). Then similarly to (6.22), we have for any
v >0,
(A, Pu, Ayu)| < |(T7)*ApPu, TAyu)| 4 |(A, Pu, FA,u)|
(6.24) <y H(T7)A PU’HH 1(X) + 7T A, U’HHl(X)
+ 1A Pull g o) | F Ava i x).-

The last term on the right hand side can be estimated as before. As (T7)*A, is
bounded in 1! (X) with WF} disjoint from U, we see that ||(T~)* A, Pul| g

is uniformly bounded. Moreover, ||dxT AA,u||? can be estimated, using Lemma 4.2
(in the form (6.1)), by || D;T AA,u|/?> modulo terms that are uniformly bounded as
r — 0. The pr1nc1pal symbol of DT A is 7oy, —1/2(T [a, with a = xox1x2, where

Xo stands for xo(A45"(2 — —)), etc., while the principal symbol b of B is given by
(6.17), so we can write:

Y20 = 7] x0x1x2 = A5 (2= 6/0) |7V (x0x6) 2 x1x2 = Ag /26122 - ¢/0)b,

where we used that
Xo(Ag (2= 0/8)) = AZ(2 — ¢/6) *x0(Ay (2 — ¢/9))

when 2—¢/§ > 0, while a, b vanish otherwise. Correspondingly, as |T|1/20'b’,1/2 (T)

7]

is C*, homogeneous degree zero, near the support of a in "7T*X \ o, we can write
DiTA=GB+F,GeV)(X), Fel, 1/Q(X). Correspondingly, modulo terms
that are bounded as r — 0, || DT AA, uH2 (hence ||dxT AA,ul/?) can be estimated
from above by Cg||BA,u?>. Thus, modulo terms that are bounded as r — 0, for
v > 0 sufficiently small, 'yHTATuH%Il(X) can be absorbed into |CBA,u|?. As the
treatment of the other terms on the right hand side of (6.23) requires no change,
we deduce as above that BAgu € L?(X), which (in view of Lemma 4.2 and (6.1))
proves that go ¢ WF%)’S(U), completing the proof of the iterative step.

We need to make one more remark to prove the proposition for WFtl)’DQ(u),
namely we need to show that the neighborhoods of gy which are disjoint from
VVF1 *(u) do not shrink uncontrollably to {go} as s — co. This argument parallels
to last paragraph of the proof of [4, Proposition 24.5. 1]. In fact, note that above
we have proved that the elliptic set of B =B, is disjoint from VVF1 *(u). In the
next step, when we are proving qo ¢ VVF1 9+1/2( ), we decrease § > 0 slightly (by
an arbitrary small amount), thus decreasmg the support of a = a,1/5 in (6.13), to
make sure that supp a,1/2 is a subset of the elliptic set of the union of B, with the
region 7 < 0, and hence that WFlljS(u) NSUpp ast1/2 = (). Each iterative step thus
shrinks the elliptic set of B, by an arbitrarily small amount, which allows us to
conclude that gy has a neighborhood U’ such that WF%)’S(U) NU’ = ( for all s. This
proves that ¢y ¢ WF} > (u), and indeed that WFL> (u) U’ = 0), for if A € U (X)
with WF}(A) € U’ then Au € H'(X) by Lemma 3.9 and Corollary 3.11. O
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Again, this can be modified to allow Neumann boundary conditions. Namely,
rather than consider [AfA,, P], we work directly with the quadratic form, see (4.8).
Thus, writing w = (z,y,t) and § for the semi-Riemannian metric g — dt?, while
J dw is the volume form of g+ dt?, and (-, -) is the corresponding inner product on
L?(X), (4.8) shows that

(A7 Aru, f) = (f, AT Aru)
(6.25) = (G Du,u, Doy, AFAvu) = > (5" Do, A3 Ay, Doy ).
ij ij
Then the replacement of (6.21) is achieved by expanding the right hand side:
D (Y Dty Duyy Ar Avt) =Y (G Doy, AT Avtt, Do)
ij ij
= (37 Dusu, [ Dy ArAcJu) + Y (59 Duu, A7 Ay Doy )
j ]
= {[§" Du,, Ap A, Dog,u) =Y (A Ap§G Do, u, Do)
ij ij

= Z<§iijiu7 [Duw,, A7 Ar|u) — quiijmA:Ar]ua Dy, u);

i ij

(6.26)

the second and fourth terms in the middle cancel as A*A, is symmetric. If there
were no boundary present, i.e. if X = (}, we could of course write the right hand
side as

- Z«[D:)J ) A:Ar]giiji + D:LJ [gijDU/i ’ A:AT’])UH U>
ij

= (D} — A, AT A Ju, u),

so formally this is indeed the same commutator as the one considered in (6.21).
The actual expression, the right hand side of (6.26), can be analyzed much as in
the Dirichlet problem, using Lemma 2.8 to compute the commutators.

