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Abstract. It is believed that social preference, economic disparity, and heterogeneous environ-
ments are mechanisms for segregation. However, it is difficult to unravel the exact role of each mech-
anism in such a complex system. We introduce a versatile, simple and intuitive particle-interaction
model that allows to easily examine the effect of each of these factors. It is amenable to numerical
simulations, and allows for the derivation of the macroscopic equations. As the population size and
number of groups with different economic status approach infinity, we derive various local and non-
local system of PDEs for the population density. Through the analysis of the continuous limiting
equations, we conclude that social preference is a necessary but not always sufficient mechanism
for segregation. On the other hand, when combined with the environment and economic disparity
(which on the their own also do not cause segregation), social preference does enhance segregation.
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1. Introduction

The separation along the lines of age, race, religious affiliation, and social status,
to name a few, is a ubiquitous phenomenon that has been observed throughout time
and cultures [1, 3, 24]. It appears that social segregation is a fundamental charac-
teristic of human nature, and yet there is still much we do not understand of the
mechanisms behind it, in spite of the vast literature on this subject – see, for exam-
ple, [11, 12, 19, 23, 24, 27] and references within. Much of this research was sparked
by the pioneering work of Shelling in [24], which made the case that social prefer-
ence alone facilitates segregation by studying simple mathematical models. One issue
here is the difficulty to model social preferences. They can vary dramatically across
cultures, generations, and even neighborhoods within a city, and although there is a
large literature in this area, the results are often inconclusive [4]. For example, some
research shows that misery likes company, – in other words, people like to be around
people who are less well-off than themselves [16]. On the other hand, given the current
trends in income distribution in some cities, it is clear that residential areas are, gen-
erally, segregated along income lines [10]. This motivates the need to go beyond social
preferences and consider economic disparity, along with heterogeneous environments,
where certain locations are more desirable than others, as reasons for social segrega-
tion. It is clear that the choice of where people live is highly influenced by location,
housing density, reputation of neighborhoods, amenities, and security [9,13,26] but is
limited by their economic power. Recently, [11] provided a mathematical framework
for this phenomenon. The agent-based model considered in this reference involves
individuals heterogeneous in their ability to pay for a certain residence, and included
interactions between potential sellers and buyers. Through the use of numerical and
linear stability analysis, it was concluded that social segregation was possible only if
the social preference to be near people of similar or higher income was sufficiently
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2 Social and economic segregation

strong. This model included market matching and the complicated dynamics pre-
vented the authors from deriving a continuum model.

The objective of the present paper is to introduce a versatile model that can take
into account different social factors with relative ease, as well as provide a flexibil-
ity to model the environment, such as city amenities, educational systems, public
transportation, and highways, but is sufficiently simple to allow mathematical analy-
sis. With this in mind, we introduce an interacting-particle model that enables us to
model simple and intuitive rules of interaction. Similar interacting-particle systems
are widely used physics – see, for example, [17], and have recently been popularized
to model aggregation [6, 20,21,25].

We focus on three basic mechanisms believed to play a role in segregation: so-
cial preference, economic disparity, and a heterogeneous environment. We consider
individuals of variable socio-economic status who navigate through a prescribed envi-
ronment. The economic status is accounted for by the ease with which each individual
navigates the environment – their mobility. In terms of social preference, we assume
that individuals favor being surrounded by others with similar mobility. Hence, the
role of mobility is two-fold: (1) it measures the ease with which a certain economic
class can navigate an environment, and (2) it provides a mechanism of segregation
through social preference. Interacting-particle systems provide a flexible framework
and the above assumptions can be easily modified.

While individual behavior is important, certain macroscopic patterns arise when
we observe the bulk behavior of the system. To study them, we derive the contin-
uum limit of the particle-interaction model. This is another benefit of starting with
interacting-particle models, – they allow us to derive the macroscopic models from
first principles. We first study the case when the mobility is discrete – this is a crude
way to describe the interaction between various social groups. This case leads to a
system of partial differential equations of Keller-Segel type with repulsion – see, for
example, [8] and references therein for other problems where such equations arise.
Next, we consider the case when the mobility is continuous, leading to a reaction-
advection-diffusion equation in Rd+1 where d-dimensions come from physical space
and the additional dimension represents the mobility space. The rigorous justifica-
tion of the continuum models is a technical and non-trivial issue beyond the scope of
this paper, and will appear elsewhere.

A benefit afforded by the continuum model is the ability to carry out mathe-
matical analysis and gain insight into the global phenomenon of social segregation
in a systematic way. Through the analysis of the system of PDEs derived here, we
observe that in many cases social preference alone does not lead to social segregation.
In particular, if the initial distribution is socially diverse, it will maintain its social
diversity. On the other hand, mobility and the environment enhance segregation, but
only when some social preference is present. Of course, the present work only touches
the tip of the iceberg and there are many generalizations that need to be made in
order to move toward realistic understanding of the full picture of social segregation.

The interaction potential. We assume that interaction between individuals is
governed by an interacting potential. A system with N individuals whose interactions
are governed by a non-negative potential VN (x)≥0, x∈Rd, leads to the system of
evolution equations

d

dt
xkN (t) =

1

N

N∑
i=1,i6=k

∇VN (xkN (t)−xjN (t)) fork= 1,...,N. (1.1)
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In (1.1), xkN (t) represents the physical position of individual k at time t. As the
number of individuals increases, the strength and range of interaction can vary, a
typical assumption is that the potential VN (x) is a rescaled version of a fixed potential
V1(x):

VN (x) =NβV (Nβ/dx),

where β∈ [0,1]. The case β∈ (0,1) is known as the mean-field limit – the range of the
interactions decreases asN grows, while the strength of the interactions increases. The
case β= 0 is known as the weakly-interacting limit – while the range of interaction
is large, the strength of the interactions is weak. The case β= 1 is known as the
hydrodynamic limit and we do not discuss it here. Throughout this work we assume
that V (x) is a smooth and radially decreasing potential.

Notation: In what follows, we denote by Ω a bounded subset of Rd or all of Rd.
Also, for any f ∈C2

0 (Rd) and probability measure µ we denote

〈µ,f〉=
∫

Ω

fdµ(x).

The mass of a function h(x) will be denoted by∫
Ω

h(x)dx=M [h]. (1.2)

We will use ∗ to denote the standard convolution:

K ∗u(x) =

∫
Ω

K(x−y)u(y)dy.

For any function ρ(x) we denote by ρ#(x) to be the symmetric non-increasing rear-
rangement of ρ(x). We keep in mind that∣∣∣∣ρ#(x)

∣∣∣∣
p

= ||ρ(x)||p forp∈ [1,∞) (1.3)

and that for G(x) symmetric and non-increasing∫
G(x−y)h(x)g(y)dx≤

∫
G(x−y)h#(x)g#(y)dxdy, (1.4)

see for example [15].

Discrete economic status. We study two cases: (1) discrete set of mobilities
which describes a population made only of individuals that are either disadvantaged
or affluent – this setting could be easily modified to include any finite number of
groups, and (2) continuous mobilities which describes the more realistic continuous
spectrum of socio-economic statuses in a population.

Let u(x,t),v(x,t) : Ω× [0,∞)→ [0,∞) represent the densities of the groups with
mobility Γ�1 and ε�1, respectively. The most general systems of partial differential
equations we obtain as limiting models of the interacting-particle model are, in the
non-local case:

ut=σ∆u+η∆u2 +∇·(u∇G∗(v−u))+Γ∇·(u∇A(x)) in Ω, (1.5a)

vt=σ∆v+η∆v2 +∇·(v∇G∗(u−v))+ε∇·(v∇A(x)) in Ω, (1.5b)

u(x,0) =u0(x)≥0 andv(x,0) =v0(x)≥0 for t= 0, (1.5c)

(σ∇u+η∇u2 +u∇G∗(v−u)+Γ∇A(x)) ·n= 0 on ∂Ω, (1.5d)

(σ∇v+η∇v2 +v∇G∗(u−v)+ε∇A(x)) ·n= 0 on ∂Ω. (1.5e)
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where η,σ≥0 are the (linear and nonlinear, respectively) diffusivities and n is the
outward normal at the boundary of Ω; and in the local case:

ut=σ∆u+λ1∆u2 +λ2∇·(u∇v)+Γ∇·(u∇A(x)) in Ω, (1.6a)

vt=σ∆v+λ1∆v2 +λ2∇·(v∇u)+ε∇·(v∇A(x)) in Ω, (1.6b)

u(x,0) =u0(x)≥0 andv(x,0) =v0(x)≥0 for t= 0, (1.6c)

(σ∇u+λ1∇u2 +λ2u∇v+Γu∇A(x)) ·n= 0 on ∂Ω, (1.6d)

(σ∇v+λ1∇v2 +λ2v∇u+εv∇A(x)) ·n= 0 on ∂Ω. (1.6e)

with λ1,λ2>0. In the application we are considering, it is suitable to consider non-
negative initial data u0(x) and v0(x). The no-flux boundary conditions imply that
the total number of individuals in the city is preserved in time.

There are two diffusive terms in (1.5a) and (1.5b). The linear diffusion comes
from the unpredictable human behavior (modeled as random noise) and the nonlin-
ear diffusion comes from individuals’ needs to have some personal space (leading to
an overcrowding effect). The convolution term models the long-range attraction to
individuals of the same group and long-range repulsion from individuals from the
other group, with the function G(x) as the governing interacting potential. The pre-
scribed spatially heterogeneous environment is given by the scalar field, A(x), and
the population densities are advected by the gradient of this scalar field with velocity
proportional to Γ for u(x,t) and ε for v(x,t). The assumptions Γ�1 and ε�1 reflect
the disparity between the populations with densities u(t,x) and v(t,x).

