
SOME BASIC MODULE-THEORETIC NOTIONS AND EXAMPLES

1. Introduction

One of the most basic concepts in linear algebra is linear combinations: of vectors, of polynomials,

of functions, and so on. For example, in R[T ] the polynomial 7− 2T + 3T 2 is a linear combination

of 1, T , and T 2: 7 · 1 − 2 · T + 3 · T 2. The coefficients used for linear combinations in a vector

space are in a field, but there are many places where we naturally meet linear combinations with

coefficients in a ring.

Example 1.1. In the ring Z[
√
−5] let p be the ideal (2, 1 +

√
−5), so by definition

p =
{

2x+ (1 +
√
−5)y : x, y ∈ Z[

√
−5]
}

= Z[
√
−5] · 2 + Z[

√
−5] · (1 +

√
−5),

which is the set of all linear combinations of 2 and 1 +
√
−5 with coefficients in Z[

√
−5].

Such linear combinations do not provide unique representation: for x and y in Z[
√
−5],

x · 2 + y · (1 +
√
−5) = (x− (1 +

√
−5)) · 2 + (y − 2) · (1 +

√
−5).

So we can’t treat x and y as “coordinates” of 2x + (1 +
√
−5)y. In a vector space like Rn or Cn,

whenever there is a duplication of representations with a spanning set we can remove a vector from

the spanning set, but in p this is not the case: if we could reduce the spanning set {2, 1 +
√
−5} of

p to a single element α, then p = Z[
√
−5]α = (α) would be a principal ideal in Z[

√
−5], but it can

be shown that p is not a principal ideal.

Instead of reducing the size of {2, 1 +
√
−5} to get a nice spanning set for p with Z[

√
−5]-

coefficients, we can do something else to standardize the representation of elements of p as linear

combinations: restrict coefficients to Z. That works in this case because:

p =
{

2x+ (1 +
√
−5)y : x, y ∈ Z[

√
−5]
}

=
{

2(a+ b
√
−5) + (1 +

√
−5)(c+ d

√
−5) : a, b, c, d ∈ Z

}
=
{

2a+ 2
√
−5b+ (1 +

√
−5)c+ (−5 +

√
−5)d : a, b, c, d ∈ Z

}
= Z · 2 + Z · 2

√
−5 + Z · (1 +

√
−5) + Z · (−5 +

√
−5).

Describing p in terms of linear combinations with integral coefficients made our spanning set

grow. We can shrink the spanning set back to {2, 1 +
√
−5} because two new members of this

spanning set, 2
√
−5 and −5 +

√
−5, are redundant due to being Z-linear combinations of the rest:

2
√
−5 = (−1)2 + 2(1 +

√
−5) and −5 +

√
−5 = (−3)2 + (1 +

√
−5) (so 2

√
−5 and −5 +

√
−5 are

in Z · 2 + Z · (1 +
√
−5)). Therefore

p = Z · 2 + Z · (1 +
√
−5) =

{
2m+ (1 +

√
−5)n : m,n ∈ Z

}
.
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Using coefficients in Z rather than in Z[
√
−5], there is unique representation: if 2m+(1+

√
−5)n =

2m′ + (1 +
√
−5)n′ then

(2(m−m′) + (n− n′)) + (n− n′)
√
−5 = 0.

The real and imaginary parts are 0, so n = n′ and then m = m′. Thus, we can regard m and n as

“coordinates” for 2m+ (1 +
√
−5)n, and the situation looks a lot closer to ordinary linear algebra.

Warning. That the set {2, 1 +
√
−5} has its Z[

√
−5]-linear combinations coincide with its Z-

linear combinations is something of a fluke. In the ring Z[
√
d], the set of Z-linear combinations of

two elements generally does not coincide with the set of their Z[
√
d]-linear combinations.

The use of linear combinations with coefficients coming from a ring rather than a field suggests

the concept of “vector space over a ring,” which for historical reasons is not called a vector space

but instead a module.

Definition 1.2. For a commutative ring R, an R-module M is an abelian group on which R acts

by additive maps: there is a function R×M →M denoted by (r,m) 7→ rm such that

(1) 1m = m for all m ∈M .

(2) r(m+m′) = rm+ rm′ for all r ∈ R and m,m′ ∈M .

(3) (r + r′)m = rm+ r′m and (rr′)m = r(r′m) for all r, r′ ∈ R and m ∈M .

In the special case where R = F is a field, an F -module is an F -vector space by another name.

Example 1.3. The setRn of ordered n-tuples inR is anR-module with addition andR-multiplication

being the obvious component-wise operations as in linear algebra.

Example 1.4. Any ideal I in R is an R-module with addition and R-multiplication being the

operations in R.

Example 1.5. A quotient ring R/I for any ideal I is an R-module where r(x mod I) := rx mod I

for r ∈ R and x ∈ R. (It is easy to check that this is well-defined and satisfies the axioms.) So

I and R/I are both R-modules, whereas in the language of ring theory ideals and quotient rings

don’t serve the same role.

Example 1.6. The polynomial ringR[T ] is anR-module with obvious addition andR-multiplication.