To illustrate the form that (6.25) takes, replace A% A, by A*A temporarily, now
ob,0(A*A) = a®. Thus, by Lemma 2.8, up to terms of similar form with vanishing
symbol at © = 0, y = yo, t = to, the right hand side of (6.25) is, % times,

/ZgiijiuC'ijquw + /Zg”éDmqujquw,
ij ij

where the summation is only over the coordinates vanishing at the corner (i.e.
z1,...,x%), and C € U H(X) with oy, _1(C) = 7]~ (A08)  xoxbX3X3, cf. (6.17)
and the sentence afterwards. We can subtract this from the PDE (which corre-
sponds to restricting to the characteristic set of P, or allowing the term R’'P in
(6.18)), considered in the form

/ > 57 Dt Doy, Cu J dw + / > §7 D, Cu Dy, J du,
ij i

plus terms involving f, commute the C' through the D, D, (the commutators
are lower order in terms of b-differential order, so we ignore them), to obtain an
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expression for
/ Y97 DyuCDyu dw+ / > 97CDyuDyul duw,
ij J

g = (y,t) as usual. Shifting the tangential derivatives Dy, over and rearranging
this gives (modulo lower order terms), with B as in (6.17), and C also as there,

/CBuCBquw = ||CBul|*.

The neglected error terms can be treated much as in the Dirichlet problem, giving
the desired positivity estimate.

7. GLANCING POINTS

We again need a technical lemma, roughly stating that when applied to solutions
of Pu= 0, u € H}(X), microlocally near G, D,, is not merely bounded by Dy, but
it is small compared to it. Such an estimate is natural since p|,—o = 7% — [€]2 — [C[>
gives 72E[* < C(772|pl + || + [T — 772[¢[2]), and 1 — 772[¢]2 is homogeneous
of degree zero and vanishes at G, so the right hand size is small near G. Below a
d-neighborhood refers to a §-neighborhood with respect to the metric associated to
any Riemannian metric on the manifold ®7* X, and we identify ®S*X as the unit
ball bundle with respect to some fibre metric on PT*X.

Lemma 7.1. Suppose u € H&, (X), and suppose that we are given K C *S*X

compact satisfying

loc

K C GNT* Fiopeg \ W, *T12(Pu).
Then there exist 6o > 0 and Cy > 0 with the following property. Let § < dg,
U C *S*X open in a §-neighborhood of K, and A = {A, : r € (0,1]} be a
bounded family of ps.d.o’s in U5 (X) with WF,(A) C U, and with A, € U5 1(X)
forr € (0,1].
Then there exist G € \I!f)_l/Q(X), G e \I/‘ZH/Q(X) with WF},(G), WF},(G) c U
and Cy = Co(8) > 0 such that for all v > 0,

S 1Ds, Avull? < Cod| DeArull® + Collluliy (x) + 1 Cull3n )

FIPul sy + NGl )

The meaning of ||lull g (x) and ||Pu|\§{_1 is stated in Remark 4.1.
o¢ loc

(X)

Remark 7.2. As K is compact, this is essentially a local result. In particular, we
may assume that K is a subset of PT*X over a suitable local coordinate patch.
Moreover, we may assume that dg > 0 is sufficiently small so that D, is elliptic on

U.

Proof. By Lemma 4.2 and (6.1), applied with K replaced by WF},(A) in the hy-
pothesis (note that the latter is compact), we already know that
(7.1)

ldx Avul® <[|DeAyul®

+ Gyl ey + Gl ) + 1Pl sy + G Pl )
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for some C{, > 0 and for some G, G as in the statement of the lemma. Thus, we
only need to show that if we replace the left hand side by Y, || Dy, Ayul? (ie. we
drop the tangential derivatives, at least roughly speaking), the constant in front of
| DtArul|? can be made small.

As a first step, we freeze the coefficients at Fy, i.e. replace A;j(x,y), etc., by
A;j(0,y). Writing Ayj(x,y) = Ai(0,y) + > Aj;(7,y) as in the proof of Propo-
sition 4.6, we deduce that if the operators A, are supported in |z| < ¢, then (4.5)
holds, i.e.

|/XleA;ﬂDmArqujAru| < C6Y || Dx, Apul| || Da, A,

with analogous estimates with A;;(z,y) — A;;(0,y) replaced by B;;(x,y) — Bi;(0,y)
or C;j(z,y). Combined with (7.1) above, this gives that

/ Z Aij(0,9) Dz, Apu Dy Apu + Z Bi;(0,y)Dy, Avu Dy, Avu
X\ ij
< (1+ C10)|| DeArul®
+ C(’)/(HUH%IQOC(X) +1GullF x) + ||PU|\21;3(X) + ||GPU||%I*1(X))7

and hence, after rearrangement, that

/ Z Aij(0,y) Dy, Aru Dy Av
X )

< /X ((Dt2 — ZBij(o,y)DyiDyj)AruA—W) + O8] DeAyul?
Yl oy + Gl oy + 1Pul s ) + 1GPul 1)
It thus suffices to prove that
[ ((0F =X 850,90, A A7)
< Cod|| DAyl + 62(5)(HUH%1110C(X) +[|Gull 3 x)),

(7.2)

which we proceed to do.