The system (1.5) preserves the mass and non-negativity, that is∫
Ω

u(x,t)dx=M [u0(x)] and

∫
Ω

v(x,t)dx=M [v0(x)], (1.7)

and

u(x,t),v(x,t)≥0

for all x∈Ω and t>0. This system is, formally, the gradient flow of the free energy

F(t) :=E(t)+W(t)+S(t)+L(t). (1.8)

Here, the entropy, which comes from the two dispersal mechanisms, is

E(t) :=

∫
Ω

η
(
u2 +v2

)
+σ(ulogu+v logv)dx,

the interaction energy, which comes from the long-range attraction within groups, is

W(t) :=−1

2

∫
Ω

∫
Ω

G(x−y)(u(x,t)u(y,t)+v(x,t)v(y,t))dxdy,

the segregation energy, which describes the long-range repulsion between groups, is

S(t) :=

∫
Ω

∫
Ω

u(x,t)G(x−y)v(y,t)dxdy,

and the environment energy, which comes from the environment landscape, is

L(t) :=

∫
Ω

A(x)(Γu(x,t)+εv(x,t)) dx.
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The segregation energy, S(t), provides an explicit measure of how segregated the
system is. A state is completely segregated if∫

Ω

∫
Ω

u(x,t)G(x−y)v(y,t)dxdy= 0, (1.9)

that is, if the two groups do not interact at all, minimizing the segregation energy.
This is the case when either u(x,t) or v(x,t) are exactly equal to zero or have disjoint
support. If G(x) has compact support then the distance between the support of u(x,t)
and v(x,t) simply has to be larger than the range of interaction of G(x). Our first
observation is that system (1.5) dissipates the total energy.

Proposition 1.1 (Formal energy dissipation). Let u(x,t) and v(x,t) be solutions
to (1.5) then

F(t)+

∫ t

0

D(s)ds≤F(0), ∀ t>0, (1.10)

where the dissipation is

D(s) =

∫
Ω

u |∇(2ηu+σ logu+G∗(v−u)+ΓA(x))|2 dx

+

∫
Ω

v |∇(2ηv+σ logv+G∗(u−v)+εA(x))|2dx. (1.11)

To analyze the different roles of social preference, the environment, and economic
disparity we consider the case when dispersal is due only to Brownian motion, i.e.
η= 0. We first note that if economic disparity is not included in the model then a
population which is initially socially diverse will remain diverse for all time.

Proposition 1.2 (Lack of segregation). Let σ>0, η= 0, and Γ = ε= 0. If u(x,t)
and v(x,t) are solutions to (1.5) with initial conditions u0(x) =v0(x) then u(x,t) =
v(x,t) for all (x,t)∈Ω×(0,∞).

More can be said in the case when diffusion dominates in the system, linearizing
(1.5), with σ>0, η= 0, and Γ = ε= 0, around the states u≡v≡1. This gives the linear
system

ut=σ∆u+∆G∗(v−u), (1.12a)

vt=σ∆v+∆G∗(u−v). (1.12b)

System (1.12) is linearly stable when

σ>2Ĝ(ξ), (1.13)

for all ξ >0 and so we expect that, when (1.13) is satisfied, the “perfectly mixed”
state u≡v≡1 is nonlinearly stable, so that there will be social diversity in the long
run, rather than segregation.

Theorem 1.3 (Preservation of social diversity). Let u(x,t),v(x,t) be solutions to
system (1.5) with σ,η≥0, Γ = ε= 0. Furthermore, assume that the initial conditions
u0(x) and v0(x) satisfy

M [u0(x)] =M [v0(x)] =M. (1.14)
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Then, for σ>C(|Ω| ,G) sufficiently large the following bound holds

||u−v||2L2 + ||u+v− s̄||2L2 ≤
(
||u0(x)−v0(x)||2L2 + ||u0(x)+v0(x)− s̄||2L2

)
e−Ct,

(1.15)

where C(σ, ||∆G||L∞(Ω) ,M) and

s̄ :=
1

|Ω|

∫
Ω

(u+v)dx=
2M

|Ω|
. (1.16)

The estimate (1.15) implies that in the long time limit we expect that the population
density of affluent individuals is the same as that of the disadvantaged individuals
throughout the city. On the other hand, when (1.13) is violated we expect (at least,
partially) segregated states in the long time limit.

Condition (1.14) is not necessary and is solely made to simplify the statement
and proof of the theorem. In general, if

M [u0(x)] =Mu andM [v0(x)] =Mv,

then the following estimate holds,

||u−v−s̄1||2L2+||u+v− s̄||2L2 ≤
(
||u0(x)−v0(x)− s̄1||2L2 + ||u0(x)+v0(x)− s̄||2L2

)
e−Ct,

with

s̄1 =
1

|Ω|

∫
Ω

(u−v)dx.

The next observation is that in an environment where the resources or amenities
in a city are non-uniform, such as in mono-centric cities, disparity in mobility leads to
segregation: if Γ�1 and ε�1, then u(x,t) will be concentrated in areas where A(x)
is large and v(x,t) will be concentrated in areas where u(x,t) is low. We first state a
more general result for the local system (1.6).

Theorem 1.4 (Segregated steady state for the local system). Let A(x)∈L∞(Ω),
λ1 = 0, and u0(x),v0(x)∈L1(Ω). There exist two positive constants, c1,c2, and con-
tinuous functions, ū(x) and v̄(x), which are positive and satisfy

ū(x) = c1 exp

{
− 1

σ
(ΓA(x)+λ2v̄(x))

}
, (1.17a)

v̄(x) = c2 exp

{
− 1

σ
(εA(x)+λ2ū(x))

}
, (1.17b)

that are steady-state solutions of system (1.6). Additionally, the following holds∫
Ω

ū(x)dx=M [u0(x)] and

∫
Ω

v̄(x)dx=M [v0(x)]. (1.17c)

Next, we state the corresponding result for the non-local system for potentials that
are close to the delta kernel. For a given potential G(x) we define

Gδ(x) :=
1

δd
G

(
1

δ
x

)
.
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Theorem 1.5 (Segregated steady state for non-local system). Let A(x)∈
C1(Ω), G(x)∈L1(Rd), η= 0, and u0(x),v0(x)∈L1(Ω). There exists a δ0>0 such that
for δ<δ0 there exist constants, c1,c2, and continuous functions, uδ(x) and vδ(x),
which are positive and satisfy

u(x) = c1 exp

{
− 1

σ
(ΓA(x)+Gδ ∗(v(x)−u(x))

}
, (1.18a)

v(x) = c2 exp

{
− 1

σ
(εA(x)+Gδ ∗(u(x)−v(x))

}
, (1.18b)

and are steady-state solutions of system (1.5). Furthermore, the following hold∫
Ω

uδ(x)dx=M [u0(x)] and

∫
Ω

vδ(x)dx=M [v0(x)]. (1.18c)

From (1.17) we observe that social preference is necessary for segregation but not
sufficient. Indeed, without the social preference, when G= 0, the ground states would
have the form

u(x) = c1 exp

{
−Γ

σ
A(x)

}
, (1.19a)

v(x) = c2 exp
{
− ε
σ
A(x)

}
, (1.19b)

and would have qualitatively similar profiles. The proofs of Theorem 1.4 and Theo-
rem 1.5 rely on the fact that the dispersal is due only to random noise. However, we
can explore the existence of steady-state solutions in Rd when the dispersal is due to
the over-crowing effect, which leads to the degenerate diffusion, through the use of
the energy functional (1.8). In this direction we obtain some non-existence results.
Since (1.5) is formally a gradient flow of (1.8) we expect that minimizers of the free
energy functional are steady state solutions of (1.5). As the parabolic system (1.5)
conserves mass it is reasonable to look for minimizers in the set

YMu,Mv
:=
{

(u,v)∈ (L1
+(Rd)×L1

+(Rd))∩(L2(Rd)×L2(Rd)) : ||u||1 =Mu, ||v||1 =Mv

}
,

(1.20)

for Mu,Mv>0.
Proposition 1.6. (Stationary solutions via energy minimization) Let (u,v)∈YMu,Mv

be a minimizer of F [u,v] then (u,v) satisfies

∇(2ηu+G∗(v−u)) = 0,

∇(2ηv+G∗(u−v)) = 0,

a.e. in x∈Rd.
Proposition 1.7. (Regularity of steady-states) Let (u0(x),v0(x))∈YMu,Mv then the
solutions (u(x,t),v(x,t)) to (1.5) with σ= Γ = ε= 0 satisfy∫

u |∇u|2 +v |∇v|2 dx<∞, a.e t>0. (1.21)

In particular, any steady-state solutions to (1.5) with σ= Γ = ε= 0, (u,v), satisfies
(1.21) and both u and v are C2 on their support.
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A formal analysis of (1.8) gives us hints at the behavior of solutions to system
(1.5) and also to the existence of minimizers in YMu,Mv

. The choice of interaction
potential affects the system in two key ways: the strength of its pull at the origin and
its decay as |x|→∞. The former provides a measure of the risk of finite-time blow up
of the solutions. The latter provides a pull of mass when it is trying to escape to ±∞.
In other words, if the pull is too weak (and we can additionally rule out finite-time
blow up) we expect that no minimizers will exist.