Example 1.7. The set Map(R,R) of functions f : R → R under pointwise addition of functions

and the R-multiplication (rf)(x) = r(f(x)) is an R-module.

2. Basic definitions

In linear algebra the concepts of linear combination, linear transformation, isomorphism, sub-

space, and quotient space all make sense when the coefficients are in a ring, not just a field, so they

can all be adapted to the setting of modules with no real changes.
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Definition 2.1. In an R-module M , an R-linear combination of elements m1, . . . ,mk ∈ M is

an expression

r1m1 + · · ·+ rkmk

where the ri’s are in R. If every element of M is a linear combination of m1, . . . ,mk, we call

{m1, . . . ,mk} a spanning set or generating set of M or say the mi’s span (or generate) M .

Linear combinations are the basic way to create new elements of a module from old ones, just

as in linear algebra in Rn. For instance, a finitely generated ideal in R is nothing other than the

set of R-linear combinations of a finite set of elements of R.

Example 2.2. We can view the ideal I = (1 + 2i) in Z[i] as both a Z[i]-module and as a Z-module

in a natural way. As a Z[i]-module, we can get everywhere in I from 1+2i: I = Z[i](1+2i). As a Z-

module, we can get everywhere in I from 1+2i and i(1+2i) = −2+i since I = Z(1+2i)+Zi(1+2i) =

Z(1 + 2i) + Z(−2 + i).

Mostly we will be interested in modules with finite spanning sets, but there are some important

examples of modules that require infinite spanning sets. So let’s give the general definition of

spanning set, allowing infinite ones.

A spanning set of an R-module M is a subset {mi}i∈I of M such that every m ∈M is a finite

R-linear combination of the mi’s:

m =
∑
i∈I

rimi,

where ri ∈ R for all i and ri = 0 for all but finitely many i. Notice we require each linear

combination of the mi’s to have only finitely many nonzero coefficients. (Of course, if there are

only finitely many mi’s to begin with then this is no constraint at all.) In analysis, vector spaces

may be equipped with a topology and we can talk about truly infinite linear combinations using

a notion of convergence. The preceding purely algebraic concept of spanning set only makes sense

with finite sums in the linear combinations.

Example 2.3. The powers 1, T, T 2, . . . span R[T ] as an R-module, since every polynomial is an

R-linear combination of finitely many powers of T . There is no finite spanning set for R[T ] as an R-

module since the R-linear combinations of a finite set of polynomials will only produce polynomials

of degree bounded by the largest degree of the polynomial in the finite set.

This is the simplest example of an R-module mathematicians care about that doesn’t have a

finite spanning set. Notice that as an R[T ]-module rather than as an R-module, R[T ] has a finite

spanning set, namely the element 1, since we can write f(T ) = f(T ) · 1.

Example 2.4. Let

R∞ = {(r1, r2, r3, . . .) : rn ∈ R}

be the set of all sequences in R, with componentwise addition and the natural R-multiplication.

This makes R∞ an R-module, and as in the previous example R∞ doesn’t have a finite spanning
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set. But also the first guess for an infinite spanning set doesn’t work: the sequences

ei = (0, 0, . . . , 1︸︷︷︸
i

, 0, 0, . . .)

for i ≥ 1 do not span R∞ since any finite linear combination of the ei’s is a sequence with all terms

beyond some point equal to 0 and that doesn’t describe most elements of R∞.1 For instance, the

constant sequence (1, 1, 1, . . . ) is not in the R-span of the ei’s.

While the ei’s are not a spanning set for R∞ as an R-module, is there some spanning set for

R∞ as an R-module? Sure: use every element of R∞. That is rather dumb, but it shows (for silly

reasons) that R∞ has a spanning set. Whether it has a “nice” spanning set (in some reasonable

sense of “nice”) is a question for another day.

Definition 2.5. A R-linear transformation (or R-linear map) from an R-module M to an

R-module N is a function ϕ : M → N that is additive and commutes with scaling: ϕ(m + m′) =

ϕ(m) + ϕ(m′) and ϕ(rm) = rϕ(m) for all m,m′ ∈M and r ∈ R. These can be combined into the

single condition

ϕ(rm+ r′m′) = rϕ(m) + r′ϕ(m′),

for all m,m′ ∈M and r, r′ ∈ R.

In words, this says ϕ sends R-linear combinations to R-linear combinations with the same

coefficients. (Taking r = r′ = 1 makes this the additive condition and taking r′ = 0 makes

this the scaling condition.) We can also characterize a linear transformation as one satisfying

ϕ(rm + m′) = rϕ(m) + ϕ(m′), but that description is asymmetric while the concept of linear

transformation is not, so don’t use that description!

Example 2.6. Complex conjugation τ : C → C, where τ(z) = z, is an R-linear transformation

from C to C. It is not C-linear since cz is equal to c z rather than equal to cz.

