
CHOW’S LEMMA

Matthew Emerton

The aim of this note is to prove the following form of Chow’s Lemma:
Suppose that f : X → S is a separated finite type morphism of Noetherian

schemes. Then (for some sufficiently large n) there exists a diagram of the following
type

X ′ i
↪→ Pn

X

f ′

→ Pn
S

↓ p′ ↓ p

X
f→ S

in which the right-hand square is the Cartesian diagram exhibiting Pn
X as the

base-change of Pn
S via the morphism f , and i is a closed immersion, such that the

composition p′◦i is surjective and induces an isomorphism over a dense open subset
of X, and such that the composition f ′ ◦ i is an immersion.

In other words, we can write any separated scheme of finite type over S as the
image under a birational projective map of a quasi-projective S-scheme.

We argue by induction on the number of irreducible components of X. Let us
complete the inductive step first: suppose that X is reducible, and write X = Y ∪Z
with each of Y and Z a non-empty proper closed subset of X. Let U = Y \ Z and
V = Z \ Y . If we choose Y and Z each to be a union of irreducible components of
X, having no irreducible component in common, then we see that U is dense in Y
and that V is dense in Z, and that in fact the intersection of U (respectively V )
with any dense open subset of Y (respectively Z) is again dense in Y (respectively
Z). We assume that we have chosen Y and Z in this fashion. Then each of Y and
Z has fewer irreducible components then X.

Let I be the ideal sheaf in OX which cuts out the reduced induced structure on
X. Then when we restrict I to the open subset (of both Y and X) U it is a nil ideal
(i.e. every section is locally nilpotent) and thus is nilpotent, since U is open in a
Noetherian scheme and thus is itself a Noetherian scheme. Suppose that IM

U = 0.
Then give Y the closed subscheme strucutre corresponding to the sheaf of ideal IM ,
and let jY : Y ↪→ X the corresponding closed immersion. This choice of scheme
structure has the nice property that the open set U has the same scheme structure
whether we regard it as an open subset of X or of Y . Similarly, if we write J for the
ideal sheaf cutting out the reduced induced scheme structure on Z, then JN

V = 0
for some N . We give Z the closed subscheme structure corresponding to the ideal
sheaf JN , and let jZ : Z ↪→ X denote the corresponding closed immersion. Then
V has the same scheme structure whether we regard it as an open subset of X or
of Z.

Since closed immersions are finite type and separated, we see that the composi-
sitions f ◦ jY : Y → S and f ◦ jZ : Z → S are finite type and separated. By the
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inductive hypothesis, Chow’s Lemma holds for each of Y and Z. So we may find
diagrams

Y ′ iY
↪→ PnY

Y

(f◦jY )′→ PnY

S

↓ p′Y ↓ p

Y
f◦jY→ S

and
Z ′ iZ

↪→ PnZ

Z

(f◦jZ)′→ PnZ

S

↓ p′Z ↓ p

Z
f◦jZ→ S

having the properties listed in the statement of Chow’s Lemma. In particular,
combining the conclusions of Chow’s Lemma with our above observation, we see
that there is a dense open subset U ′ of Y , which we may assume to be contained in
U (by intersecting it with U if necessary), over which p′Y ◦iY is an isomorphism, and
that there is a dense open subset V ′ of Z, which we may assume to be contained
in V (by intersecting it with V if necessary), over which p′Z ◦ iZ is an isomorphism.

The closed immersion jY : Y ↪→ X induces a closed immersion PnY

Y

j′
Y

↪→ PnY

X .
Similarly the closed immersion jZ : Z ↪→ X induces a closed immersion

PnZ

Z

j′
Z

↪→ PnZ

X . Thus we can factor each of the above diagrams in the following
way:

Y ′ iY
↪→ PnY

Y

j′
Y

↪→ PnY

X

f ′

→ Pn
S

↓ p′Y ↓ p′ ↓ p

Y
jY
↪→ X

f→ S

and

Z ′ iZ
↪→ Pn

Z

j′
Z

↪→ PnZ

X

f ′

→ Pn
S

↓ p′Z ↓ p′ ↓ p

Z
jZ→ X

f→ S .

We may take the disjoint unions of the two composite closed immersions j′Y ◦ iY
and j′Z ◦ iZ to obtain the following diagram:

Y ′ ∐ Z ′ (j′
Y ◦iY )

∐
(j′

Z◦iZ)
↪→ PnY

X

∐
PnZ

X

f ′

→ PnY

S

∐
PnZ

S

↓ ↓ p′ ↓ p

Y
∐

Z
jY

∐
jZ→ X

f→ S .

