
Math 154. Generalized Cayley-Hamilton and integrality

1. From endomorphisms to matrices

Let A → B be an injective map of commutative rings and assume B is finitely generated as an
A-module. We seek to prove that any b ∈ B satisfies a monic polynomial fb ∈ A[x] (so b is integral
over A). The idea for how to construct fb is to compute certain A-linear maps B → B in terms of
“n× n matrices” over A, and to exploit a version of the Cayley-Hamilton theorem over rings.

To bring matrices into the picture, pick a spanning set {b1, . . . , bn} for B as an A-module, so
B =

∑
Abi. There is no linear independence to grab onto, but nonetheless the idea of computing

with matrices will be useful. For b ∈ B, we have the A-linear multiplication map mb : B → B
defined by x 7→ bx.

Letting EndA(M) denote the set of A-linear maps T : M → M (“endomorphisms”) for an A-
module M , the element mb ∈ EndA(B) determines b because mb(1) = b. Also, it is clear from the
commutativity of B that mb ◦mb′ = mbb′ and mab+a′b′ = amb + a′mb′ in EndA(B). In other words,
b 7→ mb defines an injective A-algebra homomorphism

B ↪→ EndA(B),

where the target is an associative (generally non-commutative) A-algebra using composition as
“multiplication” in EndA(B). (In the non-commutative setting, the phrase “A-algebra” encode the
condition that A commutes with everything, which is the case in EndA(B) by the very definition
of the A-module structure on B and the meaning of an “A-linear” endomorphism.)

It follows that if f ∈ A[x] is a polynomial then mf(b) = f(mb) in EndA(B), so f(b) = 0 if and
only if f(mb) = 0. Hence, to find a monic polynomial over A that kills b in B it is the same to
find one that kills mb in EndA(B). Thus, it suffices to prove rather generally that for any finitely
generated A-module M and any T ∈ EndA(M) there is a monic polynomial f ∈ A[x] such that
f(T ) = 0 in EndA(M). To find such an f , we will express T in terms of a “matrix” (even though
M usually does not have an A-basis!) and then show that the characteristic polynomial of that
matrix does the job.

Pick a finite spanning set {v1, . . . , vn} for M as an A-module, so for every j we can express T (vj)
as an A-linear combination of the vi’s. That is, there exist elements aij ∈ A

T (vj) =
∑
i

aijvi.

Of course, in the absence of linear independence there are probably zillions of different ways to
choose these aij ’s, but that won’t matter. The key point is that if T ′ ∈ EndA(M) is another
endomorphism and we make a choice of elements a′ij ∈ A such that T ′(vj) =

∑
i a

′
ijvi then for any

a, a′ ∈ A we have

(aT + a′T ′)(vj) =
∑
i

(aaij + a′a′ij)vi, (T ◦ T ′)(vj) =
∑
i

(
∑
h

aiha
′
hj)vi

by the exact same formal computations as used in linear algebra to show that “matrix algebra”
computes linear combinations and composition among linear endomorphisms of a vector space.
(The point is that those computations never use the linear independence aspect of bases, only
their spanning property, so they carry over to the present setting without change.) Thus, if we
let µ = (aij) ∈ Matn(A) (n × n matrices over A) then for any integer e ≥ 0 the matrix power µe

computes the effect of T e ∈ EndA(M) in the sense that T e(vj) is the A-linear combination of the
vi’s given by the jth column of the matrix µe. Hence, likewise, for any f ∈ A[x], the endomorphism
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f(T ) ∈ EndA(M) is computed by f(µ) in the sense that f(T )(vj) is the A-linear combination of
the vi’s given by the jth column of the matrix f(µ) ∈ Matn(A). But the vi’s span M over A, so
although they may not be linearly independent (and hence we cannot generally define an element
of EndA(M) by arbitrarily specifying its effect on the vi’s separately) we see that an element of
EndA(M) is uniquely determined by its effect on the vi’s. In particular, an element of EndA(M)
that kills the vi’s must be 0.

To summarize, we have shown that if f ∈ A[x] is a polynomial and f(µ) = 0 in Matn(A) then
f(T ) = 0 in EndA(M). Hence, to find a monic f that kills T it suffices to find such an f that kills
the n×n matrix µ over A. Rather generally, for any µ ∈ Matn(A) we can consider its characteristic
polynomial χµ ∈ A[x] defined as the determinant

χµ = det(x · idn − µ) ∈ A[x]

(determinant of a matrix with entries in the commutative ring A[x], with idn the n × n identity
matrix), and by inspection this is a monic polynomial of degree n. Thus, we will be done if we can
show that χµ(µ) = 0 in Matn(A). This is what we shall now do.

2. A universal identity

We continue to let A be a commutative ring. Our aim is to prove the following generalization of
the Cayley-Hamilton theorem.

Theorem 2.1. For any µ = (aij) ∈ Matn(A) with n ≥ 1 and its characteristic polynomial χ =
xn + · · · ∈ A[x], the matrix χ(µ) ∈ Matn(A) vanishes.

To prove this result, we first note that when A is a field then this is the usual Cayley-Hamilton
theorem. We will reduce the general case to the special case of fields, or even just algebraically
closed fields of characteristic 0 (or even just C!) by means of a powerful trick: to prove “universal”
identities, we reduce the problem to a “universal” case which occurs over a ring with special features
(e.g., a domain) and then we exploit those special features to prove the result in the universal case
by a method which is often not directly applicable in other cases.

In our setting, the method goes as follows. Consider the “universal n × n matrix”, by which
we just mean the matrix µuniv = (Xij) ∈ Matn(Runiv) where Runiv = Z[Xij ] is the polynomial
ring in n2 variables over Z (indexed by pairs of integers 1 ≤ i, j ≤ n). This example is universal
in the sense that for any A and any µ = (aij) there is a unique ring map φ : Runiv → A under
which Matn(Runv)→ Matn(A) carries µuniv to µ. Indeed, the unique such φ is given by Xij 7→ aij .
Actually, the uniqueness of φ is not what matters; rather, we care about just the existence. That
is, we have made a specific n× n matrix µuniv over the ring Runiv which has some extra properties
(it is a domain!!) so that our original µ is obtained from µuniv by some ring homomorphism
φ : Runiv → A.

The utility of this is due to the observation that since φ is a ring homomorphism, the induced
map Runiv[x]→ A[x] carries χµuniv to χµ and so likewise the map of matrix rings

Matn(Runiv)→ Matn(A)

carries χµuniv(µuniv) to χµ(µ). (This just expresses the fact that the formation of χµ(µ) is a “uni-
versal formula” which has nothing to do with the specifics of A or µ.) Hence, if we can prove the
vanishing result for the pair (µuniv, Runiv) then it follows for the given pair (µ,A)!

This formalism reduces the general problem to the special case of µuniv over Runiv. But what
extra properties does this case have which are not available in the general case? The main point is
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that Runiv is a domain, so we have reduced the general case to the special case when the coefficient
ring for the matrices is a domain.

Remark 2.2. We have also gained other properties; e.g., Runiv has fraction field of characteristic 0
that even embeds into C, and one can show that the characteristic polynomial of µuniv is diagonal-
izable over an algebraic closure of the fraction field. This won’t be needed for our purposes, but it
is a mechanism for reducing various matrix identities to the special case of diagonalizable matrices,
thereby vindicating the belief of most physicists that “all” matrices are diagonalizable.

Now we may and do assume A is a domain, say with fraction field K. Then the vanishing
of χµ(µ) in Matn(A) is the same as the analogue in Matn(K). But this version over K is the
Cayley-Hamilton theorem!


