
Math 216A. A gluing construction of Proj(S)

1. Some basic definitions

Let S =
⊕

n≥0 Sn be an N-graded ring (we follows French terminology here, even though outside of France

it is commonly accepted that N does not include 0). Morphisms between N-graded rings are understood to
respect the grading. The irrelevant ideal is

S+ =
⊕
n>0

Sn;

keep in mind that we allow S0 to have a nontrivial ideal theory (that is, it need not be a field). An element
f ∈ S is homogeneous if f ∈ Sd for some d, and then d is unique if f 6= 0; we call d the degree of f (when
f 6= 0), and we consider 0 as having arbitrary degree. Note that the equation

deg(fg) = deg(f) + deg(g)

is valid even if one of f , g, or fg vanishes, using the convention that 0 may be considered to have arbitrary
degree. For example, S+ is exactly the set of elements (including 0) with positive degree.

For a general element f ∈ S, the homogeneous parts of f are the projections fd of f into each Sd (so
fd = 0 for all but finitely many d).

An ideal I in S is homogeneous if an element f =
∑

n≥0 fn of S lies in I if and only if each homogeneous part

fn lies in I. It is a simple exercise (inducting on degrees) to check that an ideal generated by homogeneous
elements is a homogeneous ideal, and that homogeneous ideal I in S is prime if and only if it is a proper
ideal and

fg ∈ I ⇒ f ∈ I or g ∈ I
for homogeneous f, g ∈ S. It is also clear that the kernel of a morphism of N-graded rings is a homogeneous
ideal, and that for any homogeneous ideal I of S there is a natural N-grading on S/I.

Definition 1.1. Let S be an N-graded ring. The topological space Proj(S) has underlying set

Proj(S) = {p a homogeneous prime such that S+ 6⊆ p},

and the closed sets are the loci V (I) = {p ∈ Proj(S) | I ⊆ p} for homogeneous ideals I of S (context will
prevent confusion with the analogous “V (I)” notation for affine schemes).

It is easy to check that the V (I)’s do satisfy the axioms to define the closed sets for a topology on Proj(S)
(the empty set is V (S) and Proj(S) = V (0)). A homogeneous prime p fails to contain I if and only if there
exists a homogeneous element f ∈ I that does not lie in p (here we use crucially that I is homogeneous).
Thus, a base of open sets for the topology on Proj(S) is given by loci

D+(f) = {p ∈ Proj(S) | f 6∈ p} = Proj(S)− V (fS)

for homogeneous f ∈ S. A crucial fact is that it is even enough to take f with positive degree:

Lemma 1.2. A base of open sets for the topology on Proj(S) is given by loci D+(f) for homogeneous f ∈ S+.

Proof. Consider a homogeneous f ∈ S and a point p ∈ D+(f). We need to find a homogeneous element
g ∈ S+ such that p ∈ D+(g) ⊆ D+(f). Since p does not contain S+ (by the definition of Proj(S)), there
exists h ∈ S+ not in p. Thus, the condition f 6∈ p implies fh 6∈ p (so fh 6= 0), and fh is homogenous with
positive degree since both f and h are homogeneous and deg h > 0. We conclude that p ∈ D+(fh), and
clearly D+(fh) ⊆ D+(f). �

Beware that Proj(S) is generally not quasi-compact! For example, Proj(k[x1, x2, . . . ]) with infinitely many
indeterminates of degree 1 is not quasi-compact, as it is covered by opens D+(xi) and there is evidently
no finite subcover (compare with the non-quasi-compact Spec(k[x1, x2, . . . ]) − {0} and the quasi-compact
Spec(k[x1, x2, . . . ])). This failure of quasi-compactness is best understood as follows:

1



2

Theorem 1.3. For an N-graded ring S, Proj(S) is empty if and only if all elements of S+ are nilpotent.
More generally, for positive-degree homogeneous elements f and {fi}i∈I in S, D+(f) ⊆ ∪D+(fi) if and only
if some power of f lies in the homogeneous ideal generated by the fi’s.

In particular, a collection of D+(fi)’s with all deg fi > 0 covers Proj(S) if and only if every element of
S+ has some power lying in the homogeneous ideal generated by the fi’s. So when S+ is generated by finitely
many homogenous elements (or equivalently, by homogeneity, is finitely generated as an ideal) then Proj(S)
is quasi-compact. In particular, quasi-compactness holds whenever S is noetherian.