Let ¢ € C>®("S*X) (which can thus be identified with a homogeneous degree
zero function on PT* X \ 0) with ¢ = 1 near WF},(A), suppy C U, || < 1, and let
F € U)(X) be such that

WF),(F) c U, WF), (DtFDt — (D} - ByD,, Dyj)) NWEF,(A) =0

f= 0'(,70(F) = w(l — 772 ZBWQCJ)

Such 9 and F exist, since Dy is elliptic on WFy (A). Now,

[ (0D (02 = Y By0.0)D,.D, )40 )
b

since (DyF Dy — (D} = By Dy, D,.))A, is uniformly bounded in U *°(X), by the
first line of (7.3). Moreover,

(7.3)

< Chllulld oy

sup |f|] < Cs0
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since [1—772 " B;;¢i¢;| < C36 on a §-neighborhood of K. Indeed, 1-7723" B;;¢:(;
is a homogeneous degree zero C* function on a neighborhood of K in ®T*X (hence
C> near K in PS*X) which vanishes at G NT*Fj. Since there exists F' € ¥, '(X)
with WF(F') C U satisfying

[Foll < 2sup | f][|v]| + [[Fv]
for all v € L?(X), we deduce that ||Fv| < 2C58||v|| + ||F'v| for all v € L?*(X).

Applying this with v = D;A,u, and estimating ||F'v| using Lemma 3.13, (7.2)
follows, which in turn completes the proof of the lemma. O

We are now ready to state and prove the tangential propagation estimate. First,
local coordinates (x,y,t) near p € F; req give a product decomposition of a neigh-
borhood of p € Fj eg in X of the form U x V, U C [0,00)F, V C R*1 (where
k is the codimension of F; in X), hence of T*X as T*U x T*V. We denote the
projection T*X — T*V by 7¢. Explicitly, in local coordinates (x,y,t,&,{,7) on
T X,

Tr/le(x7 y’ t? 57 C? T) = (y7 t’ C? T)'

With ; : T}“egX ST X being the restriction of m to Tz, regX , m is an extension

of m; in the sense that T:  XA(T*UxT*V) = Ti. The tangential propagation
i,reg

estimate is then the following:y

Proposition 7.3. Let u € Hp ;,.(X). Given K C bS*X compact with

loc

(7.4) K C(GNT*Fireg) \ WE, " (Pu),

there exist constants Co > 0, 6o > 0 such that the following holds. 1If qo =
(40, t0,C0,70) € K and for some 0 < § < do, Cod < € < 1 and for all o =
(if,y,t,f,(,’r) S Char(P)

& € T*Fj reg and |7 (a — exp(—de)(ﬁfl(qo))ﬂ <€l and |z(a)| <€

(75) = 7)(a) ¢ WFy(u)

then qo ¢ WFy(u). Here recall that T« = T|char(p)-

Remark 7.4. In the estimate (7.5), H, can be replaced by any C* vector field which
agrees with H,, at the point #7(qo), since flow to distance § along a vector field
only depends on the vector field evaluated at the initial point of the flow, up to
committing an error O(§?). In particular, it can be replaced by the vector field
W’ defined below. Similarly, changing the initial point of the flow by O(§2) will
not affect the endpoint up to an error O(62). Thus, estimate (7.5) can be further
rewritten, at the cost of changing Cy again, as

0 € T*Fjreg and | 7§ (exp(6W°)(a)) — & < €6 and |z (exp(SW°)(a))| < €0

(76) — my(0) ¢ WEy(u):

here we also interchanged the roles of the intial and final points of the flow.

Proof. The proof is very similar to the previous one and now the positive commuta-
tor construction follows that of Melrose and Sjostrand [13], as well as [24] in N-body
scattering without bound states. Thus, we take local coordinates as above, i.e. of
the form (x,y,t) with the F; intersecting the coordinate neighborhood defined by
the vanishing of components of . We can use t — {y now to measure propagation,
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since 771 H,(t — t9) = 2 > 0. More precisely, to allow for both signs of 7 and yet
keep the sign of the derivative along H,, fixed, we need to take

7 = (sign7)(t — to)
as the propagation variable, so |7|~!H,7 = 2. However, for the sake of notational
simplicity and clarity, we take 79 > 0, and make all symbols below supported in
7 > 0 — the general setting only requires replacing ¢ — tg by 7 in (7.11) below.
Then we could construct wy € C®(T*F;) (defined near go) to measure the
squared distance from the integral curve of

through qo; this can be achieved by solving a Cauchy problem as in [13], [24]. In
fact, this does not need to be done precisely — after all, W? is only an approximation
to H, in the very first place. Thus, all we need is that wq is the sum of squares of
20 homogeneous degree zero functions p;:

