
Math 154. Dedekind’s factorization criterion
The aim of this handout is to give a proof of Dedekind’s criterion for computing the prime factorization

of pOK for a prime number p > 0 and a number field K. The initial setup is to consider α ∈ OK that is
primitive for K/Q, so Z[α] is an order in OK , and to assume that p - [OK : Z[α]]. (Recall that in practice,
a sufficient criterion for p to satisfy this condition is that p2 - d(1, α, . . . , αn−1) with n = [K : Q], so all
but finitely many p are covered in this way.) Let h ∈ Z[X] denote the minimal polynomial of α over Q, so
Z[α] ' Z[X]/(h). Passing to the reduction modulo p, we get a ring isomorphism Z[α]/p · Z[α] ' Fp[X]/(h)

where h := h mod p ∈ Fp[X]. The idea behind Dedekind’s criterion is to relate the monic irreducible

factorization of h in Fp[X] to the prime ideal factorization of pOK by interpreting each in terms of the ring
structure of Z[α]/pZ[α]. In class we saw some worked examples of this with K = Q(α) for α3 = 10. Below
we also give another class of examples with Z[α] = OK .

1. Main result and proof

Here is Dedekind’s result.

Theorem 1.1. With notation and hypotheses as above, especially that p - [OK : Z[α]], let
∏
h
ei
i denote the

monic irreducible factorization of h. Then the prime factorization of pOK has the form

pOK =
∏

peii

where pi = (p, hi(α)) for any hi ∈ Z[X] lifting hi ∈ Fp[X]. Moreover, there is an isomorphism of residue

fields Fp[X]/hi ' OK/p via X 7→ α mod p, so the residue field degree fi = [OK/pi : Fp] is equal to deg hi.

In this theorem, we are not taking (p, hi(α)) as the definition of pi; rather, we define the pi’s to be the
pairwise distinct prime factors of pOK and are claiming that after suitable re-indexing if necessary we can
arrange that pi = (p, hi(α)) for all i.

The key to getting the proof off the ground is the observation that since the injection Z[α]→ OK has finite
index not divisible by p (by hypothesis), the induced ring map Z[α]/pZ[α] → OK/pOK is an isomorphism.
This is a special case of:

Lemma 1.2. Let M ′ → M be an injective map of abelian groups such that M/M ′ has finite order not
divisible by p. The induced map M ′/pM ′ →M/pM is an isomorphism.

Proof. Let n = #(M/M ′), so n is not divisible by p and hence multiplication by p on the finite abelian
group M/M ′ is an automorphism (bijective). Hence, for each m ∈ M there exists m1 ∈ M such that
pm1 ≡ m mod M ′, so m − pm1 ∈ M ′. This shows that M ′/pM ′ → M/pM is surjective. For injectivity,
suppose m′ ∈ M ′ ∩ pM . We want m′ ∈ pM ′. Writing m′ = pm for some m ∈ M , we have that the residue
class [m] ∈ M/M ′ is killed by multiplication by p. But this multiplication map is an automorphism on
M/M ′, so [m] = 0 and hence m ∈M ′. Thus, m′ = pm ∈ pM ′ as desired. �

Applying this lemma as indicated above, the assumption p - [OK : Z[α]] = #(OK/Z[α]) (a quotient of
additive groups) implies that the natural ring map

(1) Z[α]/pZ[α]→ OK/pOK

is an isomorphism. In particular, this isomorphism carries ideals to ideals in both directions, yet the ideals on
the left side are I/pZ[α] for ideals I ⊆ Z[α] which contain p. Under the ring map the image is (I+pOK)/pOK

and this must be J/pOK for the ideal J ⊆ OK generated by I (which contains p). In other words, necessarily
J = IOK . Thus, the ring isomorphism (1) carries I/pZ[α] isomorphically over to IOK/pOK for ideals I ⊆
Z[α] containing p, and so injectivity of the resulting map I/pZ[α]→ IOK/pOK implies that Z[α]∩ IOK = I
for all such I. In particular, every ideal J of OK containing p has the form J = IOK for a unique ideal I of
Z[α] that contains p.

