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Abstract

We consider an elliptic equation with a divergence-free drift b. We prove that an inequality
of Harnack type holds under the assumption b € L™/2t9N L2 where § > 0. As an application
we provide a one sided Liouville’s theorem provided that b € L™/2T3(R™) N L?(R™).

1 Introduction
In this paper, we consider elliptic equations of the form
—Au+b-Vu+au=0 (1.1)

in a domain  C R". Here a(z) is a given function and b(z) is a prescribed divergence free
vector field, that is, divb = 0. The qualitative properties of solutions to elliptic and parabolic
equations in divergence form with low regularity of the coeflicients have been studied extensively,
starting with the classical papers of De Giorgi [DG], Nash [N], and Moser [M]. We are mostly
interested in the improved regularity for divergence free drifts b, which arise in fluid dynamics
models (c.f. [BKNR, CV1, FV, K, SSSZ, KNSS, Z]).

As can be easily seen from a simple scaling argument, the natural Lebesgue spaces for
the coefficients in the equation for the local regularity theory to hold are a € L™2, b € L",
and, indeed, regularity properties of solutions in this case have been known since the work of
Stampaccia [S]. It is well known that a strong divergence free flow may induce better regularity
and decay of solutions of elliptic and parabolic problems by means of improved mixing—see, for
instance [CKRZ] and references therein. It is also known that a divergence free-drift of relatively
low regularity can still lead to regular solutions [CV1, CV2]. The question we study in this paper
is whether the divergence free condition on b allows to relax the regularity assumptions on b
given by Stampaccia.
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Let us recall some recent results in this direction. In a recent paper [NU], Nazarov and
Ural’tseva significantly relaxed the classical regularity assumptions for divergence-free b by es-
tablishing the Harnack inequality and the Liouville theorem for weak solutions to (1.1) if b
belongs to a Morrey space Mg/q_l with n/2 < ¢ < n, which lies between L™ and BMO™!.
In [FV], Friedlander and Vicol proved the Hélder continuity of weak solutions to drift-diffusion
equations with a drift in BMO~!. In [SSSZ], Seregin et al. established the Liouville theorem
and the Harnack inequality for elliptic and parabolic equations with divergence free drifts b lying
in the scale invariant space BMO™!. All these spaces share the same scaling properties as L"
and are thus the natural candidates for good regularity theory.

In the present paper, we establish the Harnack inequality and the one-sided Liouville theorem
for Lipschitz generalized solutions to (1.1) when a(z) and b(z) lie in the space L7(2) with
n/2 < g < n, and b is divergence free. Our results also hold for weak solutions provided that
the drift b satisfies certain additional assumptions (c.f. equation (27) in [NU]). More precisely,
we establish a Harnack-type inequality

sup u(y) <C inf wu(y), (1.2)

yE€BR(z) yEBR(z)

for all R > 0 (see Theorem 2.1), and use this estimate to establish the one-sided Liouville
theorem when a = 0 in Theorem 2.3. The constant C' in (1.2) depends on the L?-norms of a and
b, where ¢ > n/2, but not on the solution u. Note that the L™2norm is not scale invariant: if
we set by(z) = (1/1)b(x/1) then ||by||nsz = I"/?||b]| .n/2. Because of that, one can not expect the
constant C' to be independent of R, and, indeed, the constant given explicitly in Theorem 2.1
blows up as R — 0.

The paper is organized as follows. In Section 2, we state our main results, Theorems 2.1
and 2.3. The proof is based on two auxiliary results, Lemmas 2.4 and 2.5. We first show
(see Lemma 2.4) that weak solutions of (1.1) are locally bounded by employing the classical
Moser iteration technique. Then, in Lemma 2.5, we derive a weak Harnack inequality, the
proof of which is inspired by the proof of Han and Lin [HL, Theorem 4.15] for elliptic equations
without lower-order coefficients. Our main results, Theorems 2.1 and 2.3, are direct consequences
of Lemma 2.4 and 2.5.
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2 The main results

Our first result is the Harnack inequality.

Theorem 2.1. (Harnack inequality) Let u be a nonnegative Lipschitz solution to the elliptic
equation (1.1). Assume that a € L1(Q), b € L1(Q) for n/2 < q,§ < n and ¢ > 2, and that
divb = 0 in the sense of distributions. Then for any Br C Q we have

supu < Cinfu. (2.1)
Br Br



Here C' is a constant depending on n, q, @, R, and My =1+ ||a||ra + ||b]|32 + ||b]| a-

Remark 2.2. From the proof we can deduce that

C(n)R™'M
) (n) 1’ (2.2)

C=C(n,q,9) (R—l + (R Y a|| o) Y O=7/29) 4 (R7Y||b|| )Y/ (1 -7/20)

where M7 is as in the statement of Theorem 2.1. O

Theorem 2.1 has the following consequence when 2 = R™.