The contrast with Spec is of course that Spec(Afi)’s cover SpecA if and only if the fi’s generate the unit
ideal (and Spec(A) is always quasi-compact, even when A is highly non-noetherian). The interference of
S+ in the analogous covering criterion for Proj, coupled with the possibility that S+ might not be finitely
generated, is the reason why Proj(S) can fail to be quasi-compact. On the other hand, in most interesting
situations the ideal S+ is finitely generated and hence Proj(S) is quasi-compact. However, we note that
some fundamental constructions of Mumford in the study of moduli of abelian varieties rest crucially on the
use of non-quasi-compact Proj’s.

Proof. Let I be the homogeneous ideal generated by the fi’s, so the complement of ∪D+(fi) is the set of
p ∈ Proj(S) that contain I. Hence, we need to determine when D+(f) is disjoint from the set of such p’s, or
equivalently when every p ∈ Proj(S) that contains I also contains f ; we want to show that this condition is
exactly the condition that a power of f lies in I. Passing to the N-graded S/I, we are reduced to proving
that a homogeneous f ∈ S+ lies in p for all p ∈ Proj(S) if and only if f is nilpotent; keep in mind that f
has positive degree. One direction is obvious, and conversely we must prove that if f ∈ S+ is homogeneous
of degree d > 0 and f is not nilpotent, then there exists a homogeneous prime p such that f 6∈ p (and so
S+ 6⊆ p too, so p ∈ Proj(S)).

We will make use of an auxiliary construction that will play an important role later. Let S(d) =
⊕

n≥0 Sdn

(so S(d) = S if d = 1). This is naturally an N-graded ring with vanishing graded pieces in degrees not divisible
by d. Consider the localized ring (S(d))f ; since (S(d))f = S(d)[T ]/(1 − Tf), by assigning T degree −d we

see that (S(d))f naturally has a Z-grading (with vanishing terms away from degrees divisible by d). For

example, s/fn is assigned degree deg(s)− nd for homogeneous elements s ∈ S(d).
Let (S(d))(f) ⊆ (S(d))f denote the direct summand of degree-0 elements in the Z-graded (S(d))f . This

is a ring, and if f is not nilpotent in S then it is not nilpotent in S(d), so then (S(d))f 6= 0 and hence the

subring (S(d))(f) is nonzero. It then follows that there exists a prime ideal q in (S(d))(f). We will use this to

construct a homogeneous prime p in S(d) that does not contain f (and so in particular does not contain S
(d)
+

since deg f > 0); the ideal generated by the homogeneous a ∈ S such that ad ∈ S(d) lies in p is then readily
checked to be a homogeneous prime ideal of S that does not contain f (this rests crucially on the fact that
membership in the homogeneous p may be checked on component-parts).

Let p be the contraction of q(S(d))f under S(d) → (S(d))f . The ideal p of S(d) does not contain f , since

otherwise q(S(d))f would contain the degree-0 element 1, which is absurd since (q(S(d))f ) ∩ (S(d))(f) = q

is a proper ideal. To check that p is homogeneous prime, first observe that (by contstruction) q(S(d))f is

a homogeneous ideal of the Z-graded (S(d))f , so p is a homogeneous ideal of the N-graded S(d). Hence,
to verify primality it is sufficient to work with homogeneous elements. That is, we consider homogeneous
a, a′ ∈ S(d) with respective degrees dn and dn′ and we assume aa′ ∈ p. Our goal is to prove a ∈ p or a′ ∈ p.

Since aa′ ∈ p, the homogenous image of aa′ in (S(d))f is contained in q(S(d))f , so aa′ = (x/fe)fr with

r ∈ Z, x ∈ Skd, and x/fe ∈ q ⊆ (S(d))(f). Thus, by comparing degrees we get dn+ dn′ = dr, so n+ n′ = r.

Hence, aa′/fr = (a/fn)(a′/fn
′
) ∈ (S(d))f is a product of terms with degree 0. However,

a

fn
a′

fn′ =
x

fe
∈ (S(d))(f) ∩ (q(S(d))f ) = q,

so by primality of q in (S(d))(f) we conclude that at least of the degree-0 elements a/fn or a′/fn
′

lies in q!