Example 2.7. For α ∈ Z[
√

2], let mα : Z[
√

2]→ Z[
√

2] be mα(x) = αx. This is multiplication on

Z[
√

2] by a fixed number α. It is Z-linear, since

mα(x+ x′) = α(x+ x′) = αx+ αx′ = mα(x) +mα(x′)

for any x and x′ in Z[
√

2] and

mα(cx) = α(cx) = c(αx) = cmα(x)

for any c ∈ Z and x ∈ Z[
√

2]. Actually, if c is in Z[
√

2] then the last equation still holds, so mα is

also Z[
√

2]-linear, but more often it is viewed as being Z-linear. (In this example Z[
√

2] could be

replaced with many other rings.)

Example 2.8. For A ∈ Matn×m(R), we have the function A : Rm → Rn given by matrix multipli-

cation v 7→ Av (the usual product of a matrix and a vector). This is an R-linear transformation.

Note the flip in the order of m and n in the size of the matrix and in the domain and target of A.

1Unless R is the zero ring, but let’s not be ridiculous.
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Definition 2.9. An isomorphism of R-modules M and N is a bijective R-linear transformation

ϕ : M → N . If there is an isomorphism M → N we call M and N isomorphic and write M ' N .

The inverse of an isomorphism is also R-linear and thus is an isomorphism too.

Example 2.10. Consider Z[i] = Z + Zi and Z[
√

2] = Z + Z
√

2. They are rings and Z-modules.

As rings they are not isomorphic, because isomorphic rings have isomorphic unit groups and Z[i]×

is finite while Z[
√

2]× is infinite (e.g., (1 +
√

2)n has multiplicative inverse (−1 +
√

2)n for all

n > 0). But as Z-modules they’re isomorphic to Z2 and thus are isomorphic to each other. Indeed,

Z2 → Z[i] by (a, b) 7→ a+ bi and Z2 → Z[
√

2] by (a, b) 7→ a+ b
√

2 are Z-module isomorphisms, and

a direct Z-module isomorphism from Z[i] to Z[
√

2] is a+ bi 7→ a+ b
√

2.

Definition 2.11. For an R-linear transformation ϕ : M → N , its kernel is {m ∈ M : ϕ(m) = 0}
and is denoted kerϕ, and its image is {ϕ(m) : m ∈M}, denoted imϕ.

Like group homomorphisms, an R-linear transformation ϕ is injective if and only if kerϕ = {0}.

Definition 2.12. If M is an R-module, a submodule of M is a subgroup N ⊂ M such that

Rn ⊂ N for all n ∈ N .

Example 2.13. Viewing R as an R-module, its submodules are precisely its ideals. This is very

important!

Whenever we have an R-module M and R contains a subring R′, we can think about M as an

R′-module too, in a natural way. We did this in Example 1.1 with the ideal p = (2, 1 +
√
−5) inside

R = Z[
√
−5], viewing it first as a Z[

√
−5]-module and then as a Z-module. Its representation as a

Z-module was nicer (leading to coordinates).

Example 2.14. In Z[i] the Z[i]-submodules all have the form Z[i]α since all ideals in Z[i] are prin-

cipal. In Z[i] its Z[i]-submodules (ideals) are also Z-submodules, but there are more Z-submodules

in Z[i] than ideals. For example, Z + Z · 2i = {a+ 2bi : a, b ∈ Z} is a Z-submodule of Z[i] that is

not an ideal (it isn’t preserved under multiplication by i).

Definition 2.15. If N ⊂ M is a submodule, then the quotient group M/N has a natural R-

multiplication r(m mod N) := rm mod N (easily checked to be well-defined and satisfy the axioms

to be an R-module). We call M/N a quotient module .

In particular, for ideals J ⊂ I ⊂ R, we can say that I/J is an ideal in R/J or (without making

any reference to R/J) that I/J is an R-module.

It is straightforward to check that if ϕ : M → N is an R-linear transformation, the kernel and

image of ϕ are both R-modules, and the homomorphism theorems for groups carry over to theorems

about linear transformations of R-modules. For example, an R-linear map ϕ : M → N induces an

injective R-linear map ϕ : M/ kerϕ→ N that is an isomorphism of M/ kerϕ with imϕ.
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Definition 2.16. For R-modules M and N , their direct sum is

M ⊕N = {(m,n) : m ∈M, n ∈ N}

with componentwise addition and with scaling defined by

r(m,n) = (rm, rn).

More generally, for any collection of R-modules {Mi}i∈I , their direct sum is the R-module⊕
i∈I

Mi = {(mi)i∈I : mi ∈Mi and all but finitely many mi are 0}

and their direct product is the R-module∏
i∈I

Mi = {(mi)i∈I : mi ∈Mi} .

The construction of the direct sum and direct product of R-modules appears different only when

the index set I is infinite. In particular, we may write M ⊕N or M ×N for this common notion

when given just two R-modules M and N .

Note M 'M ⊕ {0} and N ' {0} ⊕N inside M ⊕N .

As in group theory, there is a criterion for a module to be isomorphic to the direct product of two

submodules by addition: if L is an R-module with submodules M and N , we have M ⊕N ' L by

(m,n) 7→ m+n if and only if M+N = L and M ∩N = {0}. (Addition from M⊕N to L is R-linear

by the way the R-module structure on M ⊕ N is defined. Then the property M + N = L makes

the addition map surjective and the property M ∩N = {0} makes the addition map injective.)

