MATH 249C. HOMEWORK 6

- 1. A map of abelian varieties $f: A \to B$ over k is an *isogeny* if it is surjective with finite kernel on \overline{k} -points, or equivalently (by generic flatness and translations) if f is finite and flat.
- (i) Using the theorem of Deligne from Exercise 5 in HW4 and the "quotient" property for fpqc homomorphisms between group schemes (as discussed in class), prove that if dim $A = \dim B$ then f is an isogeny if and only if there exists $g: B \to A$ such that $g \circ f = [n]_A$, in which case $f \circ g = [n]_B$.
- (ii) Let ℓ be a prime with $\ell \neq \operatorname{char}(k)$. Prove that f is an isogeny if and only if the induced map $T_{\ell}(f): T_{\ell}(A) \to T_{\ell}(B)$ on ℓ -adic Tate modules is injective with finite cokernel, and equivalently if and only if $V_{\ell}(f): V_{\ell}(A) \to V_{\ell}(B)$ is an isomorphism. In such cases, prove that deg f is not divisible by ℓ if and only if $T_{\ell}(f)$ is an isomorphism. (There are analogues for $\ell = \operatorname{char}(k) > 0$, using Dieudonné modules.)
- (iii) The isogeny category of abelian varieties over k has objects the abelian varieties over k and morphisms $\operatorname{Hom}^0(A,B) := \mathbf{Q} \otimes_{\mathbf{Z}} \operatorname{Hom}_k(A,B)$. Explain why this forms a category, prove that the "forgetful" functor from the category of abelian varieties over k to the isogeny category is faithful but not fully faithful, and that a map of abelian varieties is an isomorphism in the isogeny category if and only if it is an isogeny.
- 2. Let S be a scheme, X an S-scheme, and G an S-group scheme. Assume there is given a left action map $G \times_S X \to X$. This action is called *free* if G(T) acts freely on X(T) for all S-schemes T.
- (i) Prove that freeness is equivalent to the map $G \times_S X \to X \times_S X$ defined by $(\gamma, x) \mapsto (\gamma.x, x)$ being a monomorphism, and deduce that freeness is insensitive to fpqc base change. (Hint: in a category with fiber products, a map is a monomorphism if and only if its relative diagonal is an isomorphism.)
- (ii) Let X be a scheme locally of finite type over an algebraically closed k, equipped with an action by a k-group G locally of finite type. For each $x \in X(k)$, prove that the functor assigning to any k-scheme S the subgroup of $g \in G(S)$ fixing $x_S \in X(S)$ is represented by a closed k-subgroup G_x , the isotropy group scheme at x. Explain why G_x naturally acts on the tangent space $T_x(X)$ (viewed as an affine space over k), so the action map $G_x \to GL(T_x(X))$ defines a map of Lie algebras $Lie(G_x) \to \mathfrak{gl}(T_x(X))$ (i.e., an action in the sense of Lie algebra representations of $Lie(G_x)$ on $T_x(X)$).

Prove that the action is free if and only if G(k) acts freely on X(k) and $Lie(G_x)$ acts freely on $T_x(X)$ for all $x \in X(k)$ (i.e., nonzero elements of $Lie(G_x)$ act without nonzero fixed points on $T_x(X)$).

- (iii) Assume $G \to S$ is fpqc and G acts freely on X. A quotient of X by the G-action is a G-invariant fpqc map $\pi: X \to \overline{X}$ such that $G \times_S X \to X \times_{\overline{X}} X$ defined by $(g,x) \mapsto (g.x,x)$ is an isomorphism. Prove that such a quotient, if it exists, is unique up to unique isomorphism, is initial among G-invariant maps from X to S-schemes, and retains the quotient property after base change to any S-scheme.
- 3. Let A be an abelian variety over k, and G a finite k-subgroup scheme of A. This exercise proves the existence and uniqueness of a quotient abelian variety A/G, and considers an important example.
- (i) Prove that up to unique isomorphism there is at most one pair (\overline{A},π) consisting of an abelian variety \overline{A} and a surjective k-homomorphism $\pi:A\to\overline{A}$ with $G=\ker\pi$. Prove that if it exists then it is necessarily a quotient in the strong sense of Exercise 2(iii). Conversely, prove that if there is a quotient A/G in the strong sense of Exercise 2(iii) then it is necessarily an abelian variety. (Hint: a noetherian ring is regular if it admits a faithfully flat regular extension, by Theorem 23.7 of Matsumura CRT, and a k-algebra is finite type if it admits a faithfully flat extension of finite type over k, by Prop. 9.1 in Exposé V of SGA3.)
- (ii) Choose $n \in \mathbf{Z} \{0\}$ killing G (e.g., the order of G), and consider the quotient mapping $[n]_A : A \to A$ that identifies A with A/A[n] (in particular, A/A[n] exists and is an abelian variety). Explain how this identifies the problem of existence of A/G in the sense of (i) with the quotient problem from Exercise 2(iii) for the action of the A-group $G \times A$ on A viewed as an A-scheme via $[n]_A : A \to A$. The existence of quotients of free actions by finite flat group schemes on schemes affine (even finite!) over a noetherian base is solved in general by Theorem 4.1 in Exposé V of SGA3 (you can read $\S1-\S4$ there without the earlier exposés.)
- (iii) Let \mathscr{L} be an ample line bundle on A, so $K(\mathscr{L})$ is a finite subgroup scheme of A. Deduce that the dual abelian variety \widehat{A} is naturally identified with the quotient $A/K(\mathscr{L})$. (In Mumford's book, he develops from scratch a good theory of quotients of abelian varieties modulo finite subgroup schemes and then proves directly for ample \mathscr{L} that the quotient $A/K(\mathscr{L})$ satisfies the required properties to be a dual abelian variety. In this way he constructs the theory of the dual abelian variety without using the theory of Picard schemes.)

1