Hence, either a or a′ in S(d) map into q(S(d))f upon inverting f , so by definition either a or a′ lie in p. �
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2. First steps towards a scheme structure

For homogeneous f ∈ S+, we get an open set D+(f) ⊆ Proj(S) consisting of those p ∈ Proj(S) that
do not contain f . These are a base of open sets, and we claim that D+(f) is naturally homeomorphic to
SpecS(f), where S(f) ⊆ Sf is the degree-0 part of the Z-graded localization of S at the homogeneous f .

To define a homeomorphism

ϕ : D+(f)→ SpecS(f),

to each p ∈ D+(f) we associate the prime ideal

p(f) = (pSf ) ∩ S(f) ∈ SpecS(f);

this is prime because it is the contraction of the prime pSf = pf of Sf under the ring map S(f) ↪→ Sf (note
that pf is prime since p is a prime of S not containing f).

Theorem 2.1. The map ϕ : D+(f)→ Spec(S(f)) is a homeomorphism.

Proof. For any homogeneous ideal a of S, we generalize the above operation on homogeneous prime ideals
by defining

ϕ(a) = (aSf ) ∩ S(f).

For any p ∈ D+(f), we claim

(1) ϕ(a) ⊆ ϕ(p)⇔ a ⊆ p.

Once this is proved, it will follow that ϕ is at least injective. The (⇐) implication is obvious, and for the
converse it suffices to prove that if a ∈ a is a homogeneous element then a ∈ p.

Let n = deg a ≥ 0 and let d = deg f > 0. It follows that

ad

fn
∈ aSf ∩ S(f) = ϕ(a) ⊆ ϕ(p) = pSf ∩ S(f),

so there exists a homogeneous x ∈ p such that ad/fn = x/fm in Sf with md = deg(x). Thus, for some e ≥ 0
we have

fe(fmad − fnx) = 0

in S, and since f 6∈ p we must have fmad − fnx ∈ p. However, x ∈ p, so fmad ∈ p. Since p is prime, f 6∈ p,
and d is positive, we conclude a ∈ p as desired. This completes the proof of injectivity for ϕ.

Once we prove ϕ is surjective, and hence is bijective, (1) implies

ϕ(V (a) ∩D+(f)) = V (ϕ(a)).

Hence, for any ideal b of S(f), the preimage a of bSf in S is a homogeneous ideal satisfying ϕ(a) = b. We may
therefore conclude that every closed set V (b) in SpecS(f) corresponds (under the bijection ϕ) to a closed set
V (a)∩D+(f) in D+(f). However, all closed sets in D+(f) (with the subspace topology from Proj(S)) have
such a form for some a, so we thereby get that ϕ is a homeomorphism.

It remains to check that ϕ is surjective. A key observation is that the natural map

(S(d))(f) → S(f)

is an isomorphism. The basic idea is that a degree-0 element in S(f) must have the form x/fn with homo-

geneous x of degree deg(x) = nd ∈ Snd, so x is in S(d); the straightforward details are left to the reader
(hint: equality of subrings of Sf ). Via this identification, any prime ideal of S(f) may be considered as a

prime ideal in (S(d))(f). However, in the proof of Theorem 1.3 it was proved (check!) that every prime ideal

q of (S(d))(f) has the form ϕ(p) for some homogeneous prime p of S not containing f (that is, for some
p ∈ D+(f)). �

Let us now write ϕf : D+(f) → Spec(S(f)) to denote the homeomorphism constructed above, with
f ∈ S+ any positive-degree homogeneous element (so ϕf (p) = pSf ∩S(f)). We shall use this homeomorphism
to endow D+(f) with a structure of affine scheme, using the structure sheaf on Spec(S(f)). In view of the
fact that the D+(f)’s form a base of opens in Proj(S), the key issue is to identify S(f) as the ring of sections
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on the open subset D+(f) ⊆ Proj(S), and to this end it is useful to note that S(f) may be described entirely
in terms of the subset D+(f) ⊆ Proj(S) and the ring S without mentioning f :

Theorem 2.2. For homogeneous f ∈ S+, let Tf be the multiplicative set of homogeneous elements g ∈ S
such that g 6∈ p for all p ∈ D+(f) ⊆ Proj(S) (despite the notation, Tf only depends on D+(f) and not on
f). The natural map

S(f) → (T−1f S)0

to the degree-0 part of the Z-graded T−1f S induced by Sf → T−1f S is an isomorphism.