3. Linear independence, bases, and free modules

Let M be an R-module. Recall a spanning set {mi}i∈I is a subset such that for each m ∈M ,

m =
∑
i∈I

rimi

where ri ∈ R and ri = 0 for all but finitely many i.

Definition 3.1. In an R-module M , a subset {mi}i∈I is called linearly independent if the only

relation
∑

i rimi = 0 is the one where all ri are 0, and linearly dependent otherwise: there is

a relation
∑

i rimi = 0 where some ri is not 0. A subset of M is called a basis if it is a linearly

independent spanning set. A module that has a basis is called a free module , and if the basis is

finite then M is called a finite-free module .

Example 3.2. The R-module Rn = {(r1, . . . , rn) : ri ∈ R} has basis {e1, . . . , en} where

ei = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0).

Example 3.3. The R-module R[T ] has basis
{

1, T, T 2, T 3, . . .
}

.
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It is not hard to check that in a module every subset of a linearly independent subset is linearly

independent and every superset of a linearly dependent set is linearly dependent (the calculation

goes exactly as in linear algebra), but beware that a lot of the geometric intuition we develop about

linear independence and bases of vector spaces in linear algebra over fields breaks down for modules

over rings. The reason is that rings in general behave differently from fields: two nonzero elements

need not be multiples of each other and some nonzero elements are zero divisors.

Perhaps the most basic intuition about linear independence in vector spaces that has to be used

with caution in a module is the meaning of linear independence. In a module, linear independence

is defined to mean “no nontrivial linear relations,” but in a vector space linear independence

has an entirely different-looking but equivalent formulation: no member of the subset is a linear

combination of the other members in the subset. This latter condition is a valid property of linearly

independent subsets in a module (check!) but it is not a characterization of linear independence in

modules in general:

Example 3.4. In M := Z as a Z-module, we cannot write either of the elements 2, 3 ∈ M as a

Z-multiple of the other (only integer coefficients allowed!), but the subset {2, 3} in M is linearly

dependent: a · 2 + b · 3 = 0 using a = 3 and b = −2.

So the key point is that in a module, if we have a linear dependence relation
∑
rimi = 0 with

some ri0 6= 0 and we rewrite this as an equality ri0mi0 =
∑

i 6=i0(−ri)mi, in order to “divide out”

the ri0-multiplier on the left side as we would do in linear algebra we need a multiplicative inverse

r−1i0 ∈ R. Indeed, with such an inverse available we could multiply throughout by r−1i0 to turn the

left side into 1 ·mi0 = mi0 and the right side into
∑

i 6=i0(−rir−1i0 )mi, thereby expressing mi0 as an

R-linear combination of the other mi’s.

Overall, when R is not a field, there must exist some nonzero r ∈ R that is not a unit (by definition

of “field”!) and so passing from a non-trivial linear dependence relation to an expression of some

mi0 in terms of the others really runs into difficulties. This may seem like a minor issue but it

makes a huge difference, and causes the general structure of modules to be vastly more complicated

that that of vector spaces. Informally speaking, as the ideal theory of R gets more complicated it

becomes more difficult to describe the structure of typical (even just finitely generated) R-modules.

The concept of linear independence as defined above, rather than the more intuitive idea of no

element being a linear combination of others, turns out to be the right one to use for modules over

general rings.

Another surprise with modules is that, although every (nonzero) finitely generated vector space

has a basis, a nonzero finitely generated module need not have a basis: non-free modules exist in

great abundance over rings that are not fields. We’ve actually already seen an example, and here

it is again.

Example 3.5. Let R = Z[
√
−5] and let

p = (2, 1 +
√
−5) = 2R+ (1 +

√
−5)R.
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So
{

2, 1 +
√
−5
}

spans p as an R-module (by definition) but this subset is linearly dependent:

2a+ b(1 +
√
−5) = 0

using a = 1 +
√
−5 and b = −2. More generally, any two x, y ∈ p are linearly dependent over

R: ax + by = 0 using a = y and b = −x and one of these coefficients a and b is nonzero unless

x = y = 0, in which case we can use a = b = 1. So a linearly independent subset of p has only one

member, which means a basis of p, if one exists, must have size 1. But if {α} were an R-basis for

p then p = Rα = (α), yet it is a fact that p is not principal. So p is an R-module without a basis.2

Here are more contrasts between finitely generated vector spaces and modules.

(1) In a vector space every nonzero element is a linearly independent subset, but in a module

this can be false: in M := Z/6Z viewed as a Z-module the subset {2} in M is Z-linearly

dependent since 3 · 2 = 0.

(2) In a (finitely generated) vector space a maximal linearly independent subset is a spanning

set, but in a module this can be false: in Z as a Z-module the subset {2} is a maximal

linearly independent subset but Z · 2 6= Z.