2
wo=Y_p5, Wpilgo) =0, pj(q0) =0,
j=1
dp;(qo), 7 =1,...,2l linearly independent at go. Since dim F; =1+ 1, dp;(qo), j =
1,...,2l, together with dt (¢ is also homogeneous degree zero), span the cotangent
space of the quotient of T*F; by the R*-action, for dimensional reasons (note that
W°t(go) # 0). In particular,

I W Pwo| < Clw?(wi? + |t — to))

Then we extend wp to a function on PT* X (using the coordinates (z,v,t,0,¢, 7)),
let
(7.8) w = wo + |z|?.
Then the ‘naive’ estimate, playing an analogous role to (6.9) in the hyperbolic
region, is

[T Hyw| < CYw! (w2 + [t —to] + 7€)
(7'9) n,o1/2¢ 1/2 -2
< Clw P (w = 4 [t —to| +777Ipl),
where we used that pl,—o = 7> — [£]2 — [|2 lets us estimate

_ _ 1/2
T721¢12 < C(r2Ip| + |z] + wp/® + [t — to),

for 1 — 772|¢|2 is homogeneous degree zero and vanishes at G (recall from the
beginning of the section that this last estimate motivates Lemma 7.1). Note that
(7.9) is much more precise than (6.9): we have a factor of w'/2 4 |t — to| +772|p| in
addition to w!/? — this is crucial since we need to get the direction of propagation
right. Again, we in fact need a more explicit version of this:

T Hyw = fo+ Y fir G+ D fim 6,
i 4,
Fir fig € CO(PT*X), |fil € Crw' P (W2 + [t = to]), |fij] < Crw'/?
fi, fij homogeneous of degree 0. Note that the estimates on f;; are weaker than

the estimates on f;. In fact, fi; arises from the 2 )" (0y, A:ij)&i&;0;, term of Hy in
(6.3) — when applied to p?, it gives a result of the stated form. The reason for the

(7.10)
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sufficiency of this weaker estimate is that at #71(qo), £ = 0, so the fi; term can be
estimated using P (as will be done below), as was already done at a formal level in
(7.9).

Finally, we let

1
(7.11) o=t—1to+ %w,
and define a almost as in (6.13), with n replaced by t — to, namely
(7.12) a=xo(A5" (2~ ¢/8))x1((t — to +8)/€d + L)xa(jo[* /77).
The slight difference is in the argument of x1, in order to microlocalize more pre-
cisely in the ‘hypothesis region’, i.e. where u is a priori assumed to have no wave
front set. This is natural, since for the hyperbolic points we only needed to prove
that singularities cannot stay at the given boundary face F;j ;cg, while for glancing

points we need to get the correct direction of propagation. We always assume € < 1,
SO on supp a we have

¢p<20andt—ty>—€d— 9> —26.
Since w > 0, the first of these inequalities implies that ¢t — ty < 24, so on suppa

(7.13) [t — to] < 20.

Hence,

(7.14) w < €25(26 — (t —tg)) < 46262
Moreover, on supp dx1,

(7.15) t—ty € [0 — e, —6], w'/? < 2€d,

so this region lies in (7.6) after ¢ and ¢ are both replaced by appropriate constant
multiples, namely the present ¢ should be replaced by §/27.

We again start with the imprecise motivational argument. Thus, using (7.9),
(7.14), 7 1H,(t — to) = 2 = ¢ > 0, we deduce that at p = 0,

_ 1
T H,¢ = Hy(t — to) + %pr
> co/2 — ic"wl/Q(wl/Q + |t —to)
- €26 1

> co/2 — 2C0 (5 + %) > co/4>0
€

16C7
co

provided that § < #&,, 5> , i.e. that ¢ is small, but €/4 is not too small —
roughly, € can go to 0 at most proportionally to 6 (with an appropriate constant)
as 0 — 0. (Recall also that € < 1, so there is an upper bound as well for €, but
this is of no significance as we let § — 0. It is also worth remembering that in the
hyperbolic region, € roughly played the same role as here, but was bounded below
by an absolute constant, rather than by a suitable multiple of ¢, hence could not
go to 0 as 0 — 0.) With this, we can proceed exactly as in the hyperbolic region,
so (recall that 7 > 0 on suppa!)