Now (j′Y ◦ iY )
∐

(j′Z ◦ iZ) is a disjoint union of closed immersions, and so is a closed
immersion, while f ′◦((j′Y ◦iY )

∐
(j′Z◦iZ)) = ((f◦i)′◦iY )

∐
((f◦j)′◦iZ) is the disjoint

union of two immersions and so is an immersion. Also, p′ ◦ ((j′Y ◦ iY )
∐

(j′Z ◦ iZ)) =
jY ◦ p′Y ◦ iY

∐
jZ ◦ p′Z ◦ iZ induces an isomorphism over U ′ and V ′. (It is here that

we are using the fact that U and V , and hence U ′ and V ′, have the same scheme
structure whether we regard them as open subsets of Y and Z or of X. We are of
course also using the fact that U and V , and hence U ′ and V ′, are disjoint in X.)
Since U ′ is dense in Y and V ′ is dense in Z, we see that U ′ ∪ V ′ is dense in X.
Thus in order to prove Chow’s Lemma for X, it suffices to find a closed immersion
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PnY

S

∐
PnZ

S ↪→ Pn
S for some n, for then the following diagram

Pn
X

f ′

→ Pn
S

↑ ↑

Y ′ ∐ Z ′ (j′
Y ◦iY )

∐
(j′

Z◦iZ)
↪→ PnY

X

∐
PnZ

X

f ′

→ PnY

S

∐
PnZ

S

↓ ↓ p′ ↓ p

Y
∐

Z
jY

∐
jZ→ X

f→ S .

would prove Chow’s Lemma for X, by taking X ′ = Y
∐

Z, and taking i to be
the closed immersion i : X ′ = Y ′ ∐ Z ′ ↪→ PnY

X

∐
PnZ

X ↪→ Pn
X . But if we take

n = nY + nZ + 1 then we may find a closed immersion PnY

S

∐
PnZ

S ↪→ Pn
S by

identifying PnY

S with the linear subspace TnY +1 = · · · = Tn = 0 and identifying PnZ

S

with the linear subspace T0 = · · · = TnY
= 0. (Here Ti denote the homogeneous

coordinates on Pn
S .) Thus by induction, we are reduced to the case in which X is

irreducible.
Before continuing, let us remark that if the above argument seems a little com-

plicated, it is only because we have named everything involved. The idea is very
simple: we find X ′ mapping onto X by writing X = Y ∪ Z, finding Y ′ mapping
onto Y and Z ′ mapping onto Z, and taking X ′ = Y ′ ∐ Z ′.

Let us now assume that X is irreducible, so that every non-empty open subset of
X is dense in X. Since S is Noetherian and X is finite type over S, we may cover S
by finitely many affine opens Spec Ai, and then cover the preimage of each Spec Ai

in X by finitely many affine opens Spec Bij , with each Bij a finite type Ai-algebra.
Suppose that Bij is a quotient of Ai[T1, . . . , Tr]. (We may take the same r for ever4
Bij with no loss of generality, since the Bij are finite in number.) Then Spec Bij is
a closed subset of Ar

Spec Ai
, which is an open subset of Ar

S . To summarize, X can
be covered by finitely many affine opens, each of which admits an immersion into
Ar

S for sufficiently large r. Let us now forget the Ai and Bij notation, and simply
refer to these affine open subsets of X as U1, . . . , Um. Ar

S is an open subset of Pr
S ,

and thus each Ui immerses into Pr
S . Let Pi denote the scheme theoretic image of

Ui in Pr
S . (This scheme-theoretic image exists because we are in the Noetherian

case, so this immersion is automatically quasi-compact. The underlying space of
Pi is the closure of Ui in Pj

S). Then the map Ui → Pi is an open immersion.
Let us write P = P1 ×S · · · ×S Pm, and for each i write

P i = P1 ×S · · · ×S P̂i ×S · · · ×S Pm

(where P̂i means “omit Pi from the product”). Each Pi is a closed subscheme of a
projective space over S and so is proper over S. Thus each of the products P and
P i is proper over S. Let us also write U =

⋂m
i=1 Ui. Since X is irreducible, each

Ui is dense in X, and so U is dense in X. Let h be the map U → X ×S P defined
so that the projection onto X is simply the inclusion U ⊂ X, while the projection
onto Pi is the open immersion U ⊂ Ui → Pi. We are going to define X ′ to be the
scheme-theoretic image of h, which is a closed subscheme of X ×S P .