Proof. Let d = deg f > 0. For injectivity, suppose x ∈ S is homogeneous of degree nd and the degree-0
element x/fn ∈ Sf maps to 0 in T−1f S. Hence, there exists g ∈ Tf such that gx = 0 in S. Replacing g with

gd if necessary, we can assume deg g = md. Thus,

(g/fm)(x/fn) = 0

in Sf , and hence this equality holds in S(f). By the definition of Tf , for all p ∈ D+(f) we have g 6∈ p, so
g/fm is not contained in the prime ideal ϕf (p) = (pSf ) ∩ S(f) of S(f) (as f, g 6∈ p). But ϕf is bijective
onto SpecS(f), so g/fm ∈ S(f) is not contained in any primes. It follows that g/fm ∈ S(f) is a unit, so the
vanishing of (g/fm)(x/fn) in S(f) forces x/fn = 0 in S(f). This gives exactly the desired injectivity.

Now choose g ∈ Tf and x ∈ S with deg(x) = deg(g), so x/g ∈ (T−1f S)0 makes sense. We seek a

homogeneous a ∈ S of some degree nd (for some n ≥ 0) such that a/fn ∈ S(f) maps to x/g in T−1f S. We

may replace x with gd−1x and g with gd to get to the case deg g = md for some m ≥ 0. Thus, using the
definition of Tf and the bijectivity of ϕf we see that g/fm ∈ S(f) is not contained in any prime ideals, so it

is a unit. In the degree-0 part of the Z-graded T−1f S we have

x

g
=
fm

g
· g
fm
· x
g

=
fm

g
· x
fm

,

so (g/fm)−1(x/fm) ∈ S(f) maps to x/g ∈ (T−1f S)0. This proves the desired surjectivity. �

3. A scheme structure on Proj(S)

By Theorem 2.2, whenever f, h ∈ S+ are homogeneous elements such that D+(h) ⊆ D+(f) inside of
Proj(S) we have (by the definitions!) Tf ⊆ Th inside S, and so we get a canonical map

(2) S(f) = (T−1f S)0 → (T−1h S)0 = S(h)

on degree-0 parts induced by the map T−1f S → T−1h S of Z-graded localizations. We may therefore consider
the diagram of topological spaces

D+(f)
ϕf

'
// Spec((T−1f S)0)

D+(h)

OO

ϕh

' // Spec((T−1h S)0)

OO

where the left column is the inclusion within Proj(S). One readily checks (upon reviewing the definitions of
the various maps) that this diagram commutes, with the right side an open embedding, ultimately because
the canonical equality

(S(f))hdeg f/fdeg h = S(fh) = (S(h))fdeg h/hdeg f

inside of Sfh (check!) and the fact that fdeg h/hdeg f ∈ S×(h) (since f ∈ Tf ⊆ Th) together imply that (2)

induces an isomorphism (S(f))hdeg f/fdeg h ' S(h).
Clearly D+(f) ∩D+(g) = D+(fg), and by taking h = fg above we see that this open subset of D+(f) is

carried by ϕf onto the open subset

Spec((S(f))gdeg f/fdeg g ) ⊆ Spec(S(f)).
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Likewise, as an open subset of D+(g) it is carried by ϕg onto the open subset

Spec((S(g))fdeg g/gdeg f ) ⊆ Spec(S(g)).

We now have put three scheme structures on D+(fg), namely SpecS(fg) and the two as basic opens in
SpecS(f) and in SpecS(g). These three structures are identified by means of the ring isomorphisms

(3) (S(f))gdeg f/fdeg g ' S(fg) ' (S(g))fdeg g/gdeg f

that are really equalities as subrings of Sfg. Consequently, the cocycle condition for gluing is satisfied (it
comes down to transitivity for equality among three subrings of S(fgh) for any three homogeneous f, g, h ∈
S+), so we may glue the structure sheaves OSpec(S(f)) over the D+(f)’s via (3). That is, we are gluing the

SpecS(f)’s (as ringed spaces) along the SpecS(fg)’s, where the underlying topological space Proj(S) of the
gluing was made at the start.

The glued structure sheaf over P = Proj(S) will be denoted OP , and so the ringed space (P,OP ) is covered
by open subspaces

(D+(f),OP |D+(f)) ' Spec(S(f))

for homogeneous f ∈ S+. Hence, (P,OP ) is a scheme.

