
Math 249C. Functoriality of pairings

1. Motivation

Let A be an abelian variety over a field k. For each n ≥ 1 we have constructed a bi-additive
duality pairing

〈·, ·〉A,n : A[n]× Â[n]→ µn

that is functorial in A. Recall the concrete description of this on T -valued points for a k-scheme

T : if a ∈ A[n](T ) is an n-torsion point in A(T ) and a′ ∈ Â[n](T ) corresponds to a line bundle L
on AT admitting a trivializing section σ for [n]∗(L ) over AT , the canonical isomorphism

t∗a([n]∗(L )) ' [n]∗(L )

carries t∗a(σ) to 〈a, a′〉A,n · σ. (Note that this unit multiplier is independent of the choice of σ, as
any two choices are related through scaling by a unit on AT , or equivalently by a unit on T , and
units from T pass through t∗a to cancel out on both sides of the requirement t∗a(σ) 7→ u · σ for a
specified unit u on T .)

Here we aim to analyze “functoriality in n”, by which we mean the relationship between 〈·, ·〉A,n

and 〈·, ·〉A,mn for any m,n ≥ 1. Namely, we seek to prove the identity

〈ma,ma′〉A,n = 〈a, a′〉mA,mn

in µn(T ) for a ∈ A[mn](T ) and a′ ∈ Â[mn](T ) for any k-scheme T (as then taking m and n to be
powers of a prime ` allows us to pass to the inverse limit to get a perfect pairing between `-adic
Tate modules when ` 6= char(k) and between Dieudonné modules when ` = char(k), the latter
being a powerful tool in the study of abelian varieties in positive characteristic).

In case m and n are not divisible by char(k), it suffices to check the desired identity on geometric
points since it involves only finite étale k-group schemes. However, if char(k)|mn (or if we seek a
method that can work more generally for an abelian scheme over a base ring of mixed characteristic)
then computing with geometric points is inadequate. In Mumford’s book, the first Proposition of
§20 settles the case when n andm are not divisible by char(k), by computations using the description
of such pairings in terms of the classical language of divisors and rational functions.

We want to allow general n,m ≥ 1 both for aesthetic satisfaction and also because the robust
theory of pairings including the p-part in characteristic p is an essential tool in the study of abelian
varieties in positive characteristic (through the role of p-divisible groups in deformation theory, the
determination by Tate of the local invariants at p-adic places for the endomorphism algebras of
simple abelian varieties over finite fields of characteristic p, etc.). So below we adapt Mumford’s
method to the framework of line bundles rather than divisors in order that we get the result without
divisibility restrictions on m and n.

2. The computation

Choose a ∈ A(T ) that is mn-torsion and choose a line bundle L on AT for which [mn]∗(L )
admits a trivializing section σ over AT . The choice of σ (which is implicit when specifying a point in
PicA/k,e(T ), though any two choices are related through a unique automorphism of the line bundle)
specifies a trivialization σ(e) of L along the identity section over T , and hence specifies a point

a′ ∈ Â[mn](T )..
Since [m]

Â
= ([m]A)∧, so L ⊗m ' [m]∗(L ) (the latter isomorphism being uniquely deter-

mined by the condition that it carries σ(e)⊗m to [m]∗(σ(e)) as trivializations along eT ), the n-

torsion point ma′ ∈ Â[n](T ) corresponds to [m]∗(L ). In particular, σ may be identified with a
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trivializing section of the [n]-pullback of the line bundle [m]∗(L ) corresponding to ma′ via the
canonical isomorphism [mn]∗(L ) ' [n]∗([m]∗(L )) (which expresses how multiplication by m on

Â carries Â[mn](T ) into Â[n](T ). Hence, our task is to prove that the canonical isomorphism
t∗ma([n]∗([m]∗(L ))) ' [n]∗([m]∗(L )) carries t∗ma(σ) to um · σ for the unit u := 〈a, a′〉A,mn over T
that satisfies t∗a(σ) 7→ uσ via the canonical isomorphism t∗a([mn]∗(L )) ' [mn]∗(L ) of line bundles
on AT .

Informally, the idea is that tma is the m-fold composition of copies of ta, so iterating m times the
“equality” t∗a(σ) = u ·σ for a unit u on T should then give the result that t∗ma(σ) = um ·σ. The mild
complication is that we are actually working with an isomorphism t∗ma([mn]∗(L )) ' [mn]∗(L ),
so the “equality” of trivializing sections is really expressing a compatibility of sections relative to
this isomorphism. Hence, we have to keep track of sections under a composition of isomorphisms
among line bundles rather than iterate an actual equality of sections in a single line bundle.

[This highlights a way in which the classical setup with divisors and rational functions is genuinely
simpler,: the “OA(D)” language involves a generic trivialization that turns isomorphisms into actual
equalities at the level of rational functions, allowing one to literally carry out the “iterated equality”
idea without any need to fuss with isomorphisms.]

For any x ∈ A[mn](T ), let θx : t∗x([mn]∗(L )) ' [mn]∗(L ) be the canonical isomorphism express-
ing the equality [mn] ◦ tx = [mn] of endomorphisms of the k-scheme A. The key point for what
follows is that for any y ∈ A[mn](T ), the composition

θy ◦ t∗y(θx) : t∗y(t∗x([mn]∗(L ))) ' t∗y([mn]∗(L )) ' [mn]∗(L )

coincides with θx+y via the natural isomorphism of functors t∗y ◦ t∗x ' t∗x+y on line bundles. (This is
readily verified via the equalities of k-morphisms [mn] ◦ tx+y = ([mn] ◦ tx) ◦ ty = [mn] ◦ ty = [mn].)

Our aim is to show that for every i ≥ 1, θia(t∗ia(σ)) = ui · σ for the unit u on T satisfying
θa(t∗a(σ)) = u · σ (as then setting i = m would give what we want). Note that the choice of σ
is irrelevant, since any two choices are related through scaling by a unit from the base scheme
T . It suffices to show more generally that for any a, b ∈ A[mn](T ), if θa(t∗a(σ)) = u · σ for some
(equivalently, any!) trivializing section σ of [mn]∗(L ) and if θb(t

∗
b(τ)) = v ·τ for some (equivalently,

any!) trivializing section τ of [mn]∗(L ), then θa+b(t
∗
a+b(σ)) = uv ·σ for any σ. (Indeed, then setting

b = (i− 1)a for i ≥ 2 would allow us to proceed by induction on i.)
In view of the above identity relating θx+y and θy ◦ t∗y(θx), we are led to consider

(θb ◦ t∗b(θa))(t∗b(t
∗
a(σ))).

This is equal to

θb(t
∗
b(θa(t∗a(σ)))) = θb(t

∗
b(u · σ)) = u · θb(t∗b(σ)) = u · (v · σ),

where the second equality uses crucially that the unit u on AT comes from the base scheme T and
hence passes harmlessly through the pullback functor t∗b (and certainly passes through the OAT

-
linear isomorphism θb). Combining this with the isomorphism of functors t∗a+b ' t∗b ◦ t∗a translates
this final computation into the desired equality θa+b(t

∗
a+b(σ)) = uv · σ, as the reader may readily

verify.