Theorem 2.3. (One-sided Liouville’s theorem) Let a(x) = 0 and b(x) as in Theorem 2.1. Then
any nonnegative Lipschitz solution u to the elliptic equation (1.1) in R™ is equal to a constant.

We note that [NU] provides a two-sided Liouville’s theorem under the same assumptions, that
is, the only solutions of (1.1) that are bounded both from above and from below are constants.
However, the one-sided Liouville’s theorem in [NU] requires b to belong to a Morrey space which
is in the same scaling class as L".

Proof of Theorem 2.3. Without loss of generality, we may assume that u is a nonnegative Lip-
schitz solution to (1.1) with infgn u = 0. Then for every € > 0, we have infp, u < € for any
sufficiently large ball Br. By Theorem 2.1, supg, u < C'infp, u < Ce for all sufficiently large
R > 0. Observe that the constant C' given explicitly by (2.2) depends on R but remains bounded
as R — oo. Therefore, the assertion is established. O

Theorem 2.1 is an immediate consequence of the following two lemmas that compare supp, , u
and infp,, u to ||ul rr(B, ) With some small p >0 and 0 <0 <7 < 1.

Lemma 2.4. Assume that u is a nonnegative Lipschitz subsolution to the equation
—Au+b-Vu+au=0 (2.3)

with a € LY(Q), b € LYQ) for n/2 < q,q < n and divb < 0 in the sense of distributions. Then
forany BRCQ, p>0,and0 < <7<1

s\ o s s\
supu < C (R‘"/P + (R—l/(Q—n/Q)HaulL/q((Qﬂ) /‘1)> P + (R 1/(2 n/fl)”b”i/q(fm /Q)> p) HUHLP(BTR),
Byr

(2.4)
where C' = C(n,p,q,0,7) is a positive constant.

Lemma 2.5. Assume that u is a nonnegative Lipschitz supersolution to (1.1) satisfying the
assumptions of Theorem 2.1. Then for any B C Q2 and 0 < 8 < 7 < 1 there exists a small
positive number py = po(n,q,q,0, T, R, M) such that

1/po
infu>C (/ up°> (2.5)
BGR BTR

where C = C(n,q,q,0,7,R, M) is a positive constant and My = 1+ ||al[a + [[b]|72 + [|6]| za-

The rest of the paper contains the proofs of Lemmas 2.4 and 2.5. Both lemmas are proved
using the Moser iteration, with the general strategy based on the proof of the Harnack inequality
in [HL].



3 The proof of Lemma 2.4

Let u be a nonnegative Lipschitz subsolution of (2.3) in (2, that is,

@)+ [ v@ue+ [ ap<o (3.1)

for any Lipschitz function ¢ > 0 in €2 such that ¢ = 0 in Q°.

For simplicity of presentation, we assume a = 0. The proof consists of a priori estimates
which can be made rigorous as in [G, HL]. First, we obtain an a priori bound on the LP'-norm
of u on a smaller ball B, , in terms of an LP2-norm of v on a larger ball Bg, with r1 < ry but
p1 > p2. Then an iterative procedure is used to bring the gap between r; and ro to zero and
simultaneously send p; to infinity.

Let § > 0 and n(x) be a Lipschitz cut-off in the ball B,g such that 0 < n(z) < 1. We use
(8/2 4+ 1)uPT1n?7 as a test function in (3.1) to obtain

(ﬁ + 1) / (95u)0; (1) + <§ + 1) / WD), () + (g + 1) / b’ (9,00 < 0.

2
(3.2)
Let w = u®/?*1 so that 9;w = (3/2 + 1)u’/?0;u. By (3.2), we get
b+l /\8~w|2n27 < —27/w(8-w)1727_1(8~ )—/b-w(a»w)n%. (3.3)
ﬁ/z 1 J — J J J J
For the first term in the right side we have
—2v/w(3jw)772”13jn = 7/w2 (7 A+ (2y = P |0ml?) (3.4)
while for the second
1
—/fb’w(ajw)n27 = 2/(@'bj)wzn“+7/bjw2n2”_13jn < V/bjw%?”_lam, (3.5)
as divd < 0.
Next, set 79 = n/q. Then, as ¢ > n/2, we have 7y € (0,2) and, in addition
I %  2—7
2,0 -1 )
7 + o + 5 (3.6)

for n > 3. Note that if n = 2 then 7y can be also chosen so that (3.6) is satisfied.
Assume also that « is sufficiently large so that yvyy < 2v — 1. Then, by Hdélder’s inequality

we have, using (3.6)
Jvier o < [ bslwn P 01050] < [blalwr | Va0, (a)
as 0 <n < 1. By Young’s and the Gagliardo-Nirenberg inequalities, this leads to