Our choice of interacting potentials turns (1.5) into a diffusion dominated system.
Indeed, consider what happens to the energy as we scale u(x) and v(x) function into
a delta function:

uλ=λdu(λx) andvλ=λdv(λx).

We obtain the rescaled energy,

F [uλ,vλ] =λd
(
||u||22 + ||v||22

)
− 1

2

(∫
G

(
x−y
λ

)
(u(x)u(y)+v(x)v(y)−2u(x)v(y))dxdy

)
≥λd

(
||u||22 + ||v||22

)
−||G||∞ (M2

u+M2
v ).

Taking the limit as λ→∞ gives F [uλ,vλ]→∞. From this heuristic, we expect the
solutions to exists globally and the natural question to ask is if the solutions weak*
converge to zero or if there exists a nontrivial ground state. Next, let us analyze what
happens to the energy as the mass of a sequence in YMu,Mv

spreads out and the center
of mass of u and v shift further away from each other. Take (u(x),v(x))∈YMu,Mv

and consider the mass invariant scaling with a shift

uλ(x) =λdu(λ(x−xλ)) andvλ(x) =λdv(λ(x+xλ)),

where {xλ}λ>0 is a sequence in Rd with limλ→0 |xλ|=∞. This time we are interested
in what happens when λ→0,

F [uλ,vλ] =λd(||u||22 + ||v||22)− λ
d

2

∫ ∫
1

λd
G

(
x−y
λ

)
(u(x)u(y)+v(x)v(y)) dxdy

+λd
∫ ∫

1

λd
G

(
x−y
λ

+2xλ

)
u(x)v(y)dxdy.

Note that as λ→0 the second term scales as λd

2 ||G1||1 (||u||22 + ||v||22). Thus, if
||G1||1≤2 the energy is always non-negative and we can find a suitable subsequence
of YMu,Mv

that weak* converges to zero; thus, we conclude

inf
u,v∈YMu,Mv

F [u,v] := IMu,Mv ≤0.

Lemma 1.8 (Complete segregation). Any non-trivial minimizer of F [u,v],
(u∗,v∗)∈YMu,Mv , must have disjoint supports. In particular, if supp(G)⊂BR(0) then
dist(supp(u∗), supp(v∗))≥2R and

S[u∗,v∗] = 0. (1.22)

Theorem 1.9 (Nonexistence of minimizers). Let G∈L1(Rd), Mu,Mv>0. If
||G||1≤2η or G has unbounded support there are no minimizers of F [u,v] in YMu,Mv .
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On a final note, making a rigorous connection between the interacting-particle
model and the continuous system (1.5) requires the global well-posedness of (1.5).
The global well-posedness result for weak-solutions, which is the best we can hope for
when σ= 0 due to the degenerate diffusion, is stated below. However, we leave the
proof for a more technical paper in preparation.

Theorem 1.10 (Global well-posedness). Let σ= 0 and G(x) be admissible. Let
u0(x),v0(x)∈L∞(Ω) be non-negative initial conditions. System (1.5) has weak solu-
tions u(x,t),v(x,t)∈L∞(Ω×(0,T )) for any T >0. Note that when σ>0 the solutions
are classical.

Continuous income spectrum. So far, we have assumed that the mobility
is discrete. The model can be easily extended to a continuous mobility spectrum.
Starting from the interacting-particle model we not only take the limit as the number
of individuals approach infinity, but also as the number of groups, each with a different
mobility, approaches infinity. We will assume that the mobility y is an independent
variable, and it is convenient to normalize it so that y∈ [0,1]. It is helpful to define a
mobility threshold, κ∈ [0,1], as a parameter that measures the line between attraction
and repulsion based on mobility. In other words, an individual with mobility y1 is
attracted to an individual with mobility y2 if |y1−y2|≤κ. If |y1−y2|>κ then the
individuals repulse each other. The interactions can be governed, for example, by the
potential H(y)G(x), where,

H(y) =κ|y|−1, (1.23)

determines the attractive or repulsive nature of the interaction, and G(x) determines
the strength of the interaction due to the spatial distance between the individuals.
The population density u(x,y,t) at location x∈Rd, with mobility y∈ [0,1] at time t,
satisfies the following partial differential equation

∂tu(x,y,t) =η∇x·(u(x,y,t)∇xu(x,t)) (1.24)

−∇x·(u(x,y,t)[∇x([HG]∗u(x,y,t))+y∇xA(x)]),

where ∇x denotes the spatial gradient, ∗ represents convolution in both the x and y
variables, and

u(x,t) =

∫ 1

0

u(x,y,t)dy. (1.25)

Notice that the first term on the right-hand side of (1.24) is reminiscent of porous-
media diffusion. Indeed, the equation is advecting u(x,y,t) down gradients of u(x,t),
which provides a measure for the total population density. Equation (1.24), with no-
flux boundary conditions, conserves mass and non-negativity and also rearranges the
mobility.

Heterogeneous environments: crime, safety, and economic disparity.
As we have mentioned, one benefit of the models we introduce in this work is the
freedom to explore the effects of heterogeneous environments. As an example, we
consider a scalar field A(x,t) which measures the probability that a criminal act
will occur at location x and time t. Through this environment we can explore various
hypothesis related to the interconnection between crime hotspots, defined to be spatio-
temporal areas of high density of criminal activity, and the local economic status of
the population. In particular, our objective here is to find mechanisms that yield the
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formation of crime hotspots in low-income neighborhoods, a trend which has been
observed recently [7,14]. While the role the government plays with regards to crime is
not exactly clear, in our model we assume that its objective is to minimize the “fear
of crime” [22]. Indeed, research done in this area points to the inability of individuals
to rationally calculate the objective danger and in many circumstances the perceived
danger is not well-founded. This can be observed, for example, in the fact that certain
subpopulations tend to be more fearful of crime – see [22] and references within.

Given a distribution of the population at time t we consider an influence field,
I(x,t), which measures the economic power of a certain location at that time, and
let p(x,t) be the distribution of police resources at time t. The insecurity functional
at time t, U(x,t), depends on I(x,t) and measures how unsafe the population feels.
For example, under the assumption that people get used to crime, (people who live
in a high-crime neighborhood are less phased by a single criminal activity whereas
the insecurity of the people who live in a safe neighborhood will significantly increase
with a single criminal activity) we obtain the following examples

U(p(x,t)) =
√
δ+exp(−αp(x,t))I(x,t) orU(p(x,t)) =

√
δ+exp(−αp(x,t))exp(I(x,t)),

(1.26)

where δ>0 is a parameter that measures the minimum amount of insecurity and α>0
measures the effectiveness of the police recourses. The police aims to minimize the
functional

F (p) =

∫
Ω

[ε |∇p(x,t)|2 +U(p(x,t))]dx, (1.27)

where the first term is a regularization to provide some smoothness. Taking into
account the normalization due to a fixed total amount of police resources, the vari-
ational formulation for the distribution of the police resources, given the population
income distribution I(x,t) is:

min
p≥0

F (p), (1.28a)

subject to

∫
Ω

p(x,t) = 1. (1.28b)

Given the optimal use of resources, p∗(x,t), which satisfies (1.28), we assume an
inverse relationship between A(x,t) and p∗(x,t). For example,

A(x,t) = exp{−αp∗(x,t)} .

From a prescribed distribution of the population we generate the influence field and
given this field we then use a gradient decent scheme to solve (1.28). Numerically, we
observe the development of “safe-havens,” regions with very low values of A(x,t), in
ares where there is high economic power, refer to Figure 5.5b for an illustration.

Outline: In section 2 we introduce the interacting-particle system for two groups
with distinct mobility and formally derive various systems of PDEs. Section 3 is
devoted to the proofs of Theorem 1.3, Theorem 1.4, and Theorem 1.5. In section 4
we introduce the particle-interaction model for groups with continuous mobility and
derive the formal PDE for this system. In section 5 we discuss and illustrate some
numerical experiments, including a study of the distribution of the police resources
based on the minimization procedure (1.28).
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2. Discrete mobility model In this section we consider the case of discrete
mobility, corresponding to the case when there is a discrete number of social classes.

2.1. Interacting particle model

We consider two distinct groups in the population that interact within groups and
between groups in different ways. Group one has N1 individuals, each with influence
Γ�1, and group two has N2 individuals, each with influence ε�1. The dynamics of
individuals are governed by three rules:

(A1) overcrowding effect: although individuals from the same group are attracted
in the long-range, the desire for some personal space leads to local (short-
range) repulsion.

(A2) social preference segregation: individuals are attracted to those in their own
group and repulsed from those in the other group, leading to long-range
attraction within-groups and repulsion between-groups.

(A3) environment field A(x): individuals are attracted to either low or high values
of the scalar field, A(x), depending on what A(x) represents. For example, if
A(x) represents the quality of the educational system then individuals have
the preference to be in areas where A(x) is high. On the other hand, if A(x)
represents the crime density then individuals have the preference to be in
areas with small values of A(x). Furthermore, we assume that the velocity of
each individual is proportional to its mobility.