Hpa® = =0 + e, b=1"2(2r7"H,$)"*(A08) ~""* (xox0) " *x1X2:
with e arising from the derivative of x1x2. Again, yo stands for yo(A4y*(2 — %)),

etc. In view of (7.15) and (7.6) on the one hand, and that dys is disjoint from
the characteristic set on the other, both suppdy; and suppdysz are disjoint from
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WFy,(u). Thus, i[A* A, P] is positive modulo terms that we can a priori control, so
the standard positive commutator argument gives an estimate for Bu, where B has
symbol b. Replacing a by ar5t1/2 we still have a positive commutator (again, D;
actually commutes with P, but in any case we could use Ay to bound the additional
commutator term), which now gives (with the new B) that Bu € L?(X), which
means in particular that go ¢ WFég(u)

The detailed proof is analogous to the hyperbolic case, with the biggest difference
being the treatment of the f;; term in 7! Hyw. First,

1
TlepqS = Tﬁal(t — t()) + 757—*1pr
€

=2+ %(fo + Z fir e+ Z Fim726i5).

.3

(7.16)

Let B € U}/*(X) with
b= 0b0(B) = 7/2(A0) "2 (x0xp)*x1x2 € C(PT*X \ 0),

and let A € U)(X) with o30(A) = a. Again, yo stands for yo(45"'(2 — %)),
etc. Also, let C' € ¥)(X) have symbol 04,0(C) = V21 where ¢ € S°(PT*X) is
identically 1 on U considered as a subset of PT*X. Then an explicit calculation
using Lemma 2.8 gives, in accordance with (7.16),
i[A* A, P]
=RP+B(C*C+Ro+» DyRi+Y Dy RijDy)B+R' +E+E
i ij

with

Ry € U)(X), R; € ¥, ' (X), Ry € ¥, %(X),

R € ;' (X), R" € Diff* ¥, *(X), E, E' € Diff> ¥ *(X),
with WF} (E) C 77 (=00, —0]) N U, WF}(E')NY = () (E arises from the com-
mutator of P with an operator with symbol x1(n/d + 2), while E’ from the com-

mutator of P with an operator with symbol x2(|o|?/72)) and with 79 = o3 0(Ro),
ri = op,—1(Rq), Tij € op,—2(Rij),

C2
€25

C
Iro| < £w1/2(|t —to] + w'?), |rri| <

and suppr; lying in wl/? < 368, |t — to| < 3. Thus,

c
Wt = to] +w!72), 7] < w'/?,

ol <350+ 2, [l <360+ 2), 12y < 80,

Thus, the Ry and R; terms can be treated exactly as in the hyperbolic case, i.e. as in
the proof of Proposition 6.2. That is, as in the hyperbolic setting, let T' € \Ilgl(X)
be elliptic, T~ € ¥} (X) a parametrix, so T7~T = Id+F, F € ¥, °°(X). Then
there exist Rj, R; € ¥, '(X) such that for any v > 0,

[{Rov, v)| < [|Rov]| [v]| < 2suplrol [lv]|* + || Rgwll [|v]

) _
< 6Ca(= +)|[vll* + 57 Bovll* + Aol
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[Riw|| = [[Ri(T™T — F)w|| < [[(R:T)(Tw)|| + || Ri Fwl|

5
< 6C2(= + 0)[|Tw] + | BiTw] + || ik wl]
for all w with Tw € L?(X), hence
8
[{Ri Do, v, 0)] <6C2(= + 0)|[T Do, vl [|]

+29[[0ll* + 7 RIT Do v]|* + 77 [ FiDa 1%,

with

However, the R;; term needs to be treated separately, since we need that mi-
crolocally 771D, is small (bounded by a constant multiple of §), and not merely
bounded, which is all we needed both in the proof of Proposition 6.2 and here for
the Ry and R; terms. This is accomplished by the use of Lemma 7.1. Namely, as
in the hyperbolic setting, there exist jo € \Ilgl(X) such that

(T7) Rijwl| < 6Coe™ | Twl| + | R;Twl| + |(T7)* Ry Fuwl|
for all w with Tw € L?(X). Thus,
|(RijDy,v, Dy, v)| < 6Co¢ [T Dy, || | T Dy, 0|
+ AT Dy, 0|12+~ R T Dyol|* + 77| Fyy Do, ol
+ [|Rij Do, 0| || F Dy, ],
with Fj; € ¥, *°(X). For v = B,u, B, = BA,, Lemma 7.1 thus gives

_ _ 5 - _
[(Rij Dy, Bru, Dy Bru)| < 6C5— || Brul|® + ]| Byul?
: €
+7 R T Dy, Byul* +77 || Fiy Do, Bru?

+ ||Rij‘D$iBTu|| ”FijBru”'

For § < do, g < C}, sufficiently small, we finish the proof as in the hyperbolic
setting, showing that BAgu € L?(X), and hence that gy ¢ WF,*(u).

Again, (7.12) needs to be modified slightly to show ¢o ¢ WF%)OO(U) Now we
take, with v < 1,

a=xo(Ag" (L +v—0/0)x1((t —to+8)/ed + v)xa2(lo]?/72),
i.e. we replace 2 by 1 + v in in the argument of xq, and we replace 1 by v in the
argument of x1. In the iterative step we decrease v by an arbitrarily small amount,
which suffices to prove g ¢ WF%)’OO(U); see also the proof of Proposition 6.2 here,
and the proof of [4, Proposition 24.5.1]. O

The results of this section can be adapted to Neumann boundary conditions,
using the argument presented at the end of the previous section.

