MATH 249C. HOMEWORK 10

- 1. Let K be a global field.
- (i) By reducing to the special case of elementary matrices, prove that if $T \in \operatorname{PGL}_n(K)$ then the function $h_{K,n} h_{K,n} \circ T$ on $\mathbf{P}^n_K(\overline{K})$ is bounded.
- (ii) Fill in the details for the proof that if $f: X \to \mathbf{P}_K^n$ is a K-map from a proper K-scheme and $\mathscr{L} = f^*(\mathscr{O}(1))$, then $h_{K,\mathscr{L}} \leq h_{K,n} \circ f$.
- 2. (i) Read §19 after Corollary 3 and up through the definition of the "characteristic polynomial" $P_f \in \mathbf{Z}[t]$ for $f \in \operatorname{End}_k^0(A)$ for an abelian variety A over a field k. (This is the "common" characteristic polynomial of $T_\ell(f)$ on $T_\ell(A)$ for all primes $\ell \neq \operatorname{char}(k)$.) For $k = \mathbf{C}$, using integral homology to give an alternative proof that such independence-of- ℓ holds for these characteristic polynomials.
- (ii) As an application, consider an abelian scheme A over a complete discrete valuation ring R with fraction field K and residue field k. (This is a smooth proper R-group with connected fibers.) For any integer $n \in R^{\times}$, show that A[n] is finite étale, and deduce that the natural maps $A[n](R_s) \to A[n](K_s)$ and $A[n](R_s) \to A[n](k_s)$ are bijective, where R_s is the valuation ring of k_s . Use this to construct a canonical \mathbf{Z}_{ℓ} -linear isomorphism $T_{\ell}(A_K) \simeq T_{\ell}(A_k)$ for any prime $\ell \neq \operatorname{char}(k)$, and deduce that the natural $\operatorname{Gal}(K_s/K)$ -action on $T_{\ell}(A_K)$ is unramified. (This is the "easy direction" of the Néron-Ogg-Shafarevich criterion for "good reduction".)
- (iii) Pushing (ii) further, consider an abelian variety A over a global field K. For each non-archimedean place v of good reduction (i.e., A_{K_v} extends to an abelian scheme over the valuation ring R_v), prove that the action of Frob_v on the unramified $T_{\ell}(A_K)$ has characteristic polynomial $P_v \in \mathbf{Z}[t]$ that is independent of ℓ . The reciprocal $1/P_v(q_v^{-s})$ is the local Euler factor at v in the definition of L(s, A/K) (where q_v is the size of the finite residue field at v).
- 3. Read in §20 from the Rosati involution up through the proof of Theorem 3, and then read Theorem 1 and its proof in §21. As an application, read Application II in §21 to see a proof of the Riemann Hypothesis for abelian varieties over finite fields (Theorem 4).
- 4. As another application of the Rosati involution from Exercise 3, read the statement and proof of Theorem 5 in §21. Deduce that if (A, ϕ) is a polarized abelian variety over a field k then the pair $(A_{\overline{k}}, \phi_{\overline{k}})$ has finite automorphism group.