Math 249C. A height bound

Let X be a projective scheme over a global field K, and let \mathscr{L} be a line bundle on X. The base locus $B \subseteq X$ of \mathscr{L} is the support of the coherent sheaf

$$
\operatorname{coker}\left(\mathscr{O}_{X} \otimes_{k} \mathrm{H}^{0}(X, \mathscr{L}) \rightarrow \mathscr{L}\right)=\left\{x \in X \mid s(x)=0 \text { in } \mathscr{L}(x) \text { for all } s \in \mathrm{H}^{0}(X, \mathscr{L})\right\}
$$

In other words, for the natural map $f: X-B \rightarrow \mathbf{P}\left(\mathrm{H}^{0}(X, \mathscr{L})\right.$) (given by $x \mapsto\left[s_{0}(x), \ldots, s_{n}(x)\right]$ for a K-basis $\left\{s_{0}, \ldots, s_{n}\right\}$ of $\left.\mathrm{H}^{0}(X, \mathscr{L})\right)$ and the canonical isomorphism $\theta: f^{*}(\mathscr{O}(1)) \simeq \mathscr{L}$, there is no strictly large open set in X across which θ extends. In this handout, we aim to prove that $h_{K, \mathscr{L}}$ is bounded below on $(X-B)(\bar{K})$. Since K will be fixed throughout the discussion, we write $h_{\mathscr{L}}$ instead of $h_{K, \mathscr{L}}$. (It is natural to try to relate $\left.h_{\mathscr{L}}\right|_{(X-B)(\bar{K})}$ to the composition of $X-B \rightarrow \mathbf{P}\left(\mathrm{H}^{0}(X, \mathscr{L})\right)$ and a standard height on the latter projective space, but we do not address that here.)

Pick a pair of very ample line bundles \mathscr{L}_{1} and \mathscr{L}_{2} on X such that $\mathscr{L} \simeq \mathscr{L}_{1} \otimes \mathscr{L}_{2}^{-1}$, so $h_{\mathscr{L}}=$ $h_{\mathscr{L}_{1}}-h_{\mathscr{L}_{2}}$ (as functions $X(\bar{K}) \rightarrow \mathbf{R}$ modulo bounded functions). Thus, we need to show for some specific representatives $H_{\mathscr{L}_{i}}$ of the equivalence class $h_{\mathscr{L}_{i}}$ that $H_{\mathscr{L}_{1}} \geq H_{\mathscr{L}_{2}}+c$ on $(X-B)(\bar{K})$, for some $c \in \mathbf{R}$. If $\left\{U_{1}, \ldots, U_{n}\right\}$ is an open cover of $X-B$ then it suffices to do this for each $U_{i}(\bar{K})$ separately, allowing the constant c and the choice of representatives $H_{\mathscr{L}_{i}}$ to depend on i. Letting s vary through a basis of $\mathrm{H}^{0}(X, \mathscr{L})$, the corresponding open sets $X_{s}=\{x \in X \mid s(x) \neq 0\}$ cover $X-B$. Hence, it suffices to work on X_{s} for a fixed choice of nonzero $s \in \mathrm{H}^{0}(X, \mathscr{L})$.

Multiplication by s defines an injection of sheaves $\mathscr{L}_{2} \rightarrow \mathscr{L}_{1}$ and hence a K-linear injection $\mathrm{H}^{0}\left(X, \mathscr{L}_{2}\right) \rightarrow \mathrm{H}^{0}\left(X, \mathscr{L}_{1}\right)$. Let $\left\{\sigma_{0}, \ldots, \sigma_{n}\right\}$ be a K-basis of $\mathrm{H}^{0}\left(X, \mathscr{L}_{2}\right)$, so $\left\{s \sigma_{i}\right\}$ is a K-linearly independent set in $\mathrm{H}^{0}\left(X, \mathscr{L}_{2}\right)$ and thus extends to a K-basis

$$
\left\{s \sigma_{0}, \ldots, s \sigma_{n}, \tau_{1}, \ldots, \tau_{m}\right\}
$$

of $\mathrm{H}^{0}\left(X, \mathscr{L}_{2}\right)$. We use these specific ordered bases to define $H_{\mathscr{L}_{1}}$ and $H_{\mathscr{L}_{2}}$ as the restrictions to $X(\bar{K})$ of the standard height functions via the canonical embeddings

$$
X \hookrightarrow \mathbf{P}\left(\mathrm{H}^{0}\left(X, \mathscr{L}_{1}\right) \simeq \mathbf{P}_{K}^{n}, \quad X \hookrightarrow \mathbf{P}\left(\mathrm{H}^{0}\left(X, \mathscr{L}_{2}\right) \simeq \mathbf{P}_{K}^{n+m} .\right.\right.
$$

In other words, for $x \in X(\bar{K})$ we have

$$
H_{\mathscr{L}_{2}}(x)=\frac{1}{\left[K^{\prime}: K\right]} \sum_{v^{\prime}} \max _{i} \log \left\|\sigma_{i}(x)\right\|_{v^{\prime}}
$$

and

$$
H_{\mathscr{L}_{1}}(x)=\frac{1}{\left[K^{\prime}: K\right]} \sum_{v^{\prime}} \max \left(\max _{i} \log \left\|s \sigma_{i}(x)\right\|_{v^{\prime}}, \max _{j} \log \left\|\tau_{j}(x)\right\|_{v^{\prime}}\right)
$$

where K^{\prime} / K is a finite subextension of \bar{K} such that $x \in X\left(K^{\prime}\right)$ (and v^{\prime} ranges over the places of $\left.K^{\prime}\right)$. Here, it is understood that the norm $\|\cdot\|_{v^{\prime}}$ on the 1 -dimensional K^{\prime}-vector space $\mathscr{L}_{i}(x) \otimes_{K(x)} K^{\prime}$ is defined using a single choice of K^{\prime}-basis e_{i}; the specific choice doesn't matter due to the product formula; this is the same calculation used to justify the homogeneity of the standard height on projective spaces. We likewise take the K^{\prime}-basis of $\mathscr{L}(x) \otimes_{K(x)} K^{\prime}$ to be $e_{1} \otimes e_{2}^{*}$.

Since we are restricting attention to points $x \in X_{s}(\bar{K})$, we have $s(x) \neq 0$, so we can scale by $\|s(x)\|_{v^{\prime}}$ throughout to get

$$
H_{\mathscr{L}_{1}}(x)=\frac{1}{\left[K^{\prime}: K\right]} \sum_{v^{\prime}} \max \left(\max _{i} \log \left\|\sigma_{i}(x)\right\|_{v^{\prime}}, \max _{j} \log \left\|\tau_{j}(x) / s(x)\right\|_{v^{\prime}}\right) \geq H_{\mathscr{L}_{2}}(x) .
$$

Thus, $H_{\mathscr{L}_{1}}(x)-H_{\mathscr{L}_{2}}(x) \geq 0$.