8. PROPAGATION OF SINGULARITIES

An argument of Melrose and Sjostrand [13, 14], see also [4, Chapter XXIV] and
[11] allows us to conclude our main result concerning the singularities of solutions
of the wave equation. The proof presented below essentially follows Lebeau’s paper
[11, Proposition VII.1]. Correspondingly, we only give the proof at H in full detail;
at G the arguments are sketched, but the details are precisely as in Lebeau’s case.
We mostly discuss the Dirichlet boundary condition — the results are also valid
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for Neumann boundary conditions, see Theorem 8.5, and the arguments presented
need no modification at all in that case. We thus have the following theorem.

Theorem 8.1. Suppose that u € Hy ,,.(X). Then WE}>(u) \ WF;, " (Pu) C %,
and it is a union of mazximally extended generalized broken bicharacteristics of P
in 3\ WF, "> (Pu).

In fact, if u € H&’ZZC(X) for some m <0, then for all s € RU {oo}, WF,*(u) \
WF;LSH(PU) C 2, and it is a union of maximally extended generalized broken
bicharacteristics of P in ¥\ WF;LSH(PU).

Remark 8.2. Suppose that for each boundary hypersurface H;, we are given Dirich-
let data g; € C°°(H;), which are compatible, so at H; N Hj, gi|m,nm; = 9j|H,nH,
for all i,j. Then there is g € C*°(X) with g|y, = g;. Now, if u € H. (X) and
ulg, = gj, thenv =u—g € H&IOC(X). Thus, the theorem is applicable to v. Since
Pv = Pu— Pg and Pg € C®(X), WF; " (Pu) = WF;, "> (Pv), and similarly
WEF®(u) = WF ™ (v), we deduce that WEL™ (u) \ WF, ">°(Pu) is a union of
maximally extended generalized broken bicharacteristics of P in ¥\ WF, Lo (pu).

Remark 8.3. As already expained in the introduction, we can relax the hypothesis
u € H&IOC(X) in the results of Sections 4-7 to u € Hé:gfloc(X), m < 0 without
changing the arguments, except replacing the H\} (X) norms by the Htl)jfgc norms
for the ‘background terms’, such as ||ul|z1 (x) in Lemma 4.2 (and (6.1)), and anal-
ogously for || Pul| H-M(X)" The microlocal norms, in which we are gaining regularity,
such as those of Gu and GPu in Lemma 4.2 and (6.1) are unchanged! Indeed, now
we merely need to apply Lemma 3.18 in place of Lemma 3.13.

The point of this generalization is to allow more singular (approximate) solutions
of the wave equation, such as its fundamental solution. An alternative way to
deal with these solutions is to regularize them in time (which one can do without
destroying, say, Pu = 0), and use the Hj,.(X) results — but stating (and proving)
the result for u € Hé:(TlOC(X) is the neater way to proceed.

Corollary 8.4. Suppose that Pu =0, u € H&,zoc(X)~ Then WFy(u) C %, and it

is a union of mazimally extended generalized broken bicharacteristics of P in 3.
The theorem for Neumann boundary conditions takes the following form.

Theorem 8.5. Suppose that u € H}, (X) and f € H,}(X). Suppose also that for
allv € H(X),

(8.1) (Dyu, Dyv) — {dpru, dprv) = (f,v).

Then WF})’S(U) \WFb_l’SH(f) C %, and it is a union of mazimally extended gen-
eralized broken bicharacteristics of P in ¥\ WF;1’5+1(f),
In fact, if u € Hllocm(X) for some m <0, and (8.1) holds for all v € H»~™(X)

then for all s € R U {oc}, WF,*(u) \ WF, "*TY(f) C %, and it is a union of
mazimally extended generalized broken bicharacteristics of P in 3. \ WF;1’5+1(f),

Proof. (Proof of Theorem 8.1.) For notational simplicity, we state the proof for
WF%)’OO(U). The case of general s only requires notational changes. Note that
WE > (u) \ WF, "> (Pu) C ¥ by Proposition 4.6, so we only need to prove that
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it is a union of maximally extended generalized broken bicharacteristics of P in
S\ WF, V% (Pu).

We start by remarking that for every V C ¥ and q € V, the set R of generalized
broken bicharacteristics v defined on open intervals including 0, satisfying v(0) = ¢,
and with image in V, has a natural partial order, namely if v : (a,3) — V, 7" :
(o, ") — V, then v < " if the domains satisfy (o, 3) C (o', 3") and v = 7| (4,5)-
Moreover, any non-empty totally ordered subset has an upper bound: one can
take the generalized broken bicharacteristic with domain given by the union of the
domains of those in the totally ordered subset, and which extends these, as an upper
bound. Hence, by Zorn’s lemma, if R is not empty, it has a maximal element. Note
that we can also work with intervals of the form («,0], o < 0, instead of open
intervals.

