MATH 249C. HOMEWORK 1

- 1. Let k be a field. An algebraic torus over k is a smooth affine k-group scheme T such that $T_{\overline{k}} \simeq \operatorname{GL}_1^n$ as \overline{k} -groups for some $n \geq 0$.
- (i) Explain how the **R**-group $G = \{x^2 + y^2 = 1\}$ is naturally a 1-dimensional algebraic torus over **R**, with $G_{\mathbf{C}} \simeq \mathrm{GL}_1$ defined by $(x,y) \mapsto x + iy$, with x,y viewed over **C**, not **R**. Describe the inverse isomorphism. (This example explains the reason for the name "algebraic torus".)
 - (ii) Generalize to any separable quadratic extension of fields K/k in place of \mathbb{C}/\mathbb{R} .
- 2. Let C be a compact connected Riemann surface. Viewing holomorphic 1-forms on C as smooth \mathbf{C} -valued 1-forms on the underlying 2-dimensional \mathbf{R} -manifold, we get a natural map $\Omega^1(C) \to \mathrm{H}^1(C,\mathbf{C}) = \mathrm{H}_1(C,\mathbf{C})^*$ via integration along cycles. The natural "complex conjugation" involution on $\mathrm{H}^1(C,\mathbf{C}) = \mathbf{C} \otimes_{\mathbf{Q}} \mathrm{H}^1(C,\mathbf{Q})$ thereby defines a \mathbf{C} -linear map $\overline{\Omega}^1(C) \to \mathrm{H}^1(C,\mathbf{C})$ (where the source is the space of "anti-holomorphic" 1-forms, locally given by $\overline{f}(z) \, \mathrm{d} z$ for holomorphic f). Here, V^* is linear dual of a vector space V.

Hodge theory implies that the natural map $\Omega^1(C) \oplus \overline{\Omega}^1(C) \to H^1(C, \mathbf{C})$ is an isomorphism. Using this, prove that the natural map $H_1(C, \mathbf{Z}) \to \Omega^1(C)^*$ is a lattice (i.e., $H_1(C, \mathbf{R}) \to \Omega^1(C)^*$ is an isomorphism).

- 3. Let X be a scheme locally of finite type over a field k.
- (i) If $X(k) \neq \emptyset$ and X is connected then prove that X is geometrically connected over k. (Hint: show that it suffices to prove X_K is connected for K/k finite with X of finite type over k. Then use that $X_K \to X$ is open and closed for such K/k.)
- (ii) Assume that k is algebraically closed and X is a group scheme over k. Prove that X_{red} is smooth, and deduce that if X is connected and U and V are non-empty open subschemes then the multiplication map $U \times V \to X$ is surjective. Deduce that for general k, if X is a (locally finite type) group scheme over k then it is connected if and only if it is geometrically irreducible over k, and that such X are of finite type (i.e., quasi-compact) over k.
- 4. Let X be a proper and geometrically integral scheme over a field k. Assume $X(k) \neq \emptyset$ and choose $e \in X(k)$. Define the functor $\operatorname{Pic}_{X/k}$ on the category of k-schemes to carry a k-scheme S to the group of isomorphism classes of pairs (\mathcal{L}, i) where \mathcal{L} is a line bundle on X_S and $i : e_S^*(\mathcal{L}) \simeq \mathscr{O}_S$ is a trivialization of \mathcal{L} along e_S . It is a theorem of Grothendieck/Oort that this functor is represented by a k-group scheme locally of finite type. In particular, its identity component $\operatorname{Pic}_{X/k}^0$ is a k-scheme of finite type (Exercise 3).
- (i) Prove that if X is smooth and projective over k then $\operatorname{Pic}_{X/k}$ satisfies the valuative criterion for properness (so $\operatorname{Pic}_{X/k}^0$ is a proper k-scheme).
- (ii) By computing with points valued in the dual numbers, and using Čech theory in degree 1, construct a natural k-linear isomorphism $H^1(X, \mathcal{O}_X) \simeq T_0(\operatorname{Pic}_{X/k}^0) = T_0(\operatorname{Pic}_{X/k}^0)$.
- (iii) If X is smooth with dimension 1, prove that $\operatorname{Pic}_{X/k}$ satisfies the infinitesimal smoothness criterion (for schemes locally of finite type over k). Deduce that $\operatorname{Pic}_{X/k}^0$ is an abelian variety of dimension equal to the genus of X.
- 5. Let C be a compact connected Riemann surface of genus g > 0, $c_0 \in C$. Let $J_C = \Omega^1(C)^*/H_1(C, \mathbf{Z})$, a complex torus by Exercise 2. Prove that the map of sets $i_{c_0} : C \to J_C$ defined by $c \mapsto \int_{c_0}^c \operatorname{mod} H_1(C, \mathbf{Z})$ is complex-analytic and has smooth image over which C is a finite analytic covering space. Deduce that i_{c_0} is a closed embedding when g > 1, and prove that i_{c_0} is an isomorphism when g = 1 by identifying $H_1(i_{c_0}, \mathbf{Z})$ with the identity map when g = 1.
- 6. Let X be a smooth, proper, geometrically connected curve of genus g > 0 over a field k, and assume $X(k) \neq \emptyset$. Choose $x_0 \in X(k)$. Prove $X \to \operatorname{Pic}_{X/k}$ defined on R-points (for a k-algebra R) by $x \mapsto \mathscr{O}(x) \otimes \mathscr{O}((x_0)_R)$ (where $\mathscr{O}(x) := \mathscr{I}(x)^{-1}$ for the invertible ideal $\mathscr{I}(x)$ of $x : \operatorname{Spec}(R) \hookrightarrow X_R$) is a proper monomorphism, hence a closed immersion. (Hint: use g > 0 to prove $R \hookrightarrow \operatorname{H}^0(X_R, \mathscr{O}(x))$ is an equality via base change theorems, and deduce that if $\mathscr{O}(x) \simeq \mathscr{O}(x')$ for $x, x' \in X(R)$ then the inclusion $\mathscr{O}_{X_R} \simeq \mathscr{O}(x) \otimes \mathscr{O}(x')^{-1} \hookrightarrow \mathscr{O}(x)$ is an R^\times -multiple of the canonical inclusion; conclude that its cokernel has annihilator ideal $\mathscr{I}(x)$ and $\mathscr{I}(x')$!) Thus, the choice of x_0 defines a closed immersion of X into the abelian variety $\operatorname{Pic}_{X/k}^0$ of dimension g.

1