(3) In a (finitely generated) vector space a minimal spanning set is linearly independent, but

in a module this can be false: in Z as a Z-module {2, 3} is a spanning set (because a =

3a−2a = a ·3+(−a) ·2) and is minimal (neither {2} nor {3} spans Z), but it is not linearly

independent since 0 = 2 · 3 + (−3) · 2.
(4) In a vector space every linearly independent subset can be enlarged to a basis and every

spanning set contains a basis, but in a module this can be false since a nonzero module need

not contain a basis (Example 3.5). This property is even false in a module that has a basis.

For example, Z as a Z-module has a basis, namely {1}, but {2} is a linearly independent

subset of Z that can’t be enlarged to a Z-basis of Z and {2, 3} is a spanning set of Z that

does not contain a Z-basis of Z.

(5) If V and W are finite-dimensional vector spaces (over the same field) with the same di-

mension and ϕ : V → W is linear, then injectivity of ϕ is equivalent to surjectivity of ϕ.

This can be false for finite-free modules. View Z as a Z-module (with basis {1}) and let

ϕ : Z→ Z by ϕ(m) = 2m. This is injective but not surjective.3

Even if a module has a basis, its submodules don’t have to inherit that property, and if they do

always admit a basis then there are still some contrasts with vector spaces:

(1) A submodule of a finite-free R-module need not be free. Let R = Z[
√
−5], viewed as an

R-module, and let p = (2, 1 +
√
−5). Then R has R-basis {1} while p is finitely generated

but has no R-basis since the ideal p is not principal.

(2) A submodule of a finite-free R-module need not have a finite spanning set. An example

of this would be any ring R that has an ideal I that is not finitely generated. Then R

2The same reasoning shows for any commutative ring R, a nonprincipal ideal in R is an R-module without a basis.
3Perhaps surprisingly, it turns out that in general surjectivity of an R-linear map ϕ : Rn → Rn implies injectivity.
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has R-basis {1} and I is a submodule without a finite spanning set. Such rings do exist

(though they are not as common to encounter in practice as you might expect); perhaps

the most natural example is the ring C∞(R) of smooth functions R → R with pointwise

operations. The set of functions in C∞(R) whose derivatives of all orders at 0 vanish (it

contains e−1/x
2
) is an ideal and can be shown not to be finitely generated.

(3) A finite-free R-module can strictly contain a finite-free R-module with bases of the same

size (a phenomenon that never occurs in linear algebra: a subspace with the same finite

dimension must exhaust the entire space). For example, with R = Z we can use M = Zd

and N = (2Z)d with any d > 0. More generally, for any domain R that is not a field and

any nonzero non-unit a ∈ R we can use M = Rd and N = (Ra)d.

4. Abelian groups vs. modules

What is a Z-module? It’s an abelian group M equipped with a map Z ×M → M such that

1m = m, a(m + m′) = am + am′ and (a + a′)m = am + a′m. Armed with these conditions, it’s

easy to see by induction that for a ∈ Z+,

am = m+m+ · · ·+m︸ ︷︷ ︸
a times

and

(−a)m = a(−m) = −m−m− · · · −m︸ ︷︷ ︸
|a| times

,

so Z-multiplication on a Z-module is nothing other than repeated addition. That is just the usual

concept of integral multiples in an abelian group (or integral powers if we used multiplicative

notation for the group law in M), so an abelian group M has only one Z-module structure.

In other words, a Z-module is just another name for an abelian group, and its Z-submodules are

just its subgroups. A Z-linear transformation between two Z-modules is just a group homomor-

phism (“additive map”) between abelian groups, because the scaling condition ϕ(am) = aϕ(m)

with a ∈ Z is true for all group homomorphims ϕ. (Warning. A nonabelian group is not a

Z-module! Modules always have commutative addition by definition.)

There are many concepts related to abelian groups that generalize in a useful way to R-modules.

If the concept can be expressed in terms of Z-linear combinations, then replace Z with R and

presto: you have the concept for R-modules. Below is a table of comparison of such concepts.

For instance, a cyclic module is an R-module for which there is an element whose R-multiples

give everything in the module (e.g., an ideal in R is a cyclic R-module precisely when it is a

principal ideal, and for any ideal I in R the R-module R/I is a cyclic since everything in R/I is

an R-multiple of 1 mod I). Likewise, finitely generated modules have arisen earlier in the context

of finitely generated ideals. In this table, we require R to be a domain when discussing the notion

of “torsion element”4, which is to say m ∈ M such that rm = 0 for some r 6= 0. The point is

4The word “torsion” means “twistiness”. It entered group theory from algebraic topology: the nonorientability of
some spaces is related to the presence of nonzero elements of finite order in a homology group of the space. Then it
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that R− {0} needs to be closed under multiplication (i.e., R is a domain) in order for the concept

of “torsion element” to be useful; e.g., if rm = 0 with r 6= 0 and r′m′ = 0 with r′ 6= 0 then

(rr′)(m+m′) = 0 but we then want rr′ to be nonzero. (For an example of what goes wrong when

R isn’t a domain, consider R = Z/6Z as an R-module, so the set of elements of R annihilated by

a nonzero element of R is {0, 2, 3, 4, 6}, and this is not closed under addition! If we regard R as a

Z-module (just an abelian group), then every element of R is a Z-torsion element.)