_ ]- —_n q —n/qg
/ bjw*n® 19 < S|V (wn )72 + Ol o] VD (3.8)



By (3.3), (3.4), and (3.8), we obtain
[Ivwrimp < [urEtag (39)
+C/u,8+2772v—2|v,’72+C”b||i/q(1n/2Q)||uﬂ/2+1(vn)1/(2—n/(j)||%2.
By Sobolev embedding used in the left side of (3.9), we get
1/2 1/2
”uﬁ/Z—Hn’YHLQX <C (/ u6+2n2v—1|An‘> +C (/ uﬁ+2n2w—2|vm2> (3.10)
+ Ol P () D

where x =n/(n—2) if n > 3 and x > 2 is arbitrary if n = 2. Now, let n € C§°(€2) be such that
n=1in Bygg, n =0 in By, |Vn| < C/[R(r — 0)] and |An| < C/[R*(r — 6)?]. Then, we have

1/2
[+ < O ([ W)y s bl /2
L2X(Bpr) = R(r—0) \ Uz, (R(7 — 9))1/(2 n/g 1 NLa(B, R) L2(B,R)"

(3.11)
The main point of (3.11) is that, since x > 1, we have a bound on a higher norm of v on

a smaller ball in terms of the lower norm of v on a larger ball. We now apply the estimate
(3.11) iteratively on pairs of balls B,,,, C B,,, and also let #; — +o00. More precisely, we choose
Bi=2(x*—1)and r; = AR+ (1 —0)R2* for i = 0,1,2,..., so that r; — ;11 = (7 — §)R2- D),
We obtain

o . N
n (021/(2 " (R(r — )~/ /‘1)||b||1L/q23 /q)> ||u|’L2xi(B7-i)'

By iteration, letting i — 400, we conclude that the estimate (2.4) holds for p > 2.
Now, let p € (0,2). We have just shown that

-n n n /
supu < € ((Rr = 0) 2+ (G =) VDY) ) fils g 339

Bor

sc((zz(T_e))”M((R(T 0))~ /D ol D) )H 15225 ol s

which implies
supu < Sl s+ C ((R(r )+ (Bl — 6)) 7D ) )Huumw.
A standard iteration argument (c.f. [HL, Lemma 4.3]) then implies

upu <C <(R(T—9))—n/p+ ((R( — )@= n/q>”b||1/ (2~ ”/@) " > lullr(. — (3.14)

and the proof of Lemma 2.4 is complete. O



4 Proof of Lemma 2.5

We assume without loss of generality that R = 1. The proof is similar in spirit to that of
Lemma 2.4: we obtain an a priori bound and use it iteratively.

Assume that w is a nonnegative Lipschitz supersolution to (1.1), and consider v = 1/u. The
function v satisfies

—Av+b-Vo—av <0 in (4.1)

or equivalently

[@v)@s)+ [bi605000 - [ave <o (4.2
for any function ¢ € C§°(€2) such that ¢ > 0 in Q. By Lemma 2.4, it follows that for any

0<6<71<1andp>0, we have

supv < Cl|v|| rr(B,) (4.3)

By

with C' = C(n,p,q,q, 7,0, My). Therefore, we have

1 -1/p 1/p
i _ -p P P
s () (L)

We claim that there exists py > 0 such that

/ u_po/ ulo < C (4.5)

with a constant C' = C(n, q, q, T, M7 ), which would finish the proof of Lemma 2.5.

Reduction to an exponential bound

In order to prove (4.5) for some sufficiently small py > 0, denote
1

and set
w =logu — (logu)p, . (4.6)

We shall show that there exists pg > 0 such that
/ erlvl < ¢ (4.7)
where C' = C(7), which in turn implies (4.5). Indeed, if we assume that (4.7) holds, then

/ epollogu—(logu)s,) < (4.8)

-

and

/ ePollogu—(logu)p,) < (1, (4.9)

.

Therefore, we have e Po(logu)s, i) B, €7 logu < (' and epollogv)s, J B € logu < C. Multiplying

these two inequalities then leads to (4.5).