Each Pi is a closed subscheme of a projective space over S, so their product
P is a closed subscheme of a product of projective spaces. The Segre embedding
realizes a product of projective spaces as a closed subscheme of a projective space
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of sufficiently large dimension, say n. Thus we obtain a diagram

X ′ ↪→ X ×S P ↪→ Pn
X → Pn

S

↓ ↓ ↓
P → X → S.

In order to conclude that Chow’s Lemma is true for X, we have to show that the
projection X ′ → P is an immersion, and that X ′ → X is an isomorphism over
a dense open set. It will then follow that X ′ → X is surjective, because it is
closed (being the composition of the closed immersion X ′ → X ×S P and the map
X ×S P → X, which is closed because P → S is proper) and dominant (being an
isomorphism over a dense open subset of X). We now turn to proving these two
facts about X ′.

Before giving the details of the argument, let us give the gist of it, by imagining
that X, U , and each of the Ui and Pi are simply topological spaces rather than
schemes. Assume that U is dense in each Ui, and that each Ui is in turn dense in the
respecitve Pi, which we assume are compact Hausdorff (the topological analogue
of being proper). We also assume that X is Hausdorff (the topological analogue of
being separated). The map h is just the diagonal map

u → h(u) = (u, · · · , u) ∈ X × P1 × · · · × Pm.

We wish to understand X ′, the closure of the image of h. Thus suppose that h(us)
is a sequence of points in the image, converging to some point v = (x, p1, . . . , pm)
in X × P1 · · · × Pm = X × P . (Since X and each of the Pi is Hausdorff, this limit
is uniquely determined.) Since X is covered by the open sets Ui, x must lie in Ui

for some i. Then we see that the sequence us converges to x in Ui, and so also in
Pi (since Ui is a subset of Pi). Since Pi is Hausdorff, the sequence us has a unique
limit in Pi, and so we see that x = pi.

Suppose that v′ = (x′, p′1, . . . , p′m) is the limit of some other sequence h(u′
s) of

points in the image of h such that (p′1, . . . , p′m) = (p1, . . . , pm). Then in particular
p′i = pi is in in Ui, and we see that the u′

s converge to pi in Ui, so that then
also x′ = lim u′

s = pi = x, and so v′ = v. Thus the projection X × P → P is a
homeomorphism when restricted to X ′. Furthermore, x ∈ Ui if and only if pi ∈ Ui,
in which case x = pi. This easily implies that X ′ projects homeomorphically onto
a locally closed subset of P1 × · · · × Pm (the topological analogue of being an
immersion). For if we let X ′

i denote that subset of X ′ for which x (and thus pi) is
an element of Ui, we see that X ′

i maps homeomorphically onto the closure of the
diagonal image of U in the open subset P1 × · · · × Ui × · · ·Pm of P1 × · · ·Pm.

In this context, the argument that X ′ → X is a surjection can be phrased very
simply: let x be an element of X. Then x lies in Ui for some i, and by assumption
we can find a sequence us of points in U converging to x. Then since each Pi is
compact, we may refine this sequence so that it converges in each Pi. Then we see
that h(us) converges to a point of X ′ lying over x ∈ X.

Having illustrated our arguments in this simpler context, let us now give the
scheme-theoretic arguments for Chow’s Lemma. I encourage the reader to consider
how the arguments below are simply reformulations in the language of schemes of
the arguments just given.
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The scheme X is covered by the open sets Ui, and so X×S P is covered by the open
sets Ui ×S P . Thus X ′ is covered by its intersections with each open set Ui ×S P .
Now since U ⊂ Ui for every i, we see that h : U → X ×S P factors through the
open immersion Ui ×S P → X ×S P as

U
hi→ Ui ×S P → X ×S P.

Thus the intersection of X ′ (which is by definition the scheme-theoretic image of
h) and Ui ×S P is precisely the scheme-theoretic image of the map hi.

Since Pi is projective over S, it is separated over S, and so the graph of the
inclusion of S-schemes Ui → Pi is a closed subscheme of Ui ×S Pi, which maps
isomorphically onto Ui via projection onto either the first or second factor (where
in the case of projection onto the second factor, we regard Ui as an open subset of
Pi). We will denote this graph by Γi.