Abelian Group R-module

Homomorphism R-linear map

Subgroup R-submodule

Cyclic: 〈g〉 = {ng : n ∈ Z} Cyclic R-module: M = Rm

for some m.

Finitely generated: G =

〈g1, . . . , gk〉 = Zg1 + · · ·+ Zgk.

Finitely generated R-module:

M = Rm1 + · · ·Rmk for some

m1, . . . ,mk.

Finite order: ng = 0 for an

n 6= 0.

Torsion element: rm = 0 for

an r ∈ R− {0}.

Torsion group: every element

of G has finite order.

Torsion module (for R a do-

main): every element of M is

a torsion element.

Torsion subgroup: {g ∈ G :

g has finite order}.

Torsion submodule of M (for

R a domain): {m ∈ M | rm =

0 for some r 6= 0}.

Torsion-free abelian group: no

element of finite order except

0.

Torsion-free R-module (for R

a domain): no torsion element

except 0.

Finite abelian group: finitely

generated torsion abelian

group. (False characterization

of finite nonabelian groups!)

Finitely generated torsion R-

module (for R a domain).

What does a cyclic module really mean? Just that there is one element whose R-multiples give

you everything in the module. For example, an ideal in R is a cyclic R-module precisely when it

was natural to use the term torsion to refer to elements of finite order in any group, and replacing integral multiples
with ring multiples led to the term being used in module theory for the analogous concept.
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is a principal ideal. For any ideal I in R, R/I is a cyclic R-module since everything in R/I is an

R-multiple of 1 mod I.

We have seen finitely generated modules earlier: a finitely generated ideal is an example.

Example 4.1. Let G = C×. This is an abelian group, so a Z-module, but written multiplicatively

(m acts on z as zm). Its torsion subgroup is all the roots of unity, an infinite subgroup. So the

torsion subgroup of an abelian group need not be finite (unless it is finitely generated).

Example 4.2. Let U = Z[
√

2]× = ±(1 +
√

2)Z. This is an abelian group, so a Z-module (think

multiplicatively!). Its torsion subgroup is {±1}.

Example 4.3. If I is a nonzero ideal in a domain R, then R/I is a torsion R-module: pick

c ∈ I − {0}, and then for all m ∈ R/I we have cm = 0 since Rc ⊂ I. As a special case, Z/kZ is a

torsion abelian group when k is nonzero.

Example 4.4. Any vector space V over a field F is torsion-free as an F -module: if cv = 0 and

c 6= 0 then multiplying by c−1 gives c−1(cv) = 0, so (c−1c)v = 0, so v = 0. Thus only 0 ∈ V is an

F -torsion element.

The last entry in our table above says that for R a domain, the R-module analogue of a finite

abelian group is a finitely generated torsion R-module. One may think at first that the module

analogue of a finite abelian group should be an R-module that is a finite set, but one hardly meets

such R-modules, so that analogue is much too restrictive to be a useful definition.

5. Isomorphisms of ideals

Let’s take a look at the meaning of isomorphisms of modules in the context of ideals in a ring: for

ideals I, J ⊂ R, when are I and J isomorphic as R-modules (i.e., when does there exist a bijective

R-linear map between I and J)?

Example 5.1. Let I = 2Z and J = 3Z in Z. Let ϕ : I → J by ϕ(x) = (3/2)x. This is an

isomorphism of Z-modules.

Even when two ideals are not principal, the simple scaling idea in the previous example completely

accounts for how two ideals could be isomorphic modules, at least in a domain:

Theorem 5.2. If R is an domain with fraction field K, then ideals I and J in R are isomorphic

as R-modules if and only if I = cJ for some c ∈ K×. In particular, I ' R as an R-module if and

only if I is a nonzero principal ideal.

Proof. When I ' J or when I = cJ for some c ∈ K×, I = 0 if and only if J = 0, so we may

suppose now that I, J 6= 0.

If I = cJ for some c ∈ K×, then ϕ : I → J by ϕ(x) = 1
cx is R-linear: it is obviously additive and

ϕ(rx) = 1
c rx = rϕ(x). Also, ϕ is a bijection with inverse ϕ−1 : J → I defined by ϕ−1(y) = cy. So

I ' J as R-modules.
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Now suppose, conversely, there is an R-module isomorphism ϕ : I → J . We seek c ∈ K× such

that ϕ(x) = cx for all x ∈ I. We’ll use the following trick: for any x, x′ ∈ I,

ϕ(xx′) = xϕ(x′) = x′ϕ(x).

In K, if x, x′ 6= 0, we get
ϕ(x)

x
=
ϕ(x′)

x′
.