Definition 3.1. Let S be an N-graded ring. The scheme Proj(S) is (P,OP ) where P is the topological
space denoted Proj(S) above and OP is the sheaf of rings on P whose restriction to D+(f) is OSpec(S(f))

(using ϕf ) for all homogeneous f ∈ S+, with the overlap-gluing isomorphism

OSpec((S(f))gdeg f /fdeg g ) = OSpec(S(f))|D+(f)∩D+(g) ' OSpec(S(g))|D+(g)∩D+(f) = OSpec((S(g))fdeg g/gdeg f )

defined by the isomorphism Spec((S(f))gdeg f/fdeg g ) ' Spec((S(g))fdeg g/gdeg f ) arising from the canonical ring
isomorphism in (3) for homogeneous f, g ∈ S+.

By Theorem 1.3, we obtain a useful alternative description:

Corollary 3.2. Let {fi} be a collection of homogeneous elements in S+ such that every element of S+ has
some power contained in the ideal generated by the fi’s. The scheme Proj(S) is obtained by gluing the affine
schemes Spec(S(fi)) along the open affine overlaps Spec(S(fifj)) ↪→ Spec(S(fi)) defined by the isomorphisms

S(fifj) ' (S(fi))fdeg fi
j /f

deg fj
i

.

Remark 3.3. We emphasize that there is content in this construction, namely that the above ring isomor-
phisms satisfy “triple overlap” compatibility; this is most painlessly seen in terms of a triple equality of
subrings of S(fifjfk).

Example 3.4. Let S = A[X0, . . . , Xn] be an N-graded ring by putting A in degree 0 and declaring each Xi

to be homogeneous of degree 1. It follows that Proj(S) is covered by the opens

D+(Xi) = SpecS(Xi) = SpecA[X0/Xi, . . . , Xn/Xi]

for 0 ≤ i ≤ n, and the gluing isomorphism is determined by the isomorphism

(S(Xi))Xj/Xi
' (S(Xj))Xi/Xj

defined by Xk/Xi 7→ (Xk/Xj) · (Xi/Xj)
−1 for k 6= i. These are exactly the standard formulas that express

projective n-space as the gluing of n + 1 copies of affine n-space along certain open overlaps defined by
non-vanishing of various coordinate functions.

Inspired by the above example, for any ring A we define projective n-space over A to be

Pn
A = Proj(A[X0, . . . , Xn])

with the usual grading on A[X0, . . . , Xn]. This is naturally a scheme over SpecA since each basic open
affine D+(f) is naturally an A-scheme (as A has degree 0 in the N-grading being used) and the open-affine
gluing data is one of A-algebras (more generally, Proj(S) is always naturally a scheme over SpecS0). As a
particularly degenerate example, we have P0

A = SpecA[X0](X0) = SpecA.
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Example 3.5. If we assign A[X0, . . . , Xn] an N-graded structure by putting A in degree 0 and assigning Xi

some positive degree di, the resulting N-graded rings are generally not isomorphic as N-graded rings for
different n-tuples d = (d0, . . . , dn), and their A-scheme Proj’s (called weighted projective n-spaces over A
with weights d) are generally not isomorphic to each other.

These weighted projective spaces over an algebraically closed field are generally not “smooth” (when
n > 1 and some dj > 1 with gcd(d1, . . . , dn) = 1). For example, consider the polynomial ring S = k[X,Y, Z]
in which we declare each variable to be homogenous with respective degrees deg(X) = 2, deg(Y ) = 3,
deg(Z) = 4. Then Proj(S) contains the affine open D+(Z) = Spec(S(Z)) with

S(Z) = k[X2/Z, (XY 2)/Z2, Y 4/Z3]

(please verify this equality of subrings of SZ via inductive chasing of degrees of numerators in suitable
fractions), and if we label the three indicated generators of the k-algebra S(Z) as U, V,W respectively then

clearly UW = V 2. This defines a surjective k-algebra map π : k[u, v, w]/(uv − w2) → S(Z) that we’ll
show is an isomorphism. Hence, D+(Z) has a singularity at the point (u, v, w) = (0, 0, 0) corresponding to
[0, 0, 1] ∈ Proj(S).