If we base change the closed immersion Γi ↪→ Ui ×S Pi via the map P i → S we
obtain a closed immersion Γi ×S P i ↪→ Ui ×S Pi ×S P i. Now

Pi ×S P i = Pi ×S P1 ×S · · · ×S P̂i ×S · · · ×S Pm
∼→ P1 ×S · · · ×S Pi ×S · · · ×S Pm

simply by rearranging the factors. (In the subsequent argument we will sometimes
use this rearrangement of the factors without explicitly mentioning it.) We define
ki to be the closed immersion which is the composition

ki : Γi ×S P i ↪→ Ui ×S Pi ×S P i ∼→ Ui ×S P.

By contruction hi : U → Ui ×S P factors through the closed immersion ki: let us
write

hi : U
h′

i→ Γi × P i ki→ Ui × P.

Then the scheme-theoretic image of hi is equal to the scheme-theoretic image of h′
i,

since ki is a closed immersion.
Now the composition Γi ×S P i ki

↪→ Ui ×S P → P (where the second arrow is the
natural projection Ui ×S P → P ) factors as indicated in the following diagram:

Γi ×S P i ↪→ Ui ×S Pi ×S P i ∼→ Ui ×S P
↓ ↓ ↓

Ui ×S P i → Pi ×S P i ∼→ P.

The well-definedness of the left-most vertical arrow in this diagram follows from
the fact, which we observed when we introduced Γi, that the projection onto the
second factor Γi → Pi induces an isomorphism of Γi with the open subset Ui of Pi.
In particular, this left-most arrow is the base change of an isomorphism, and so is
itself an isomorphism. The left-most arrow of the bottom row is the base change of
the open immersion Ui → Pi and so is an open immersion. Thus the composition
Γi×S P i → P is the composition of an open immersion and two isomorphisms, and
so is an open immersion.

Now the scheme-theoretic image of hi equals the scheme-theoretic image of h′
i

which is a closed subscheme of Γi ×S P i. Let us denote this by X ′
i. Then the com-

position X ′
i ↪→ Γi ×S P i → P is the composition of an open and closed immersion,

and so is an immersion.
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We now wish to conclude that the composition X ′ → X ×S P → P is an
immersion (recall that X ′ is the scheme-theoretic image of h). We have seen that
X ′ is covered by the open sets X ′

i, each of which has image in the open subscheme
Ui ×S P i of P . Now we claim that in fact X ′

i is equal to the inverse image of
Ui ×S P i in X ′. If we knew this, we would see that the projection X ′ → P is an
immersion locally on P , and so is indeed an immersion.

Let us prove that X ′
i is indeed the inverse image of Ui ×S P i in X ′. The inverse

image of Ui ×S P i in X ×S P is isomorphic to X ×S Ui ×S P i. The morphism h
factors through the open subscheme X ×S Ui ×S P i of X ×S P : let us factor h as

U
hi

→ X ×S Ui ×S P i → X ×S P.

Then the inverse image of Ui ×S P i in X ′ is equal to the scheme-theoretic image of
hi. We wish to show that this is equal to the scheme-theoretic image of h′

i, which
is a closed subscheme of Γi×S P i. Thus it suffices to show that Γi×S P i is a closed
subscheme of X ×S Ui ×S P i. For this, it suffices to show that the Γi is a closed
subscheme of X×S Ui (since closed immersions are preserved by base change). But
the immersion Γi → X ×S Ui is precisely the graph of the inclusion of Ui in X,
which is indeed a closed immersion, since X is separated over S. (This is the only
point at which the separatedness of X is required, but of course it is the crux of
the argument.) This completes the task of showing that X ′ → P is an immersion.

It remains to show that X ′ → X is an isomorphism over a non-empty open
subset of X (necessarily dense, since X is irreducible). We will show that indeed
this map is an isomorphism over the open subset U of X. To see this, we must
consider the inverse image of U in X ′. The inverse image of U in X ×S P is the
open subscheme U × P . The map h : U → X ×S P factors as

U
h→ U ×S P.

Thus the intersection of X ′ and U × P , which is the inverse image of U in X ′,
is equal to the scheme-theoretic image of h′. Thus we would be done if we could
show that h′ is a closed immersion, for then it would equal its own scheme theoretic
image, inducing an isomorphism U

∼→ X ′
|U . But h′ is precisely the graph of the

morphism U → P obtained as the fibre product of the morphisms U → Ui → Pi,
and so is a closed immersion, since P is separated over S. This completes the proof
of Chow’s Lemma.