So set c = ϕ(x)/x ∈ K× for any x ∈ I − {0}; we just saw that this is independent of x. Then

ϕ(x) = cx for all x ∈ I − {0}: this is obvious if x = 0 and holds by design of c if x 6= 0. Thus,

J = ϕ(I) = cI. �

Example 5.3. Let R = Z[
√
−5], p = (3, 1 +

√
−5) and q = (3, 1−

√
−5). Complex conjugation is

Z-linear and from the description

p =
{

3α+ (1 +
√
−5)β : α, β ∈ Z[

√
−5]
}

we get p = (3, 1 −
√
−5) = q. So p and q are isomorphic as Z-modules since complex conjugation

is a Z-module isomorphism.

But are p and q isomorphic as R-modules? Complex conjugation on R is not R-linear (since cx

is equal to c x rather than equal to cx), so the isomorphism we gave between p and q as Z-modules

doesn’t tell us how things go as R-modules. In any event, if p and q are to be somehow isomorphic

as R-modules then we definitely need a new bijection between them to show this! The previous

theorem tells us that the only way p and q can be isomorphic R-modules is if there is a nonzero

element of the fraction field Q[
√
−5] that scales p to q, and it is not clear what such an element

might be.

It turns out that p and q are isomorphic as R-modules, with one isomorphism ϕ : p→ q being

ϕ(x) =
2 +
√
−5

3
x.

(Of course this is also a Z-module isomorphism.) The way this example is discovered involves some

concepts in algebraic number theory, and here is an example (also explained by algebraic number

theory) with the opposite conclusion: consider R′ = Z[
√
−14] and the ideals

p′ = (3, 1 +
√
−14) and q′ = (3, 1−

√
−14)

that satisfy p′ = q′, so p′ ' q′ as Z-modules using complex conjugation. It turns out that p′ and q′

are not isomorphic as R′-modules (but proving this requires some work).

6. Applications to linear algebra

Example 6.1. Let V = R2. This is an R-vector space. It has a two-element spanning set over R;

e.g., ( 1
0 ) , ( 0

1 ). It is torsion-free as an R-module, as are all vector spaces. But when we introduce

a matrix A acting on V , we can turn V into a finitely generated torsion module over the domain

R[T ]. Here’s how that works.
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Let A = ( 3 2
5 4 ). The effect of A on R2 lets us put an action of R[T ] on R2 through polynomial

values at A: declare

f(T ) · v = f(A)v.

Concretely, Tv = Av, T 2v = A2v, and (T 2 − T )v = (A2 − A)v. It is left to the reader to check

this makes V into an R[T ]-module, the key point being not the specific A but that A is R-linear;

the choice of A can be any matrix and we still get an R[T ]-module structure on V , but it might

be a different kind of R[T ]-module for different choices of A.

To get a feel for what making R2 into an R[T ]-module gives us, let’s see that we can get

anywhere in R2 from the single vector ( 1
0 ) using the R[T ]-multiplication based on making T act

as the preceding explicit A (so R2 becomes a cyclic R[T ]-module, no longer needing a 2-element

spanning set as it did when viewed as a vector space over R). For any vector
(
x
y

)
, we will find

a, b ∈ R such that

(aT + b)

(
1

0

)
=

(
x

y

)
.

This is the same as requiring ((
3a 2a

5a 4a

)
+ b

)(
1

0

)
=

(
x

y

)
,

which means (
3a+ b

5a

)
=

(
x

y

)
.

That is, we want 3a+ b = x and 5a = y, which is to say a = y/5 and b = x− 3y/5. So(
x

y

)
=

(
y

5
T + x− 3

5
y

)(
1

0

)
.

As an R[T ]-module through the action of A on vectors, R2 is a torsion module because of the

Cayley-Hamilton theorem: the matrix A is killed by its characteristic polynomial

χA(T ) = det(T · I2 −A)

= det

((
T 0

0 T

)
−

(
3 2

5 4

))

= det

(
T − 3 −2

−5 T − 4

)
= T 2 − 7T + 2.

Since χA(A) = A2− 7A+ 2I2 = ( 0 0
0 0 ) (as we verify directly, or by appealing to the general Cayley-

Hamilton Theorem), the nonzero T 2 − 7T + 2 ∈ R[T ] kills everything in V = R2.

Let’s compare: as an R-vector space, R2 is finitely generated and torsion-free, but as an R[T ]-

module where T acts via A = ( 3 2
5 4 ), R2 is a finitely generated (cyclic) torsion module.
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Example 6.2. If instead we take A = ( 1 0
0 1 ) then we can make R2 into an R[T ]-module by letting

T act as the identity matrix: f(T ) · v = f(I2)v. Now

f(I2) =

(
f(1) 0

0 f(1)

)
,

so f(I2)v = f(1)v is just a scalar multiple of v. Thus the only place that the new R[T ]-

multiplication can move a given vector is to an R-multiple of itself. Therefore R2 in this new

R[T ]-module structure is not a cyclic module as it was in the previous example. But R2 is still

finitely generated as an R[T ]-module (the standard basis is a spanning set) and it is a torsion

module since (T − 1)v = I2v − v = 0 (so all elements are killed by T − 1).