We assume that within group, short-range repulsion is governed by the interaction
potential VN (x) and the long-range mobility segregation is governed by the interaction
potential GN (x). Both VN (x) and GN (x) are admissible potentials of the form

VN (x) =NγvV1(Nγv/dx) andGN (x) =NγgG1(Nγg/dx), (2.1)

with γv,γg ∈ [0,1). Recall that the scaling parameters, γv and γg determine the
strength and range of the interactions as the number of individuals in the system
increases. Combining these effects, we obtain the following system of ODEs for the
positions xk1(t)

d

dt
xk1(t) =− 1

N1

N1∑
j=1,j 6=k

(
∇VN1

(xk1(t)−xj1(t))−∇GN1
(xk1(t)−xj1(t))

)

− 1

N2

N2∑
j=1

∇GN2
(xk1(t)−xj2(t))−Γ∇A(xk1(t)) fork= 1,...,N1, (2.2)

and xk2(t):

d

dt
xk2(t) =− 1

N2

N2∑
j=1,j 6=k

(
∇VN2(xk2(t)−xj2(t))−∇GN2(xk2(t)−xj2(t))

)

− 1

N2

N2∑
j=1

∇GN1(xk2(t)−xj2(t))−ε∇A(xk2(t)) fork= 1,...,N2. (2.3)

The dynamics of both groups is identical except for the difference in mobility. This
model can be easily extended to a general number of groups, say n. This would lead
to n equations similar to (2.2) and (2.3), with different mobility parameters.
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2.2. Continuum limit for the two-population model
The interacting-particle system (2.2)-(2.3) can be studied numerically, but insight

can be gained from its formal continuum limit. We define the empirical measures for
the two groups:

X1(t) =
1

N1

N1∑
i=1

δxi1(t) and X2(t) =
1

N2

N2∑
i=1

δxi2(t). (2.4)

Our goal now is to study the behavior of the empirical measures (2.4) and obtain the
limiting equations for (2.2) and (2.3) as N1,N2→∞.

From a macroscopic perspective, we assume that there are functions u0(x),v0(x)∈
Rd which represent the initial distribution of the two groups and u(x,t),v(x,t)∈Rd×
(0,∞) which represent the density distribution of the groups at time t, that is:

lim
N1→∞

〈X1(0),f〉= 〈u0 (·) ,f〉 and lim
N2→∞

〈X2(0),f〉= 〈v0 (·) ,f〉, (2.5)

lim
N1→∞

〈X1(t),f〉= 〈u(·,t) ,f〉 and lim
N2→∞

〈X2(t),f〉= 〈v (·,t) ,f〉 , ∀t>0.

Taking the existence of these functions for granted, our goal is to find the equation
for the macroscopic densities u(x,t) and v(x,t). It is convenient to set, with x∈Rd,
y1∈ (Rd)N1 , and y2∈ (Rd)N2 :

g(x,y1,y2) =
1

N1

N1∑
j=1

(
VN1(x−yj1)−GN1(x−yj1)

)
+

1

N2

N2∑
j=1

GN2(x−yj2)+ΓA(x),

(2.6)
and

h(x,y1,y2) =
1

N2

N2∑
j=1

(
VN2(x−yj2)−GN2(x−yj2)

)
+

1

N1

N1∑
j=1

GN1(x−yj1)+εA(x),

(2.7)
so that equations (2.2) and (2.3) become

d

dt
xk1(t) =−∇g(xk1(t),x1(t),x2(t)) k= 1,...,N1, (2.8a)

d

dt
xk2(t) =−∇h(xk2(t),x1(t),x2(t)) k= 1,...,N2. (2.8b)

System (2.8) is equivalent to (2.2) and (2.3) provided ∇V (0) =∇G(0) = 0. Now, for
f ∈C1

0 (Rd) we have

〈Xi(t),f〉=
1

Ni

Ni∑
k=1

f(xki (t)) for i∈{1,2} ,

and taking the time derivative yields

d

dt
〈X1(t),f〉= 1

N1

N1∑
k=1

∇f
(
xk1(t)

)
· d
dt
xk1(t) =− 1

N1

N1∑
k=1

∇f
(
xk1(t)

)
·∇g

(
xk1(t),x1(t),x2(t)

)
,

d

dt
〈X2(t),f〉=− 1

N2

N2∑
k=1

∇f
(
xk2(t)

)
·∇h

(
xk2(t),x1(t),x2(t)

)
.
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This gives the integral formulation

〈X1(t),f〉= 〈X1(0),f〉+
∫ t

0

〈X1(s),−∇g(·,x1(s),x2(s)) ·∇f(·)〉 ds, (2.9a)

〈X2(t),f〉= 〈X2(0),f〉+
∫ t

0

〈X2(s),−∇h(·,x1(s),x2(s)) ·∇f(·)〉 ds. (2.9b)

For simplicity, we consider the case d= 1, noting that the general dimension case
follows the same procedure. In this case, we can write

〈X1(t),−g′(·,x1(t)x2(t))f ′(·)〉=

− 1

N2
1

N1∑
i,j=1

(
V ′N1

(xi1(t)−xj1(t))−G′N1
(xi1(t)−xj1(t))

)
f ′(xi1(t))

− 1

N1

N1∑
i=1

 1

N2

N2∑
j=1

G′N2
(xi1(t)−xj2(t))+ΓA′(xi1(t))

f ′(xi1(t)).

The type of limiting equations that we will obtain depends on the assumptions on the
scaling parameters. Accordingly, we derive below two types of continuous models.

A non-local model. First, consider the case γv ∈ (0,1) and γg = 0, so that

VN (x) =NγvV1(Nγv/dx) andGN (x) =G1(x),

“Physically”, this means that individuals within the same group are repulsed locally
and attracted long-range, describing the balance of individuals’ social nature and the
need for personal space. On the other hand, individuals are repulsed at a long-range
from individuals belonging to another group. We make use of the local equilibrium hy-
pothesis, which states that locally the individuals are distributed in a uniform manner
– see [20,21]. In this context, this means that the average distance between individu-
als in group one close to a location x is (N1u(x,t))−1, and similarly for group two. As
γg = 0, the attractive term can be re-written as (we write G(x) =G1(x) for simplicity)

1

N2
1

N1∑
i,j=1

G′(xi1(t)−xj1(t))f ′(xi1(t)) =

〈
X1(t),

1

N1

N1∑
j=1

G′(·−xj1(t))f ′(·)

〉
.

If the potential G(x) decays sufficiently fast as |x|→±∞, after taking into account
the local equilibrium hypothesis, the sum in the term above can be approximated by
an integral:

1

N1

N1∑
j=1

G′(x−xj1(t))≈
∫
R
G′(x−y)u(y,t)dy. (2.10)

Similarly, the segregation term is

− 1

N1

N1∑
i=1

1

N2

N2∑
j=1

G′(xi1(t)−xj2(t))f ′(xi1(t) =

〈
X1(t),− 1

N2

N2∑
j=1

G′(·−xj2(t))f ′(·)

〉
,
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and

− 1

N2

N2∑
j=1

G′(x−xj2(t))≈−
∫
R
G′(x−y)v(y,t)dy. (2.11)

As γv ∈ (0,1), the repulsion within groups has to be treated differently from above.
We use the fact that V ′N (x) is odd, and that VN (x) is small for |x|�N−γv , to perform
a Taylor expansion on f ′(xi1(t)):

1

N2
1

N1∑
i,j=1

V ′N1
(xi1(t)−xj1(t))f ′(xi1(t)) =

1

2N2
1

N1∑
i,j=1

(f ′(xi1(t))−f ′(xj1(t)))V ′N1
(xi1(t)−xj1(t))

≈ 1

2N2
1

N1∑
i,j=1

f ′′(xi1(t))(xi1(t)−xj1(t)))V ′(xi1(t)−xj1(t))

=

〈
X1(t),f ′′(·) 1

2N1

N1∑
j=1

V ′N1
(·−xj1(t))(·−xj1(t)))

〉
.

Let us denote V1(x) =V (x):

1

2N1

N1∑
j=1

V ′N1
(x−xj1(t))(x−xj1(t))≈ 1

2N1

N1∑
j=1

V ′
(
Nγv

1 (x−xj1(t))
)
Nγv

1 (x−xj1(t)).

Now, as γv>0, and V (x) is decaying at infinity, we may look only near the point x
in the above sum, where the density of the points xj1 is 1/(Nu(t,x)). This leads to

1

2N1

∞∑
j=−∞

V ′N1
(x−xj1(t))(x−xj1(t)))≈ u(x,t)

2

∫
R
V ′(y)y dy=−u(x,t)

2

∫
V (y)dy

=−M [V ]
u(x,t)

2
.