Let’s explain why the map π is between domains is an isomorphism. Its source ring has dimension 2 and
its target has dimension at least 2 (since it contains the elements X2/Z and Y 4/Z3 that are readily seen to
be algebraically independent over k – why?). Thus, since the kernel of any surjection between domains must
be a prime ideal, the good behavior of dimension theory for domains finitely generated over a field forces π
to have kernel (0), so π is indeed an isomorphism.

4. Functoriality, and lack thereof

The condition in the definition of Proj(S) that the prime ideal doesn’t contain the irrelevant ideal causes
some complications when one tries to make the scheme Proj(S) (or even its underlying set) be reasonably
functorial in the N-graded ring S. To see the difficulty, suppose ϕ : S′ → S is a map of N-graded rings
and p ∈ Proj(S). The prime ideal ϕ−1(p) ⊂ S′ is certainly homogenous, but does it correspond to a point
in Proj(S′)? The issue is that perhaps S′+ ⊆ ϕ−1(p), or equivalently ϕ(S′+) ⊆ p. By hypothesis p doesn’t
contain S+, but perhaps S+ is so much larger than the (homogeneous!) ideal generated by ϕ(S′+) that there
can exist homogenous primes p of S containing ϕ(S′+) (or equivalently ϕ(S′+)S but not S+. The work in
this section takes care of Exercises 2.14 and 3.12 in [H, Ch. II].

Define the open set U = Proj(S) − V (ϕ(S′+)S) ⊆ Proj(S), so when p ∈ U the above difficulty does not
arise. Hence, we get a well-defined map of sets f : U → Proj(S′) via p 7→ ϕ−1(p). This is continuous:

Lemma 4.1. The natural map f : U → Proj(S′) satisfies f−1(D+(s′)) = U ∩D+(ϕ(s′)) for homogeneous
s′ ∈ S′+. In particular, f is continuous.

Proof. For p ∈ U , we have f(p) ∈ D+(s′) if and only if s′ 6∈ f(p) := ϕ−1(p), which is equivalent to saying
ϕ(s′) 6∈ p. This final condition says p ∈ D+(ϕ(s′)). �

We will enhance f to a scheme morphism shortly but let’s first discuss some cases when U = Proj(S):

Lemma 4.2. If there exists an integer d ≥ 1 so that S′n → Sn is surjective for all sufficiently large n ∈ dN
then U = Proj(S). If S′n → Sn is even bijective for all sufficiently large n ∈ dN then the map f : Proj(S) =
U → Proj(S′) is a homeomorphism.

The hypothesis of the first part of this lemma holds when S′n → S is surjective for all large n (the case
d = 1) and also when S′ ⊂ S is the N-graded subring S(d) :=

⊕
r≥0 Srd.

Proof. It suffices to show that if p is a homogeneous prime ideal of S containing ϕ(S′+) then p contains S+

(so if p ∈ Proj(S) then ϕ−1(p) doesn’t contain S′+). Under the hypothesis on ϕ, p contains Srd for all large

r. For any homogenous a ∈ S+, say with degree n ≥ 1, we have ard ∈ Snrd for all r ≥ 1, so by taking r to
be large we have ard ∈ Snrd ⊂ p. By primality of p, it follows that a ∈ p.

Now suppose S′n → Sn is bijective for all large n ∈ dN. To show that Proj(S) → Proj(S′) is a homeo-

morphism, it suffices to first treat the case of S′ = S(d), and then applying that to S′
(d) → S′ and S(d) → S
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would reduce our task to the case d = 1 upon dividing degrees by d for S(d) and S′
(d)

(i.e., ϕ is bijective in
all large degrees). For the case S′ = S(d), consider general homogeneous b ∈ S+, say with degree r. Then

we get bd ∈ Srd = (S(d))rd, and these homogeneous elements of S
(d)
+ may not generate the irrelevant ideal

of S(d) but the associated affine opens Spec((S(d))(fd)) cover Proj(S(d)) because of Corollary 3.2. Moreover,
we have subrings

S
(d)

(bd)
⊂ S(d)

bd
⊂ Sbd = Sb, S(b) ⊂ Sb

which coincide as subrings: it is clear that S
(d)

(bd)
⊂ S(b), and the reverse inclusion amounts to writing any

“degree 0” fraction a/bm with homogenous a (of degree mr) as (abdn−m)/bdn for any multiple dn ≥ m. But
a direct check via working with fractions (please do it!) shows that the map Proj(S) → Proj(S′) carries

D+(b) into D+(bd) via the map of affine schemes arising from the ring isomorphism S
(d)

(bd)
' S(b). But the

entire preimage of D+(bd) is exactly D+(b) since a homogeneous prime p of S fails to contain b precisely
when it fails to contain bd, and that in turn says that the homoegenous prime p∩S(d) of S(d) fails to contains
bd. Hence, Proj(S)→ Proj(S′) is a homeomorphism since it restricts to one over each member D+(bd) of an
open cover of Proj(S′).

