MATH 249C. A HEIGHT BOUND

Let X be a projective scheme over a global field K, and let \mathscr{L} be a line bundle on X. The base locus $B \subseteq X$ of \mathscr{L} is the support of the coherent sheaf

$$\operatorname{coker}(\mathscr{O}_X \otimes_k \operatorname{H}^0(X, \mathscr{L}) \to \mathscr{L}) = \{ x \in X \, | \, s(x) = 0 \text{ in } \mathscr{L}(x) \text{ for all } s \in \operatorname{H}^0(X, \mathscr{L}) \}.$$

In other words, for the natural map $f: X - B \to \mathbf{P}(\mathrm{H}^0(X, \mathscr{L}))$ (given by $x \mapsto [s_0(x), \ldots, s_n(x)]$ for a K-basis $\{s_0, \ldots, s_n\}$ of $\mathrm{H}^0(X, \mathscr{L})$) and the canonical isomorphism $\theta: f^*(\mathscr{O}(1)) \simeq \mathscr{L}$, there is no strictly large open set in X across which θ extends. In this handout, we aim to prove that $h_{K,\mathscr{L}}$ is bounded below on $(X-B)(\overline{K})$. Since K will be fixed throughout the discussion, we write $h_{\mathscr{L}}$ instead of $h_{K,\mathscr{L}}$. (It is natural to try to relate $h_{\mathscr{L}}|_{(X-B)(\overline{K})}$ to the composition of $X - B \to \mathbf{P}(\mathrm{H}^0(X,\mathscr{L}))$ and a standard height on the latter projective space, but we do not address that here.)

Pick a pair of very ample line bundles \mathscr{L}_1 and \mathscr{L}_2 on X such that $\mathscr{L} \simeq \mathscr{L}_1 \otimes \mathscr{L}_2^{-1}$, so $h_{\mathscr{L}} = h_{\mathscr{L}_1} - h_{\mathscr{L}_2}$ (as functions $X(\overline{K}) \to \mathbf{R}$ modulo bounded functions). Thus, we need to show for some specific representatives $H_{\mathscr{L}_i}$ of the equivalence class $h_{\mathscr{L}_i}$ that $H_{\mathscr{L}_1} \ge H_{\mathscr{L}_2} + c$ on $(X - B)(\overline{K})$, for some $c \in \mathbf{R}$. If $\{U_1, \ldots, U_n\}$ is an open cover of X - B then it suffices to do this for each $U_i(\overline{K})$ separately, allowing the constant c and the choice of representatives $H_{\mathscr{L}_i}$ to depend on i. Letting s vary through a basis of $\mathrm{H}^0(X, \mathscr{L})$, the corresponding open sets $X_s = \{x \in X \mid s(x) \neq 0\}$ cover X - B. Hence, it suffices to work on X_s for a fixed choice of nonzero $s \in \mathrm{H}^0(X, \mathscr{L})$.

Multiplication by s defines an injection of sheaves $\mathscr{L}_2 \to \mathscr{L}_1$ and hence a K-linear injection $\mathrm{H}^0(X, \mathscr{L}_2) \to \mathrm{H}^0(X, \mathscr{L}_1)$. Let $\{\sigma_0, \ldots, \sigma_n\}$ be a K-basis of $\mathrm{H}^0(X, \mathscr{L}_2)$, so $\{s\sigma_i\}$ is a K-linearly independent set in $\mathrm{H}^0(X, \mathscr{L}_2)$ and thus extends to a K-basis

$$\{s\sigma_0,\ldots,s\sigma_n,\tau_1,\ldots,\tau_m\}$$

of $\mathrm{H}^0(X, \mathscr{L}_2)$. We use these specific ordered bases to define $H_{\mathscr{L}_1}$ and $H_{\mathscr{L}_2}$ as the restrictions to $X(\overline{K})$ of the standard height functions via the canonical embeddings

$$X \hookrightarrow \mathbf{P}(\mathrm{H}^0(X, \mathscr{L}_1) \simeq \mathbf{P}_K^n, X \hookrightarrow \mathbf{P}(\mathrm{H}^0(X, \mathscr{L}_2) \simeq \mathbf{P}_K^{n+m}.$$

In other words, for $x \in X(\overline{K})$ we have

$$H_{\mathscr{L}_{2}}(x) = \frac{1}{[K':K]} \sum_{v'} \max_{i} \log \|\sigma_{i}(x)\|_{v'}$$

and

$$H_{\mathscr{L}_{1}}(x) = \frac{1}{[K':K]} \sum_{v'} \max(\max_{i} \log \|s\sigma_{i}(x)\|_{v'}, \max_{j} \log \|\tau_{j}(x)\|_{v'})$$

where K'/K is a finite subextension of \overline{K} such that $x \in X(K')$ (and v' ranges over the places of K'). Here, it is understood that the norm $\|\cdot\|_{v'}$ on the 1-dimensional K'-vector space $\mathscr{L}_i(x) \otimes_{K(x)} K'$ is defined using a *single* choice of K'-basis e_i ; the specific choice doesn't matter due to the product formula; this is the same calculation used to justify the homogeneity of the standard height on projective spaces. We likewise take the K'-basis of $\mathscr{L}(x) \otimes_{K(x)} K'$ to be $e_1 \otimes e_2^*$.

Since we are restricting attention to points $x \in X_s(\overline{K})$, we have $s(x) \neq 0$, so we can scale by $||s(x)||_{v'}$ throughout to get

$$H_{\mathscr{L}_{1}}(x) = \frac{1}{[K':K]} \sum_{v'} \max(\max_{i} \log \|\sigma_{i}(x)\|_{v'}, \max_{j} \log \|\tau_{j}(x)/s(x)\|_{v'}) \ge H_{\mathscr{L}_{2}}(x)$$

Thus, $H_{\mathscr{L}_1}(x) - H_{\mathscr{L}_2}(x) \ge 0.$