Thus, the contribution of the short-range repulsion is

〈X1(s),−V ′(·,x1(s),x2(s))f ′(·)〉=
〈
X1(s),

M [V ]

2
f ′′(·)

〉
=

〈
X1(s),−M [V ]

2
u′(x,t)f ′(·)

〉
. (2.12)

Finally, the advective term coming from the heterogeneous environment leads to

− 1

N1

N1∑
i=1

ΓA′(xi1(t))f ′(xi1(t)) =−〈X1(s),f ′(·)ΓA′(·)〉 . (2.13)

Combining (2.10)-(2.13), we obtain

〈X1(t),−g′(·,x1(t),x2(t))f ′(·)〉=
〈
X1(t),−M [V ]

2
f ′(·)u′(·,t)

〉
+〈X1(s),f ′(·)G′ ∗u(·,t)〉−〈X1(t),f ′(·)G′ ∗v(·,t)〉−〈X1(t),f ′(·)ΓA′(·)〉

=

〈
X1(t),f ′(·)

(
−M [V ]

2
u′(·,t)+G′ ∗(u(·,t)−v(·,t))−ΓA′(·)

)〉
.
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Substituting this into (2.9), and passing to the limit N1,N2→+∞, with the help of
(2.5), we obtain

〈u(t)−u(0),f(·)〉=
∫ t

0

〈
u(s),f ′(·)

(
−M [V ]

2
u′(·,s)+G′ ∗(u(·,s)−v(·,s))−ΓA′(·)

)〉
,

with a similar equation for the function v(x,t). These equations are the weak form of
the following system

ut=η∆u2 +∇·(u∇G∗(v−u))+Γ∇·(u∇A(x)), (2.14a)

vt=η∆v2 +∇·(u∇G∗(u−v))+ε∇·(v∇A(x)). (2.14b)

The system (2.14) is equivalent to system (1.5) with σ= 0 and η= M [V ]
2 .

A local model. If both γv ∈ (0,1) and γg ∈ (0,1), then, following the procedures
as in the non-local case, we obtain the local system of equations (1.6) with σ= 0 and

λ1 =
1

2
(M [V ]−M [G]) andλ2 =

1

2
M [G]. (2.15)

We refer to λ2 as the social preference parameter. The mass of the attractive potential
G(x) (within groups) relative to that of the repulsive potential V (x) determines the
sign of λ1. For well-posedness of the system (1.6), one has to assume that diffusion
overpowers aggregation so that λ1>0.

The interaction between individuals can, of course, be modeled in numerous ways.
In fact, another interesting model to consider would be to have separate kernels for
within group interactions and between group interactions. For example, a Morse-type
potential could be used for the within group interactions.

2.3. Individual preference through random noise
Thus far, we have assumed that all individuals follow the exact same rules of

interaction. In reality, however, individuals have personal preferences that do not
necessarily follow the deterministic dynamics. We may account for personalized pref-
erences through a random noise, in which case the position of the individuals{

xki (t)
}
t>0

, k= 1,...Ni, and i={1,2} ,

is described as a stochastic process described by a stochastic differential equation

dxki (t) =
[
T (x1(t),x2(t))+yiA(xki (t))

]
dt+σ(x1(t),x2(t)dW k

i (t),

for k= 1,...Ni and i={1,2} . Here W k
i is a family of independent standard Wiener

processes. The function T includes all of the within group and between group inter-
actions we have considered above. Following the formal derivations of [18], which is
easily adapted to systems, we obtain the general models (1.5) and (1.6). We refer an
interested reader to [18] for more details.

3. Social diversity vs. segregation
In this section, we explore the question of whether a population preserves social

diversity or moves toward a segregated state. We begin with the proof Proposition
1.1. We only show the formal derivation that can be made rigorous by regularizing
the entropy energy and then proving appropriate bounds. This last step allows us to
pass to the limit (see for example the proof of Proposition 1 in [2]).
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Proof. (Proposition 1.1) Let u(x,t) and v(x,t) be as in the hypothesis of Propo-
sition 1.1. Taking the time derivatives of each of the energies, we get

d

dt
E(t) :=

∫
Ω

2η (uut+vvt)+σ(ut logu+vt logv)dx. (3.1)

d

dt
W(t) :=−

∫
Ω

G∗uut+G∗vvt dx. (3.2)

d

dt
S(t) :=

∫
Ω

(G∗vut+G∗uvt)dxdy. (3.3)

d

dt
L(t) :=

∫
Ω

A(x)(Γut(x,t)+εvt(x,t)) dx. (3.4)

From (3.1)-(3.4), we obtain

d

dt
F(t) =

∫
Ω

(2ηu+σ logu+G∗(v−u)+Γ1A(x))ut dx

+

∫
Ω

(2ηv+σ logv+G∗(u−v)+εA(x))vt dx

=−
∫

Ω

u

∣∣∣∣2η∇u+σ
1

u
∇u+∇G∗(v−u)+Γ1∇A(x)

∣∣∣∣2 dx
−
∫

Ω

v

∣∣∣∣2η∇v+σ
1

v
∇v+∇G∗(u−v)+ε∇A(x)

∣∣∣∣2 dx,
where we used the fact that u and v are solutions to system (1.5) and integrated by
parts once.

Social diversity. Here, we prove Theorem 1.3.

Proof. (Theorem 1.3) Let u(x,t) and v(x,t) be solutions to system (1.5) with
Γ = ε=η= 0, and define

w=u−v and s=u+v− s̄,

where s̄ is defined in (1.16). First, assume that η= 0:

wt=σ∆w−∇·(s∇G∗w)− s̄∆G∗w, (3.5a)

st=σ∆s−∇·(w∇G∗w), (3.5b)

with initial conditions

w(x,0) =u0(x)−v0(x) ands(x,0) =u0(x)+v0(x)− s̄,

and no-flux boundary conditions. Multiplying (3.5a) by w(x,t) and (3.5b) by s(x,t)
we obtain the estimates

d

dt

(
||w||2L2(Ω) + ||s||2L2(Ω)

)
=−σ

(
||∇w||2L2 + ||∇s||2L2

)
+

∫
s(∇G∗w)∇wdx

+

∫
w(∇G∗w)∇sdx−

∫
s̄(∆G∗w)wdx :=−I1 +I2 +I3 +I4.
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Note that both w(x,t) and s(x,t) have mean zero mass, the latter due to (1.14) and
the former due to its definition. Therefore, we can apply Poincaré’s Inequality to I1
and obtain

−I1<−Cpσ
(
||w||2L2(Ω) + ||s||2L2(Ω)

)
. (3.6)

Next, we integrate by parts the term I2 and add it to I3 to obtain

I2 +I3 =−
∫
sw(∆G∗w) dx≤ 1

2
||∆G||L∞(Ω) ||w||L1(Ω)

(
||w||2L2(Ω) + ||s||2L2(Ω)

)
. (3.7)

The final bound seen in (3.7) is obtained by the use of Young’s inequality for convo-
lutions and the Cauchy-Schwarz inequality. For the last term we obtain

I4≤ s̄||∆G||L1(Ω) ||w||
2
L2(Ω) . (3.8)

Thus, combining (3.6), (3.7), and (3.8) we obtain

d

dt

(
||w||2L2(Ω) + ||s||2L2(Ω)

)
≤
(
−Cpσ+

1

2
||∆G||L∞(Ω) ||w||L1(Ω) + s̄||∆G||L1(Ω)

)
||w||2L2

+

(
−Cpσ+

1

2
||∆G||L∞(Ω) ||w||L1(Ω)

)
||s||2L2(Ω) .

Choosing σ> 1
Cp

(
1
2 ||∆G||L∞(Ω) ||w||L1(Ω) + s̄||∆G||L1(Ω)

)
we obtain the differential

inequality

d

dt
y≤−Cy, y(0) = ||u0(x)−v0(x)||2L2 + ||u0(x)+v0(x)− s̄||2L2 , (3.9)

where y= ||w||2L2 + ||s||2L2 and C=C(σ,s̄,G,M). Integrating (3.9) we obtain estimate
(1.15).

Segregation due to mobility disparity and environment. This section is
devoted to the proofs of Theorem 1.4 and Theorem 1.5. To prove the former we need
the following lemma.
Lemma 3.1. Let A(x)∈L∞(Ω). There are solutions, ū(x), v̄(x)∈L1(Ω), to

u(x) = c1 exp

{
− 1

σ
(ΓA(x)+λ2v(x))

}
, (3.10a)

v(x) = c2 exp

{
− 1

σ
(εA(x)+λ2u(x))

}
. (3.10b)

In addition, for any M1,M2>0 we may choose c1 and c2 so that

c1

∫
Ω

ū(x)dx=M1 and c2

∫
Ω

v̄(x)dx=M2. (3.11)

Proof. (Lemma 3.1) The proof is in two steps: in the first step we prove existence
of a fixed point of system (3.10) when c1 and c2 are arbitrary positive constants and
in the second step we prove that two such constants exist so that (3.11) holds.
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Step 1: We set σ= 1 and λ2 = 1 without loss of generality. For a fixed x̄∈Ω, we
set the constants

c̃1 = c1e
−ΓA(x̄) and c̃2 = c2e

−εA(x̄),

so that

u(x̄) = c̃1 exp{−c̃2 exp{−u(x̄)}} . (3.12)

Note that given u(x̄) we can find v(x̄) using (3.10b). First, observe that for u(x̄) = 0
the left-hand-side of (3.12) is smaller than the right-hand-side. However, for u(x̄)>c̃1
the right-hand-side is smaller than the left-hand-side. Thus, by continuity and the
intermediate value theorem, there exists a positive fixed point ū(x̄), and, correspond-
ingly, v̄(x̄)>0, that satisfy (3.10) for x̄. Following this procedure for all x∈Ω we,
obtain the existence of functions ū(x) and v̄(x) which satisfy (3.10) in all of the do-
main. Moreover, the fixed points can be chosen so that ū(x) and v̄(x) are continuous.

Step 2: Next, we prove that there exists c1 and c2 such that (3.11) holds. Note
that ū(x) and v̄(x) which satisfy (3.10) with finite c1,c2 are in L∞(Ω) and consequently
in L1(Ω). For simplicity, we define

f(x) =e−ΓA(x) andg(x) =e−εA(x).