As explained already, it now remains to treat the case d = 1: S′n → Sn is bijective for all n ≥ n0. This case
goes almost exactly like the case of S(d) ↪→ S just treated, but we don’t need to raise to any powers: instead,
we take the denominators to come from homogeneous elements with degree at least n0 (the associated affine
open subschemes of each Proj provide an open cover, again by Corollary 3.2). �

Example 4.3. If I ⊂ S is a homogenous ideal, then S → S/I is surjective in all degrees and so we get a
well-defined map of sets Proj(S/I) → Proj(S). If we pick an integer m > 0 and let J =

⊕
n≥m In be the

ideal inside I generated by homogeneous parts in degree at least m then S/J → S/I is an isomorphism in
all degrees at least m; hence, Proj(S/I)→ Proj(S/J) is a homeomorphism. Likewise, the N-graded subring
S(d) ⊆ S has the same degree-rd part for all r, so we get a homeomorphism Proj(S)→ Proj(S(d)).

Let’s now upgrade to ringed spaces. For any map of N-graded rings ϕ : S′ → S, we want to promote the
continuous map f : U = Proj(S)− V (ϕ(S′+)S)→ Proj(S′) to a map of ringed spaces. The open subset U is
covered by open subsets D+(ϕ(b′)) for homogeneous b′ ∈ S′+ (check!), and for such b′ there is a natural map
of affine schemes

D+(ϕ(b′)) = Spec(S(ϕ(b′)))→ Spec(S′b′) = D+(b′)

corresponding to the ring map S′(b′) → S(ϕ(b′) induced on degree-0 parts by the Z-graded map ϕ : S′b′ → Sϕ(b′).

These morphisms agree on overlaps D+(ϕ(b′)) ∩ D+(ϕ(c′)) = D+(ϕ(b′)ϕ(c′)) = D+(ϕ(b′c′)) ultimately
because the ring maps S′b′ → Sϕ(b′) and S′c′ → Sϕ(c′) arising from ϕ : S′ → S each induce upon further
localization the same ring map S′b′c′ → Sϕ(b′c′) arising from ϕ. Hence, they glue to define a morphism

f : U → Proj(S′), and on underlying sets this really is p 7→ ϕ−1(p), ultimately because the map Spec(ϕ) :
Spec(S(ϕ(b′))→ Spec(S′(b′)) is also given on underlying sets by the usual recipe of preimage of primes under

the ring map S′(b′) → S(ϕ(b′) induced in degree 0 by the Z-graded ring map ϕ : S′b′ → Sϕ(b′).

In the setting of Lemma 4.2 we have a morphism f : Proj(S) = U → Proj(S′) whose restriction over each
open affine D+(b′) for homogeneous b′ ∈ S′+ is exactly D+(ϕ(b′)) = f−1(D+(b′))→ D+(b′) corresponding to
ϕ : S′(b′) → S(ϕ(b′). The ring map is surjective (resp. an isomorphism) when S′n → Sn is surjective (resp. an

isomorphism) in all large degrees divisible by d. To summarize, we have shown:

Theorem 4.4. Under the hypotheses of Lemma 4.2, the associated morphism Proj(S)→ Proj(S′) is a closed
immersion. It is an isomorphism when S′n → Sn is bijective for all large n ∈ dN.

In the setting of Example 4.3 we have the surjection S/J → S/I that is bijective in all large degrees,
so the Theorem gives that the associated morphism Proj(S/I)→ Proj(S/J) is an isomorphism of schemes.
Likewise, for any d ≥ 1, the associated morphism Proj(S)→ Proj(S(d)) is an isomorphism of schemes (a big
improvement on the homeomorphism conclude at the end of Example 4.3).