Studying linear operators on Rn from the viewpoint of torsion modules over R[T ] is the key

to unlocking the structure of matrices in a conceptual way because the structure theory for finite

abelian groups carries over to finitely generated torsion modules over any PID (like R[T ]). For

example, any finitely generated torsion module over a PID is a direct sum of cyclic modules,

generalizing the fact that any finite abelian group is a direct sum of cyclic groups.

Let’s now revisit the topic of isomorphisms of modules, this time with vector spaces over a field F

viewed as F [T ]-modules for F -linear operators in the role of T -multiplication. Say A,B ∈ Matn(F )

where F is a field and n ≥ 1. Generalizing Examples 6.1 and 6.2, we can view V = Fn as an

F [T ]-module in two ways, by letting the action of T on V be A or B:

(6.1) f(T ) · v = f(A)(v)

or

(6.2) f(T ) · v = f(B)(v)

for f(T ) ∈ F [T ]. Let VA be V with F [T ]-multiplication as in (6.1) (so Tv = Av) and let VB be

V with F [T ]-multiplication as in (6.2) (Tv = Bv). Whether or not VA and VB are isomorphic

F [T ]-modules turns out to be equivalent to whether or not A and B are conjugate matrices:

Theorem 6.3. As F [T ]-modules, VA ' VB if and only if B = UAU−1 for some U ∈ GLn(F ).

Proof. The proof will be almost entirely a matter of unwinding definitions.

Suppose ϕ : VA → VB is an F [T ]-module isomorphism. This means ϕ is a bijection and

ϕ(v + v′) = ϕ(v) + ϕ(v′), ϕ(f(T )v) = f(T )ϕ(v)

for all v,v′ ∈ V and f(T ) ∈ F [T ]. Polynomials are sums of monomials and knowing multiplication

by T determines multiplication by T i for all i ≥ 1, so the above conditions on ϕ are equivalent to

ϕ(v + v′) = ϕ(v) + ϕ(v′), ϕ(cv) = cϕ(v), ϕ(Tv) = Tϕ(v)

for all v and v′ in V and c in F . The first two equations say ϕ is F -linear and the last equation

says ϕ(Av) = Bϕ(v) for all v ∈ V . So ϕ : V → V is an F -linear bijection and ϕ(Av) = Bϕ(v)

for all v ∈ V . Since V = Fn, every F -linear map ϕ : V → V is a matrix transformation: for some
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U ∈ Matn(F ),

ϕ(v) = Uv.

Indeed, if there were such a matrix U then letting v run over the standard basis e1, . . . , en tells us the

i-th column of U is ϕ(ei), so turn around and define U to be the matrix [ϕ(e1) · · ·ϕ(en)] ∈ Matn(F )

having ith column ϕ(ei). Then ϕ and U have the same values on the ei’s and both are linear on

Fn, so they have the same value at every vector in Fn. Since ϕ is a bijection, U is invertible, i.e.,

U ∈ GLn(F ). Now the condition ϕ(Av) = Bϕ(v) for all v ∈ V means

U(Av) = B(Uv) ⇐⇒ Av = U−1BUv

for all v ∈ V = Fn. Letting v = e1, . . . , en tells us that A and U−1BU have the same ith column

for all i, so they are the same matrix: A = U−1BU , so B = UAU−1.

Conversely, suppose there is an invertible matrix U ∈ GLn(F ) with B = UAU−1. Define

ϕ : VA → VB by ϕ(v) = Uv. This is a bijection since U is invertible. It is also F -linear. To show

ϕ(f(T )v) = f(T )ϕ(v)

for all v ∈ V and f(T ) ∈ F [T ], it suffices by F -linearity to check

ϕ(T iv) = T iϕ(v)

for all v ∈ V and for i ≥ 0. For this to hold, it suffices to check ϕ(Tv) = Tϕ(v) for all v ∈ V .

This last condition just says ϕ(Av) = Bϕ(v) for all v ∈ V . Since B = UAU−1, UA = BU , so

ϕ(Av) = U(Av) = (UA)v = (BU)v = B(Uv) = Bϕ(v)

for all v ∈ V . What we wanted to check is true, so we are done. �

Not only did this proof show an F [T ]-module isomorphism of VA to VB exists exactly when A and

B are conjugate matrices in Matn(F ), but it showed us the isomorphisms are exactly the invertible

matrices that conjugate A to B (solutions U of B = UAU−1). The importance of this theorem

is that it places the conjugation problem for matrices in Matn(F ) (decide when two matrices are

conjugate) into the mainstream of abstract algebra as a special case of the isomorphism problem

for modules over F [T ], which is a PID, and this viewpoint leads to a solution (called “rational

canonical form”) of the conjugation problem for matrices over a field.

More generally, for any commutative ring R and A and B in Matn(R), we can make Rn into an

R[T ]-module in two ways (letting f(T ) act on Rn as f(A) or as f(B)) and the preceding calculations

show that these R[T ]-module structures on Rn are isomorphic if and only if B = UAU−1 for some

U ∈ GLn(R).5

5The group GLn(R) of invertible matrices consists of exactly those U ∈ Matn(R) where detU ∈ R×, which is not
the condition detU 6= 0 except when R is a field (precisely the case when R× = R− {0}).
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