- 1. Let S be an \mathbf{F}_p -scheme, and let $F_S: S \to S$ be the Frobenius endomorphism, which is obtained by gluing the Frobenius endomorphisms (p-power map) on each affine open.
- (i) Show that F_S makes sense, and that it has the following alternative description: it is the identity map on topological spaces and the p-power map on the structure sheaf. Show that F_S is functorial in S.
- (ii) For any S-scheme X, let $X^{(p)} = X \times_{S,F_S} S$. Loosely speaking, this is the scheme defined over S by "raising coefficients of defining equations of X to the p-power". Let $F_{X/S}: X \to X^{(p)}$ be the S-map defined by the commutative diagram expressing the compatibility of F_X and F_S . Loosely speaking, it is "p-power map on coordinates over S".

Prove that the formation of $X^{(p)}$ is compatible with base change on S, and that the formation of $F_{X/S}$ naturally commutes with products over S and with base change on S. In particular, if X is an S-group (so $X^{(p)}$ naturally is too) then $F_{X/S}$ is naturally an S-group map.

- (iii) If $S = \operatorname{Spec} \mathbf{F}_p$ then $F_{X/S} = F_X$. Using this, describe $F_{\operatorname{GL}_1/k}$ and $F_{\mathbf{G}_a/k}$ for any field k/\mathbf{F}_p , and compute their kernels (the latter denoted as α_p , the "scheme of pth roots of 0").
- 2. Let X be a proper scheme over an affine noetherian scheme S. Prove that \mathcal{O}_X is ample if and only if X is S-finite.
- 3. A left exact sequence $1 \to G' \to G \to G''$ of locally finite type k-group schemes is a k-homomorphism $G \to G''$ equipped with an isomorphism between its (scheme-theoretic) kernel and G'. Prove that the functor $G \leadsto T_e(G)$ from locally finite type k-group schemes to k-vector spaces is left exact; in other words, for a k-homomorphism $f: G \to H$, the subspace $T_e(\ker f)$ in $T_e(G)$ coincides with $\ker(T_e(G) \to T_e(H))$. (Hint: compute using dual numbers over k)
- 4. Let X be a smooth geometrically connected scheme of dimension d over a field k of characteristic p > 0. Let K = k(X) be the function field.
- (i) Prove that $[K:kK^p]=p^d$, so $[K:K^p]=p^d$ when k is perfect. (Hint: express K as a finite separable extension of $k(t_1,\ldots,t_d)$)
 - (ii) Prove that kK^p is the kernel of the natural map $d: K \to \Omega^1_{K/k}$.
- 5. Let S be a locally noetherian scheme. The *order* of a finite flat commutative group scheme $f: G \to S$ is the (locally constant) rank of $f_*\mathscr{O}_G$ over \mathscr{O}_S . It is a general (elementary but cleverly proved) theorem of Deligne (see the important paper of Oort–Tate "Group schemes of prime order") that G is always killed by its order.

Suppose that G is killed by nm for relatively prime integers $n, m \ge 1$. Using Yoneda and group theory, prove that $G[n] \times G[m] \to G$ is an isomorphism. Deduce that G[n] and G[m] are S-flat. (Hint: prove that if $X \times_S Y$ is S-flat and $X(S) \ne \emptyset$ then Y is S-flat.) Conclude that there is a good theory of "primary decomposition" for finite flat commutative S-groups.

- 6. A locally finite type k-scheme X is étale if $X_{\overline{k}}$ is a disjoint union of copies of Spec \overline{k} . Prove that X is étale if and only if X_{k_s} is a disjoint union of copies of Spec k_s , and that it is equivalent to say that every affine open in X has coordinate ring that is a product of finitely many finite separable extensions of k.
- 7. Read the self-contained exposition of the theory of invariant differentials on group schemes in $\S4.2$, up through the statement and proof of Proposition 2, in the totally awesome book "Néron Models". Then deduce the following refinements for a group scheme G locally of finite type over k.
- (i) If G is smooth, prove that a global 1-form $\omega \in \Omega^1_{G/k}(G)$ is left-invariant in the scheme-theoretic sense if and only if ω_{k_s} is invariant under left translation by $G(k_s)$.
- (ii) Define $\Omega_{G/k}^{1,\ell}$ to be the k-vector space of left-invariant elements in $\Omega_{G/k}^{1}(G)$. Prove that the natural k-linear map $\Omega_{G/k}^{1,\ell} \to \operatorname{Cot}_e(G)$ is an isomorphism, and that $\mathscr{O}_G \otimes_k \Omega_{G/k}^{1,\ell} \to \Omega_{G/k}^{1}$ is an isomorphism. Deduce that the formation of $\Omega_{G/k}^{1,\ell}$ naturally commutes with any extension on k, and compute $\Omega_{G/k}^{1,\ell}$ for $G = \mu_p$ and $G = \alpha_p$ over k of characteristic p > 0.