Since the ring isomorphism (1) carries I/pZ[α] over onto IOK/pOK , passing to the induced isomorphism
of quotients by these ideals gives that the natural map Z[α]/I → OK/IOK is an isomorphism. In particular,
one side is a domain if and only if the other is, which is to say that I is a prime ideal if and only if IOK is a
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prime ideal, where I is an ideal of Z[α] containing p. From this we see that the pairwise distinct prime ideals
pi of OK containing p (i.e., dividing pOK , as OK is Dedekind, in possible contrast with Z[α]) are ℘iOK

where ℘i ranges through the pairwise distinct prime ideals of Z[α] containing p. Also, the isomorphism
Z[α]/I ' OK/IOK as explained already includes as a special case Z[α]/℘i ' OK/℘iOK = OK/pi.

Suppose we could show (after suitable rearranging of the irreducible factors of h over Fp) that ℘i =
pZ[α] + hi(α)Z[α] for all i. Then we would have pi = ℘iOK = (p, hi(α)) as ideals in OK , as desired. Let
us now establish this description of the ℘i’s. A prime ideal of Z[α] containing p corresponds to the kernel
of a quotient mapping from Z[α]/pZ[α] ' Fp[X]/(h) onto a finite domain (and so equivalently, onto a finite
field). By the Chinese Remainder Theorem, we have a ring isomorphism

Fp[X]/(h) '
∏
i

Fp[X]/(hi)
e′i .

The field quotients of this ring correspond to the monic irreducible factors hi of h, which is to say that
the kernels of its maps onto fields are the ideals (hi). But hi(α) ∈ Z[α] maps to hi mod h in Fp[X]/(h) =

Z[α]/pZ[α], so the ideals pZ[α] + hi(α)Z[α] in Z[α] are the preimages of the ideals (hi) in Fp[X]/(h) =
Z[α]/pZ[α]. Hence, after suitable re-indexing if necessary, there are precisely the ℘i’s, as desired.

Having described each ℘i, we also get a description of the residue field: the isomorphism (1) carries
℘i/(pZ[α]) over to pi/pOK and hence passing to the quotient gives an isomorphism of finite fields Z[α]/℘i '
OK/pi. But

Z[α]/℘i = Z[X]/(h, p, hi) ' Fp[X]/(h, hi) ' Fp[X]/(hi)

with α corresponding to the residue class of X, so this gives the desired description of the residue fields (and
formula for the residue field degrees over Fp).

Finally, we have to show that the multiplicity e′i of pi in pOK is equal to the multiplicity ei of hi as

an irreducible factor of h. For this we revisit the Chinese Remander Theorem. This gives a ring-theoretic
isomorphism

OK/pOK '
∏

OK/p
e′i
i ,

so the number of distinct positive powers of the ideal pi/pOK is e′i by inspection. But the ring isomorphism

Fp[X]/(h) ' Z[α]/pZ[α] ' OK/pOK

carries the ideal (hi)/(h) over to the ideal pi/pOK , so the number of distinct positive powers of (hi)/(h) is e′i.

However, this count is also visibly equal to the multiplicity ei of hi as an irreducible factor of h, so ei = e′i.

2. A cubic example

Let K = Q(α) with α3 + 10α + 1 = 0. The cubic polynomial f = X3 + 10X + 1 ∈ Z[X] is irreducible
over Q because it does not have a rational root, and Z[α] is an order in OK . A direct calculation shows
disc(Z[α]/Z) = −4027, and this is prime. Hence, OK = Z[α] and so Dedekind’s criterion is applicable for all
p and the only ramified prime is 4027.

The prime p = 2 is unramified, and in fact

X3 + 10X + 1 ≡ (X + 1)(X2 +X + 1) mod 2

is the irreducible factorization in F2[X]. We use the obvious lifts of these monic irreducibles to Z[X], so
2OK = (2, α + 1)(2, α2 + α + 1) = P1P2 with f1 = deg(X + 1) = 1 and f2 = deg(X2 + X + 1) = 2. Note
that

∑
eifi = 1 + 2 = 3 = [K : Q], as it should be.

The prime p = 4027 is ramified, and in fact one checks

X3 + 10X + 1 ≡ (X + 2215)2(X + 3624) mod 4027

in F4027[X]. Using the obvious lifts of these monic linear factors to Z[X], we get

4027OK = (4027, α+ 2215)2(4027, α+ 3624) = Q2
1Q2,

so e1 = 2 and e2 = 1 with both Qi’s having residue field degree 1 over F4027. Note that
∑
eifi = 2 + 1 =

3 = [K : Q], as it should be.


