
Math 249C. Homework 2

1. Let R be a commutative ring, and consider a pair of R-schemes X and Y . By Yoneda’s Lemma, to
specify a map of R-schemes X → Y it is equivalent to specify a natural transformation of the corresponding
representable functors HomSpec R(·, X) → HomSpec R(·, Y ) on the category of R-schemes. This is general
nonsense valid in any category. But for the category of R-schemes we can get by with less: show that if we
restrict these functors to the category of affine R-schemes (so the functors may now fail to be representable,
if X or Y is not affine) then a natural transformation between these restricted functors still arises from a
unique R-scheme map X → Y .

In other words, an R-scheme map X → Y amounts to maps of sets X(R′) → Y (R′) for R-algebras R′

functorially in R′. (Note that X(R′) := HomSpec R(SpecR′, X) depends contravariantly on R′.)

2. Let S be a scheme. An S-group (or group scheme over S) is a group object in the category of S-schemes.
In other words, it is an S-scheme G equipped with an S-map m : G ×S G → G, an S-map i : G → G,
and a section e : S → G such that the habitual group axioms diagrams commute. Read the first several
pages of §11 to see how this goes. It is important to observe that an equivalent definition is to endow
G(S′) = HomS(S′, G) with a group structure functorially in varying S-schemes S′.

(i) Using the Yoneda interpretation, show that if G and H are S-groups and f : G → H is an S-scheme
map that respects the multiplication morphisms (in an evident sense) then it automatically respects the
identity sections and inversion maps. Carry over other trivialities from the beginnings of group theory (such
as uniqueness of identity section). Can you do all of this by writing huge diagrams and avoiding Yoneda?

(ii) Let f : G → H be a homomorphism of S-groups. The fiber product f−1(eH) = G ×H,eH
S is the

scheme-theoretic kernel of f , denoted ker f . Prove that it is a subscheme of G whose S′-points (for an
S-scheme S′) is the subgroup ker(G(S′) → H(S′)). The situation for cokernels is far more delicate, much
like for quotient sheaves.

(iii) For each of the following group-valued functors on the category of schemes, write down a representing
affine scheme and the multiplication, inversion, and identity maps at the level of coordinate rings: Ga(S) =
Γ(S,OS), GLn(S) = GLn(Γ(S,OS)), µm = ker(tm : GL1 → GL1). For a finite group G, do the same for the
functor of locally constant G-valued functions (called the constant Z-group associated to G).

3. Let V be a locally free module of finite rank n > 0 over a commutative ring R. Consider the functor
on R-algebras defined by R′  AutR′(V ⊗R R′). Prove in two ways that this is represented by an affine
R-group GL(V ) that is Zariski-locally (on SpecR) isomorphic to GLn:

(i) Work Zariski-locally on SpecR and construct the group scheme by gluing.
(ii) Let S be the symmetric algebra of the dual module End(V )∗ = V ∗ ⊗ V . Identify det : End(V ) → R

with a canonical element in S that is homogeneous of degree n. Prove that Spec(S[1/ det]) does the job.

4. Let X and Y be schemes of finite type over a field k, K/k an extension, {Ki} a directed system of subfields
of K containing k such that lim−→Ki = K.

(i) Show that any K-map XK → YK descends (uniquely) to a Ki-map XKi → YKi for some i.
(ii) Let f : X → Y be a k-map. Prove that f has property P if and only if fK does, where P is: affine,

finite, quasi-finite, closed immersion, surjective, isomorphism, separated, proper, flat. (For affineness, use
the cohomological criterion. For properness, use Chow’s Lemma in the separated case to reduce to the case
when Y is affine and f is quasi-projective.)

(iii) Suppose that K/k is a finite Galois extension. Prove that a K-map F : XK → YK descends to a
k-map f : X → Y if and only if F is equivariant for the natural action by Gal(K/k) on XK and YK (over
k!). This is Galois descent for morphisms.

5. Let G be a group scheme locally of finite type over a field k, with m : G × G → G the multiplication.
Prove that the tangent map dm(e,e) : Te(G)⊕ Te(G)→ Te(G) is addition.

1