As we want M [ū(x)] =M1 and M [v̄(x)] =M2 we set∫
Ω

v̄(x)dx= c2

∫
Ω

g(x)e−ū(x) dx=M2,

which solving for c2 gives

c2 =
M2∫

Ω
g(x)e−ū(x) dx

. (3.13)

Therefore, given M2>0 we may set c2 as above, and insert expression (1.18b) into
(1.18a). This will give a single equation for the function ū(x), parametrized by the
constant c1, and our task is to show that there exists c1>0 so that M [ū(x)] =M1.
Consider the mass of ū(x):∫

Ω

ū(x)dx= c1

∫
Ω

f(x)exp{−c2g(x)exp{−ū(x)}} dx

= c1

∫
Ω

f(x)exp

{
− M2∫

Ω
g(y)e−ū(y) dy

g(x)exp{−ū(x)}
}
dx, (3.14)

where we have used (3.13). Note that if c1 = 0, then M [ū(x)] = 0. In addition, we have
the following lower bound for the mass of ū(x)∫

Ω

ū(x)dx= c1

∫
Ω

f(x)exp

{
− M2∫

Ω
g(y)e−ū(y) dy

g(x)exp{−ū(x)}
}
dx

≥ c1e−ΓAmax exp

{
− M2κ

e−εAmax

}
µ

{
x∈Ω :e−ū(x)≤κ

∫
Ω

e−ū(y) dy

}
, (3.15)

for any κ≥1 and Amax is the maximum value of A in Ω. Now, we have the bound

µ

{
x∈Ω :e−ū(x)≥κ

∫
Ω

e−ū(y) dy

}
≤γ |Ω|, (3.16)
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for κ≥1 and γ<1 such that

κγ |Ω|>1.

Thus, we have the bound∫
Ω

ū(x)dx≥ c1e−ΓAmax exp

{
− M2κ

e−εAmax

}
|Ω|(1−γ). (3.17)

Note that γ and κ only depend on the size of Ω. From (3.17) we conclude that for c1
sufficiently large (and depending on M2) we have M [ū(x)]>M1. Thus, by continuity
there exists a c1 such that M [ū] =M1 and c2 is then determined from (3.13). With
this we conclude the proof.

We are now ready to prove Theorem 1.4
Proof. (Theorem 1.4) Inspired by the Fokker-Plank type nature of the system

(1.6), we rewrite it

ut=σ∇·
(
e−

1
σ (ΓA(x)+λ2v(x))∇·

(
e

1
σ (ΓA(x)+λ2v(x))u

))
, (3.18a)

vt=σ∇·
(
e−

1
σ (εA(x)+λ2u(x))∇·

(
e

1
σ (εA(x)+λ2u(x))v

))
, (3.18b)

with the initial conditions u(x,0) =u0(x) and v(x,0) =v0(x) and no-flux boundary
conditions. From (3.18), we observe that ū(x) and v̄(x), satisfying (3.10), are steady-
state solutions to (1.6) for any c1,c2>0 (setting σ=λ2 = 1). Therefore, we are left
to verify that they satisfy the no-flux boundary conditions (1.6d) and (1.6e) and the
mass property (1.17c). Taking the gradient of ū(x) and v̄(x) from (3.10) we observe
that

σ∇ū(x) = ū(x)∇(−ΓA(x)+λ2v̄(x)),

σ∇v̄(x) = v̄(x)∇(−εA(x)+λ2ū(x)),

guaranteeing that the no-flux boundary conditions are satisfied for ū(x) and v̄(x).
Finally, from Lemma 3.1 we can set M1 =M [u0(x)] and M2 =M [v0(x)] and with this
we conclude.

We now prove Theorem 1.5 in three steps. The first step consists of proving that
(1.18) with δ= 0 has a non-trivial solution (u0,v0)∈C1(Ω)×C1(Ω) for any c1,c2>0.
Second, we invoke the implicit function theorem to show that the same holds in a
small neighborhood of δ= 0. Finally, we prove that there are constants c1,c2>0 such
that (1.18c) holds.

Proof. Without loss of generality assume that σ= 1.
Step 1: Define f1(x) = exp{−ΓA(x)}, f2(x) = exp{−εA(x)}, and g(x) =

f1(x)f2(x). Note that

u(x)v(x) = c1c2g(x),

and since c1c2g(x)>0 we can express v in terms of u

v(x) =
c1c2g(x)

u(x)
.

This reduces the problem to solving the following fixed point

u(x) = c1f1(x)eu(x)− c1c2g(x)
u(x) .
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For x̄∈Ω fixed this is equivalent to solving u=aeu−
b
u where a,b are positive constants,

which always has a non-trivial solution as

lim
u→0

f ′′(u) = 0,

where we define f(u) :=aeu−
b
u . Repeating this process for all x∈Ω gives a solution

(u0(x),v0(x)) to (1.18). Moreover, u0 and v0 inherit the regularity of A(x) and there
exist K,ε1>0 such that ε1<u0(x),v0(x)<K.

Step 2: Let F (δ,u) : [0,∞)×C1(Ω)→C1(Ω) defined by

F (δ,u) :=u(x)−c1f1(x)exp

{
Gδ ∗

(
u(x)− c1c2g(x)

u(x)

)}
.

Note that F is a C1 map, F (0,u0) = 0 and DuF (0,u0)v :C1(Ω)→C1(Ω) defined by

DuF (0,u0)v=h(x)v,

where h(x)<∞ and strictly bounded from 0, is an isomorphism. Then the implicit
function theorem defines a unique mapping (δ,uδ) for δ near 0 and uδ near u0 such
that F (δ,uδ) = 0.

Step 3: In the previous step we proved the existence of uδ(x) and vδ(x) for any
positive and finite constants c1 and c2. Next we prove the claim that for any given
0<M1,M2<∞ there are corresponding c1 and c2 that allow uδ(x) and vδ(x) to satisfy
(1.18c). Recall that we want∫

vδ(x)dx= c1c2

∫
g(x)

uδ(x)
dx=M2,

which gives that

c2 =
M2

c1
∫ g(x)
uδ(x) dx

.

Now, consider the mass of uδ(x)

∫
Ω

uδ(x)dx= c1

∫
Ω

f1(x)exp

G∗
uδ(x)− M2∫ g(y)

uδ(y) dy

g(x)

uδ(x)

 dx.

Again, when c1 = 0 we see that M [uδ(x)] = 0. In addition, we have the following lower
bound for the mass of uδ(x)

∫
Ω

uδ(x)dx≥ c1
∫

Ω

f1(x)exp

− M2∫ g(y)
uδ(y) dy

∫
G(x−y)

g(y)

uδ(y)
dy

 dx

≥ c1e−ΓAmax exp{−M2 ||G||L∞} . (3.19)

As before, this implies that we can choose c1 sufficiently large so that M [uδ(x)]>M1.
By continuity, we conclude the proof.
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Energy minimizers. This subsection is devoted to the proofs of results related
to the energy minimizers of (1.8) and its connection to the steady-state solutions to
system (1.5). We begin with the proof of Lemma 1.8.

Proof. (Lemma 1.8) Suppose there exists (u∗,v∗)∈YMu,Mv with

supp(u∗)∩supp(v∗) 6=∅, (3.20)

such that F [u∗,v∗] = IMu,Mv . By (3.20) it must be the case that

S(u∗,v∗)>0.

Let u#(x) be the symmetric decreasing rearrangement of u(x) (similarly for v(x)) and
consider the sequence

un(x) :=u#(x+xn) andvn(x) :=v#(x−xn),

for {xn} a sequence in Rd satisfying limn→∞ |xn|=∞. Recall that ||u||2 = ||un||2 for
all n and furthermore by the Riesz rearrangement inequality (1.4), we know that

−W(un,vn)≤−W(u,v).

Finally, we have that

lim
n→∞

S(un,vn) = 0.

Thus, there exists an N sufficiently large so that F(uN ,vN )<F(u∗,v∗). which is a
contradiction.
Remark 3.1. Note that for (1.22) to hold it is necessary that G(x) have bounded
support.

It is useful to rewrite the energy (1.8) with σ= 0 as

F [u,v](x) =F1(u)+F1(v)+S(u,v), (3.21)

where

F1(w) =η

∫
w2 dx− 1

2

∫ ∫
G(x−y)w(x)w(y)dxdy. (3.22)

Let us define

liminf
w∈YM

F1[w] := IM ,

where

YM =
{
u∈L1∩L2 : ||u||1 =M

}
.

We now state a result which reduces the problem of finding minimizers to (1.8)
in YMu,Mv

for Mu,Mv>0 to finding minimizers of (3.22) in YM for M>0.
Lemma 3.2 (Reduction of minimizer problem). Let G1 have compact support,

i.e. supp(G1)⊂BR(0) for some R>0.
(i) If the infimum of F1 in YM for M>0 is achieved by a function with compact

support, then there exist a minimizer (u,v)∈YMu,Mv
∩C2

0 (Ω)×C2
0 (Ω) of F .