We only need to prove that for every go € WEL™ (u) \WFgl’oo(Pu) there exists
a generalized broken bicharacteristic v : [—eg,€0] — 3, €o > 0, with 4(0) = qo
and such that (t) € WF} > (u) \ WF,, ">°(Pu) for t € [~€,¢0). In fact, once
this statement is shown, taking V = WFllj’Do(u) \ WF;l’DQ(Pu), q = qo, in the
argument of the previous paragraph, we see that R is non-empty, hence has a
maximal element. We need to show that such an element, v : (a,3) — Y, is
maximal in 3\ WF, " (Pu) as well, i.c. if we take V = 3\ WF; "*(Pu), ¢ =
o in the first paragraph. But if 4/ : (a/,3') — X is any proper extension of
~, with say o/ < a, with image in ¥\ WF "> (Pu), then 7/(a) € WFp™ (u)
since WF%)’OO(U) is closed, and v maps into it, hence by our assumption there is a
generalized broken bicharacteristic 7 : (o — ¢/, a +¢') — WFL™®(u) \ WF, " (Pu),
¢ >0, 7(a) = 7'(); piecing together ¥|(4—c o) and 7, directly from Definition 1.1,
gives a generalized broken bicharacteristic which is a proper extension of v, with
image in WF}>(u) \ WF;, "> (Pu), contradicting the maximality of ~.

Indeed, it suffices to show that for any i, if

(8.2) go € WEL ™ (u) \ WF, " (Pu) and qp € T*F; req
then
(8.3 there exists a generalized broken bicharacteristic y : [—€g, 0] — Y, € >0,

7(0) = qo, () € WE™ (u) \ WF M (Pu), t € [, 0],

for the existence of a generalized broken bicharacteristic on [0, €9] can be demon-
strated similarly by replacing the forward propagation estimates by backward ones,
and, directly from Definition 1.1, piecing together the two generalized broken
bicharacteristics gives one defined on [—e¢o, €.

We proceed to prove that (8.2) implies (8.3) by induction on i. For i = 0, this
is certainly true by Hormander’s theorem on propagation of singularities, and if
codim F; = 1, it follows from the Melrose-Sjostrand theorem.

So suppose that (8.2)=(8.3) has been proved for all j with F; C F; and that
qo € HNT*F; veq satisfies (8.2). We use the notation of the proof of Proposition 6.2
below. Let U C Ur,cr,T*Fj1eg be a neighborhood of go = (0,yo, %0, (o, 70) in by
which is given by equations of the form |z| < &', [y —yo| < &', [t—to| < &', |[T—70| <
8, ¢ —Co| < &', & >0, such that Hyn > 0 on #~1(U) and U N WF,, "> (Pu) = 0.
(Recall that 7 = 7|cpar(py-) Such a neighborhood exists since qo ¢ WEF, " (Pu)
and Hpn(go) = 78 — |¢|* > 0 for every o € 7 '(qo). Also let U’ be a subset
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of U defined by replacing §’ by a smaller 6” > 0, and let ¢ > 0 be such that
for any generalized broken bicharacteristic v with v(0) € U’, v[— € U. By
Proposition 6.2, there is a sequence of points ¢, € ¥ such that g, € WFllj’Do(u),
Gn — qo as n — oo, and n(g,) < 0 for all n, so we may assume that ¢, € U’ for
all n. By the inductive hypothesis, for each n, there exists a generalized broken
bicharcteristic

€0,€0]

(8.4) T (=€, 0] = (WFy™(u) \ WE 2 (Pu)) 0 ) T Fjreg
FiCF;

with 4,(0) = ¢g,. We now use the argument of the first paragraph of the proof
(after the introductory remark about s) with V = (WFp™(u) \ WF, > (Pu)) N
U FiCF, T*Fj reg, and ¢ = gp. Thus, 7, € R, which is hence non-empty, hence has
a maximal element. We let

(8.5) Yo (=€n, 0] = (WFp™(u) \ WE B (Pu)) 0 ) T Fjreg
FiCF;
be a maximal element of R; it may happen that —e,, = —o0.