In particular, if (u∗,v∗) such that u∗∈YMu
is a minimizer of F1(u) and v∗∈

YMv
is a minimizer of F1(v) with bounded support then there exists x1∈Rd

such that (u∗(·+x1),v∗(·−x1)) is a minimizer of F in YMu,Mv .
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(ii) If all minimizers of F1 in YM for M>0 have unbounded support then F does
not achieve its minimizer in YMu,Mv

for any Mu,Mv>0.
(i) Any (u∗,v∗)∈YMu,Mv

which minimize F [u,v] must minimize F1 individually.
Proof. The proof of (i) is clear. To prove (ii), recall that any minimizer of F must

have compact support, thus we assume for contradiction that there exits a minimizer
(u,v)∈YM1,M2

. Since u cannot be a minimizer for F1 then

F1(u)+F1(v)>F1(u∗)+F1(v∗)

where (u∗,v∗)∈YMu,Mv are both minimizer of F1. Now, define

un= (u∗)#(·−xn) and vn= (v∗)#(·+xn)

for a sequence {xn}⊂Rd. Let N be such that |xN | be sufficiently large with

S(uN ,vN )<F1(u)+F1(v)−F1(u∗)−F1(v∗).

From this we conclude that F(uN ,vN )<F(u,v) which is a contradiction. The proof
of (iii) is the same as that of (ii).

We are now ready to prove Proposition 1.6.
Proof. By Proposition 3.1 in [5] we know that any minimizer, u, of F1 in YM

satisfies

u∇·(2ηu−G∗u) = 0 a.e. in Rd.

This in conjunction with the fact that any minimizers, (u,v), of F [u,v] in YMu,Mv

must have disjoint support, specifically the support of u and the support of v must
be separated by 2R if supp(G)⊂BR(0). This gives the result.

Proof. (Proposition (1.7)) From Proposition 1.1 with σ= Γ = ε= 0 we obtain that

F(t)+

∫ t

0

∫
Ω

u |∇(2ηu+G∗(v−u)|2 +v |∇(2ηv+G∗(u−v)|2 dxds≤F(0), (3.23)

for all t>0. Thus, we have

4η2

∫
Ω

u|∇u|2 +v |∇v|2 dx+4η

∫
Ω

u∇u∇G∗(u−v)

+v∇v∇G∗(u−v)dx+

∫
(u+v)|∇G∗(u−v)|2dx<∞,

for almost every t>0. An application of Cauchy-Schwarz inequality gives (1.21).
Additionally, if (u,v) are steady-state solutions then they satisfy

u|∇(2ηu+G∗(v−u)|2 +v |∇(2ηv+G∗(u−v)|2 = 0,

for almost all x∈Rd. This implies that

2ηu+G∗(v−u) =C1 and 2ηv+G∗(u−v) =C2,

for some constants C1,C2 almost everywhere on every connected component of the
supports. By properties of the convolution we have that u and v inherit the regularity
of G.
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Proof. (Theorem 1.9) For an interaction potential G(x) with unbounded support
we follow a similar argument of that given in the proof of Lemma 1.8. Taking the
distance between the center of mass of a sequence un and sequence vn to infinity will
decrease the segregation energy to zero and a minimizer will never be achieved. Thus,
without loss of generality, let us take G(x) to have compact support with ||G||1<2.
Assume that there exists a minimizer (u,v)∈YMu,Mv

, we have the lower bound

F(u,v)≥
(
||u||22 + ||v||22

)(
1−
||G||1

2

)
.

if ||G||<2 then F(u,v)>0 which is a contradiction as IM1,M2
≤0.

4. Continuous income spectrum In this section, we consider the case where
the mobility of individuals is continuous, which models a continuum spectrum of
incomes in the population. The dynamics of individuals is governed similarly to
the case of discrete mobility with some modifications. First, since the mobility is
continuous, an individual will be attracted to another individual if the difference in
their mobility (representing the difference in economic status) is within the mobility
threshold, κ, (see section 1) and they are repulsed otherwise. This brings about a
second change which is that everyone has a short-range repulsion from everyone else
regardless of their mobility.

4.1. Particle-interaction model We begin with n different groups each with
Ni agents, for i= 1...n, which are interacting within and between groups. Every mem-
ber of group i has mobility yi∈ [0,1], where we have normalized the maximum mobility
for ease of notation. Assume also that yi=

i
n so that the mobility is uniformly dis-

tributed. This assumption is not necessary and is only made to simplify the derivation
of the continuum model. As in the two-population case, we denote by xkNi(t)∈R

d the

spatial position of the kth individual in group i which has Ni members. As before, the
short-range repulsion dynamics is governed by the potential VN (x) and the mobility
segregation is governed by the potential H(y)GN (x). Recall that H(yi−yj) measures
the difference is mobility between an individual from group i and an individual from
group j, and the sign of H determines whether the individuals are attracted or re-
pulsed from each other (one possible form for H(y) is given in (1.23)). The interacting
potential GN (x) takes the physical positioning of the two individuals into account and
determines the strength and direction of the interactions. Of course, we assume that
VN (x) and GN (x) are both admissible potentials and satisfy the scaling (2.1). Finally,
individuals are advected by the velocity field ∇xA(x) with speed proportional to the
mobility.

Combining the ideas discussed above yields the system of evolution equations

dxkNi(t)

dt
=− 1

n

n∑
j=1

1

N

N∑
l=1

∇x
[
VN (xkNi(t)−x

l
Nj (t))+H(yi−yj)GN (xkNi(t)−x

l
Nj (t))

]
−yi∇xA(xkNi(t)), (4.1)

for k= 1,...Ni, and i= 1...n. Note that, unlike the the case of discrete mobility, to
derive the macroscopic equation we need to keep track of the mobility of each indi-
vidual along with their spatial location. For this purpose let we let the number of
particles in each group be the same Ni=N for all i= 1,...,n (although we continue
to use Ni to differentiate between groups). Let Y kNi(t) = (xkNi(t),yi) and define the
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empirical measure

YN,n(t) =
1

Nn

n∑
i=1

N∑
j=1

δY kNi (t)
. (4.2)

Our objective now is the study of the limit of (4.2) as the number of individuals, N ,
and the number of groups, n, both approach infinity. Assume that there are functions
u0(x,y)∈Rd× [0,1] and u(x,y,t)∈Rd× [0,1]× [0,∞) such that for all f ∈C2

0 (Rd+1)

〈YnN (0),f〉→〈u0(x,y),f〉 and 〈YnN (t),f〉→〈u(x,y,t),f〉 asn,N→∞.

Taking for granted the existence of u(x,y,t) our aim is to determine what equation
the funciton u(x,y,t) satisfies. As in the case for the two-population model, we define

gN,n(x,y,t) =
1

nN

n∑
j=1

N∑
l=1

∇x
(
VN (x−xlNj (t))+H(y−yj)GN (x−xlNj (t))−yA(x)

)
,

where ∇x is the gradient with respect to the spatial variable. Using the definition of
g(x,y,t), the system of evolution equations (4.1) can be written more compactly as

dxkNi(t)

dt
=−∇xgN,n

(
x,
i

n
,t

)
, (4.3)

for k= 1,...,N and i= 1...n. Let f ∈C2
0 (Rd+1) then for N and n finite we have

〈YN,n(t),f(x,y)〉= 1

nN

n∑
i=1

N∑
k=1

f

(
xkNi(t),

i

n

)
. (4.4)

Taking the time derivative of (4.4) and substituting in the evolution equation (4.3)
we obtain

d

dt
〈YN,n(t),f(x,y)〉= 1

nN

n∑
i=1

N∑
k=1

∇xf
(
xkNi(t),

i

n

)

=− 1

nN

n∑
j=1

N∑
k=1

∇xf
(
xkNi(t),

i

n

)
·∇xgN,n

(
xkNi(t),

i

n
,t

)
.

This gives the integral equation

〈YN,n(t),f(x,y)〉= 〈YN,n(0),f(x,y)〉+
∫ t

0

〈YN,n(s),−∇xgN,n ·∇xf〉 ds. (4.5)

Once again we restrict our work to d= 1 since it lends itself to a cleaner and clearer
derivation. It is also convenient to give a short hand notation to the spatial derivative:
for any function h(x,y) we denote h′=∂xh. Using this notation we obtain the following
simplification of the spatial gradient of the function gN,n(x,y,t)

∂xgN,n(x,y,t) =
1

nN

n∑
j=1

N∑
l=1

[
V ′N (x−xlNj (t))−H

(
y− j

n

)
G′N (x−xlNj (t))

]
+yA′(x).
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Once more the only problematic term in (4.5) is the term which is integrated over
time, which in one dimension is

<YN,n(t),−∇xgN,n·∇xf >=− 1

(nN)2

n∑
i,j=1

N∑
k,l=1

f ′(xkNi(t))V
′
N (xkNi(t)−x

l
Nj (t))

− 1

(nN)2

n∑
i,j=1

N∑
k,l=1

f ′(xkNi(t))H

(
i

n
−j
n

)
G′N (xkNi(t)−x

l
Nj (t))

+
1

nN

n∑
i=1

N∑
k=1

yiA
′(xkNi(t))f

′(xkNi(t))

:= I1 +I2 +I3. (4.6)

As we are assuming short-range repulsion and long-range mobility segregation we take
γv ∈ (0,1) and γg = 0. To understand what the local equilibrium hypothesis implies in
this context, it is instructive to look at the interactions of a particular individual with
each group separately. For example, consider an individual x and his/her interactions
with individuals from group i (which has mobility yi), we expect that as N→∞ the
distances between individuals near x in group i at time t is approximately

1

Nu(x,yi,t)
. (4.7)

We analyze the term in (4.6) separately and begin with the mobility segregation term
I2:

I2 =− 1

(nN)2

n∑
i,k=1

N∑
j,l=1

f ′(xjNi(t),yi)H(yi−yk)G′N (xjNi(t)−x
l
Nk

(t))

=

〈
YnN (t),f ′(·) 1

nN

n∑
k=1

N∑
l=1

H(·−yk)GN (·−xlNk(t))

〉
.