We claim that €, > €y. For suppose that ¢, < ¢y. By Corollary 5.6, ,, extends to
a generalized broken bicharacteristic on [—e,, 0], we continue to denote this by ~,.
Since €, < €, 7n is a generalized broken bicharacteristic with image in U; indeed
the closure of the image is still in U. Taking into account that 7 is increasing on
generalized broken bicharacteristics in U since Hp,n > 0 there, we conclude that

~T(r () @ (m (1) - E(3n (1)) = (1 (1)) < 1(1a(0)) <0

for t € [—€n,0], hence z(v,(t)) # 0. Thus, v,(—€,) € Ur,c7, T Fjreg. Moreover,
Yn(—€n) € WFL™® () since WFL™ (u) is closed, and Ynl(—en,0) Maps into it. Thus,
by the inductive hypothesis, there is a generalized broken bicharacteristic,

(8.6) T ¢ (0, —€n] = (WEL(u) \ WEL Y (Pu)) 0 | T Freg
FiCF;

with a < —¢€p, Yn(—€n) = Yn(—€,). Hence, piecing together 7, and =, gives
a generalized broken bicharacteristic mapping into (WFlljoo(u) \ WE, Lo (pu)) N
U FCF T*Fj reg and extending y,, which contradicts the maximal property of v,
Thug, €, > €g as claimed.

By Proposition 5.5, applied with K = WF%)’OO(U), there is a subsequence of
Ynl[—eo,0] converging uniformly to a generalized broken bicharacteristic

51 [—€0,0] — WE > (u).

In particular, ¥(0) = go and v(t) € WF}*(u) for all t € [—€p,0], providing the
inductive step.

We now turn to gg € GNT™*F; 1oe. We repeat the argument of Melrose-Sjostrand,
as presented in Lebeau’s paper [11, Proposition VII.1]. We very briefly outline the
proof below; the detailed version follows Lebeau’s closely, with some changes in the
notation. Let U C Ug,c7, T Fjreg \ WEF, ">°(Pu) be a neighborhood of g, Up a
smaller neighborhood, as above. We take ¢y > 0 small. Suppose that 0 < € < ¢,



52 ANDRAS VASY

q € Uy. Let

(8.7)
R}Le = {generalized broken bicharacteristics v : [—¢, 0] — WF} > (u),

¥(0) =g, Y(t) ¢ GNT*F;reg for t € (—¢,0]},
R?M = {generalized broken bicharacteristics v : [—¢€’, 0] — WF%)’OO(U), e €(0,¢),

7(0) = q, Y(t) ¢ GNT*Fireg for t € (—e/, 0],

V(=€) € GNT*Fireg}-

Moreover, reflecting the inequalities in (7.5), let

(8:8) B(g,¢) = {¢' € ¥ : max{|x{(¢) - ql.|2(¢")]} < e}.
Let Cy > 0 be as in Proposition 7.3. For ¢ € G N T*F; req, let

(8.9) D(q,¢) = Blexp(—eH,) (7" (), Coe®) N WE™ (u),
and for ¢ ¢ GNT*F; reg, let

(8.10)
D(g,€) ={y(—€): v R}
U {B(exp(—(e — €)Hy,) (7 (¥(€'), Co(e — €)*) NWF*(u) : v € RZ.}.

The reason for introducing D(q, €) is that it is a good candidate for the beginning
point of a generalized broken bicharacteristic segment in WFllj’DO(u), defined over
an interval of length €, and ending in q.

Indeed, for ¢ € G N T Fjreg N WF%)’OO(U), we deduce from Proposition 7.3 that
D(gq,¢) # (. For q € WF%)’OO(U) \ (G NT*F; reg), by the inductive hypothesis, the
previous part of the proof concerning H N T*F; ;cs, and the first two paragraphs
(after the introductory remark about s) with V' = WF%)OO(u) \ (G NT*F reg) U
WEF, 1’Oo(Pu), q = qo, there is a maximally extended generalized broken bichar-
acteristic v with image in V. By the argument of the second paragraph, this is
either defined on all of [—¢, 0], or only on (—¢',0] with 0 < € < ¢, in which case
¥(—€') € GNT*F; rcg, hence again by Proposition 7.3 we conclude that D(q, €) # 0.
Thus, for all ¢ € U N WFp™ (u) we have deduced D(q, €) # 0.

For each integer N > 1 now we define a sequence of 2V + 1 points qi,~n, J €N,
0 < j < 2N, which will be used to construct points y(—j2 Vep) on the desired
generalized broken bicharacteristic 7y : [—€g, 0] — WF%)’OO(U) through qo. Namely,
let € = 27Neg, go.n = qo, and choose gi+1,8 € D(gj n,€). Let In = {—j27 V¢ :
0<j <2V} C[—€,0], T = UF_1In. We write yn(t) = q;n for t = —j27Neg.
For each t € J, the sequence vy (t) (defined for large N) stays in a compact set.
Hence there exists a subsequence vy, such that for all t € J, yn, (t) converges to
some ().

This defines 7 : [—ep, 0] — WF} > (u) at elements of J. One can check exactly
as in Lebeau’s proof (which we have been following very closely) that v extends to
a continuous map defined on [—ep, 0], and that it is a generalized broken bicharac-
teristic. This completes the inductive step for tangential points gg € G N T*F; reg,
hence the proof of the theorem. (I
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