Assuming that G′(x) decays sufficiently fast as |x|→±∞ then by (4.7) we can ap-
proximate the position of the individuals of group k at l

Nu(xl,
k
n ,t)

for l=−N/2,...,N/2.
This gives the approximation

1

nN

n∑
k=1

N/2∑
l=−N/2

H(·−yk)GN (·−xlNk(t)) =
1

n

n∑
k=1

H(·−yk)

 1

N

N/2∑
l=−N/2

G

(
·− l

Nu(xl,
k
n ,t)

)
≈ 1

n

n∑
k=1

H

(
·− k

n

)∫
R
G′(x− x̃)u

(
x̃,
k

n
,t

)
dx̃

≈
∫ 1

0

∫
R
H(·− ỹ)G′(·− x̃)u(x̃, ỹ,t)dx̃dỹ (4.8)

=HG∗u(x,y,t). (4.9)

In (4.8) the operator ∗ represents the convolution operator in both x and y. For the
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repulsion term, I1, by symmetrization and then by Taylor expansion of f ′ we obtain

I1 =
1

2(nN)2

n∑
i,j=1

N∑
k,l=1

[f ′(xkNi(t))−f
′(X l

Nj (t))]V
′
N (xkNi(t)−x

l
Nj (t))

≈ 1

2(nN)2

n∑
i,j=1

N∑
k,l=1

f ′′(xkNi(t))V
′
N (xkNi(t)−x

l
Nj (t))(x

k
Ni(t)−x

l
Nj (t))

=

〈
YN,n(t),f ′′

1

2(nN)

n∑
j=1

N∑
l=1

V ′N

(
xkNi(t)−x

l
Nj (t)

)
(xkNi(t)−x

l
Nj (t))

〉
.

Again we look at the individuals in each group near x separately and by the local
equilibrium hypothesis we have that

xkNi(t)−x
l
Nj (t)≈

l

Nu(·, kn ,t)
.

Using (2.1) and denoting V1(x) =V (x) we obtain

1

nN

n∑
k=1

N∑
l=1

V ′nN (·−xlNk(t))(·−xlNk)≈ 1

n

N∑
k=1

Nγv

N

N/2∑
l=−N/2

V ′

(
Nγv l

Nu(·, kn ,t)

)
Nγv l

Nu(·, kn ,t)


≈ 1

n

n∑
k=1

(∫
R
V ′

(
z

u(·, kn ,t)

)
z

u(·, kn ,t)
dz

)

≈ 1

n

n∑
k=1

u

(
·, k
n
,t

)∫
V ′(w)wdw

≈−M [V ]

∫ 1

0

u(·,y,t)dy.

In the last estimate we integrated by parts and approximated the Riemann sum by
an integral. Recall that u(x,t) defined in (1.25) measures the population density
at location x and time t over all mobilities. The term that is contributed by the
environment, I3, is derived similarly and we omit the steps. Combining the above
calculations gives

〈
YnN (s),−g′N,n(·,s)f ′(s)

〉
=

〈
YnN (s),−1

2
u(·, ·,s)M [V ]f ′′

〉
+〈YnN (s),f ′ (HS′1 ∗u(·,s)+A′(x)y)〉,

which is the weak version of (1.24).

5. Numerical results

Numerical simulations for the interacting-particle model. We performed
various numerical simulations of the interacting-particle system with multiple groups
of varying economic status. Figure 5.2a illustrates the equilibrium state when only
the dynamic rules (A1) and (A2) are considered. We observe some segregation but
some social diversity is preserved. On the other hand, the inclusion of the effects of
a monocentric environment, where all resources are concentrated in the city center,
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leads to an exaggerated segregation. Individuals with a higher mobility live in the
center of the city while the other groups form regions surrounding the city center with
increasing distance to the city center as the mobility decreases.

Fig. 5.1: A monocentric environment where all amenities are located in the city center.

(a) Γ1 = Γ2 = Γ3 = 0 (b) Γ1 = 1,Γ2 = .5,Γ3 = 0

(c) Γ1 = 5,Γ2 = 2.5,Γ3 = 0 (d) Γ1 = 10,Γ2 = 5,Γ3 = 0

Fig. 5.2: Results of numerical simulations of the interacting particle system with three
sub-populations, with mobilities Γ1,Γ2 and Γ3, and an initial random distribution.
Figure 5.2a illustrates the equilibrium distribution when only social preference is taken
into account. Figure 5.2b, 5.2c,5.2d illustrates the equilibrium state when both the
environment and economic disparity are taken into account with increasing mobility
gap.
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(a) A(x) (b) Initial condition: u(x,0) (c) Initial condition: v(x,0)

(d) λ2 = 1,Γ = ε= 0: u (e) λ2 = 1,Γ = ε= 0: v

(f) λ2 = 1,Γ =1,ε= 0: u (g) λ2 = 1,Γ =1,ε= 0: v

(h) λ2 = 0,Γ =1,ε= 0: u (i) λ2 = 0,Γ =1,ε= 0: v

Fig. 5.3: Numerical solutions to (1.6) with the heterogeneous environment illustrated
in Figure 5.3a and initial conditions for u(x,t) and v(x,t) illustrated in Figures 5.3b
and 5.3c respectively with varying λ2 and Γ (ε= 0).
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Numerical solutions to the local continuum limit: two-dimensions. Fig-
ure 5.3 illustrates numerical solutions to (1.6) where the environment A(x) represents
a city with two main regions where all amenities are located, see Figure 5.3a. Initially,
both populations (disadvantaged individuals and affluent individuals occupy the same
space) - this is illustrated in Figure 5.3b and Figure 5.3c. In Figure 5.3d and Figure
5.3e we observe the steady-state solutions for u(x,t) and v(x,t) respectively when
there is no mobility or environmental influence. We observe that due to the social
preference u(x,t) and v(x,t) occupy different spaces. On the other hand when we in-
clude mobility and the environment we observe that u(x,t) occupies the space where
A(x,t) is large and v(x,t) occupies the remaining of the domain - see Figures 5.3f and
5.3g. Finally, Figures 5.3h and 5.3i illustrates the case when the social preference is
zero and we see that v(x,t) disperses.

Numerical solutions to the local continuum limit: one-dimension. Fig-
ure 5.4 illustrates numerical solutions to (1.6) where A(x) represents a monocentric
city. Initially, the disadvantaged individuals occupy the center of the city, while the af-
fluent individuals are outside - this is illustrated in Figure 5.4a. Figure 5.4b illustrates
the distributions at a later time when the social preference is one and the economic
disparity is five. We observe that the affluent individuals take over the center of the
city and displace the disadvantaged individuals. Figure 5.4c illustrates the case when
the social preference is a little stronger, and we observe that this forces the disadvan-
taged population toward one side of the city. Finally, Figure 5.4d illustrates the case
when the social preference is small, and we see that even though the disadvantaged
individuals disperse, the majority of the population remains in the city-center.

(a) Initial conditions (b) Social preference, λ2: 1, Mo-
bility disparity, γ: 5

(c) Social preference, λ2: 2, Mo-
bility disparity, γ: 5

(d) Social preference, λ2: .1,
Mobility disparity, γ: 5

Fig. 5.4: Numerical solutions to (1.6) with different values of the parameters λ2 and
Γ (ε= 0) with A(x).
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Crime, safety, and economic disparity. As mentioned in the introduction,
and is well known from everyday life, poor neighborhoods have a disproportionate
amount of crime [7, 14]. Here, we briefly describe how one can explore the effect of
segregation along income lines on crime hotspots using a mathematical model giving
results that are qualitatively similar to empirical observations. We summarize the
assumptions for this model:

(i) The police enforcement aims to minimize the feeling of insecurity of the com-
munity.

(ii) There are limited resources.

(iii) Insecurity is higher among people that have more resources.

Given a distribution of individuals with prescribed mobilities, we calculate the
influence field, I(x), by adding delta functions that are centered at every location
where an individual lives and with a mass which depends on the mobility of the
individual. Once we obtain the influence field, the objective is to find the distribution
of the police resources p(x) that minimizes the functional (1.27), as in (1.28). This
is done numerically with the use a gradient descent method, which requires a soft
version of the constrain (1.28b). Thus, we minimize

F (t) =

∫
Ω

ε
(
|∇p(x)|2 +U(p(x))

)
dx+

1

ε

(∫
Ω

p(x)dx−1

)2

, (5.1)

for ε�1, which gives more weight to the terms that requires the constraint on the
total amount of the police enforcement to be satisfied.

(a) Distribution of the population (b) Distribution of the police resources

Fig. 5.5

Figure 5.5a illustrates the distribution of our population from which we generate
an influence field, I(x). Figure 5.5b illustrates the optimal distribution of resources
obtained based on the given I(x). We observe the development of safe-havens for
regions with a high influence field, where the crime fields are very low. While this
does not generate the crime hotspots it essentially removes the possibility of hotspots
in regions of high influence. The next step, which we leave for a separate publication
is to couple the environment attractiveness field A(x) we have considered in the PDE
models, to the amount of crime (which would be described via the local police re-
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sources) produced via the above minimization procedure. This will lead to a coupled
system of PDEs for the population density and the police enforcement.
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