An L?-bound for w
We now prove (4.7). First, we establish bounds on the L?-norm of w. The function w satisfies
Vw|*> < —Aw+b-Vw+a in By. (4.10)

Fix 7 € (0,1), and let n € C}(Q) with 0 <7 < 1 be a cutoff such that n = 1 on Batry2, n=0
on Bf, and |Vn| < C/(1 — 7). Multiplying (4.10) by 7% and integrating over B;, we obtain

| vl <z [ @uim@n+ [ s@upe+ [ o (4.11)
B1 B1 B1 B1
< 2wl IVl 2 + ol ¥ ll 2 lall e + lallcolln?ll o

where 1/q + 1/¢' = 1. Absorbing the factors |[nVw||z2 on the right using the term on the left,

we get
/ Vw|? < Cr My (4.12)
B(i4r)/2

where Mo =1+ ||al|za + [|b]|%2, and the constant C may depend on 7 € (0,1). Also, since

/ w = 0,

and (14 7)/2 > 7, we have by the Poincaré inequality

/ w? < C |Vw|? < C, M. (4.13)
B14r)/2 B147)/2

Bounds on the higher norms of w

Next, we need to estimate [, lw|® for all B > 1. As in the proof of Lemma 2.4 the idea is to
bound first the higher norms of w on smaller balls in terms of the lower norms of w on larger
balls and then use the iteration process.

We multiply (4.10) by |w|*’n?" and integrate over Bj in order to obtain

/ ol < 28 / w520 Va2 + 29 / PP @) 0p) (4.14)
B1 B B

e M OO R s

26+1 Jp, B

Here we utilized divd = 0 and 0;|w| = wdjw/|w|. For the first term in the right side of (4.14)

we use

28Jw[* 7! <

< Jll® + (35)%, (415)

while for the second

_ 1 _
2 [ w0t o) < [ el Vel 0 [ Pt
1 1

Bi



This leads to

/B w8 VP < C(88)% /B IVl + Oy /B w72 T2 (4.17)
1 1 1

Cvy _
Lo / bl P22V 4 © / lal w2,
B+1J)p, By

Let 7 <7 < R < (14 7)/2. We now choose a cutoff n € C$(Q) with 0 <7 < 1 such that n =1
on By, n =0 on Bf, and |Vy| < C/(R —r). By (4.11), for the first term in the right side of
(4.17) we have

(88)% /B Vol < (88)% /B Vol < C, (88)% Mo. (4.18)

(147)/2
On the other hand, for the left side of (4.17), we use
2
[Vl )| < 22wPP 22T 4 25+ 1) P Vult. (419)

Hence, we obtain

Jo

2
V(Iw\ﬂ“n”)‘ < C’YQ/B lw|P 2272 V2 + C(8 + 1)%(8B)%° My (4.20)

L OB+ 1) / w22 T2

By

+Cr(5+1) [

[ bl + 03+ 1P / lal w2527,
1

B

For the third term in the right side we utilize

(5_'_ 1)2ﬁ+2 (’w’2ﬁ)(5+1)/5

28 1 1,|26+2
ek =y LO RS (4.21)

(B +1)?w]* <

which gives

CA2 (B +1)? / P22 Wl < C(86)22 / P2Vl + O / o222 v 2
B By B
C(83)%5~2 M, 3
< GBI T )_ T +C’72/ Jw [P V), (4.22)
(R 7’) B

as Mp > 1. The last two terms in (4.20) are estimated as follows. First, we have

2 +1
/B jallw|*n? = /B Jal (Juo] P+ 28/ EEO2 G < g | ]l 2T (4.28)
1 1

where 1/q+1/¢' = 1. Now, we use the Gagliardo-Nirenberg inequality

P07 s oy < Clllol™H 7 |V (ol ) |15 (4.24)



with @« =n/2—n/(28¢'/(B+1)) if 28¢'/(6+1) > 2, and a = 0 otherwise. By Young’s inequality,
we obtain

2(l—« 2 1
/B lallw[*n? < Cllal|za||w] Py | 25D |7 (jw S+ |57/ (4.25)
1
1)/«
< ! 9 (o] )| 577 e
= \(2(8 + 1))28/(3+1)

—a (B+1)/(B(1—a)+1)
+C (284 1)28/ D a o] |50V .
As a € (0,1), this implies
1 (6% 6 o
| lallul < Gl V0w e + O 1 el I (4.26)
1

Here we denoted oy = (8+1)/(8(1 —a) +1) and as = 26(1 —a)/(8(1 — a) + 1). Observe that
a1 > 1 and a7 is smaller than a constant independent of 3, while 0 < ao < 2 with ag — 2 as
8 — oo.

For the last remaining term in (4.20), we have

(26+1)/(8+1) _
) Y/ B+D=1 g7y,

Cy(8-+1) [ 1l = C3(a+ 1) [ (el
Bl Bl
(4.27)

Let us choose v = 6+ 1. Then, the above expression becomes

(26+1)/(6+1) 26+1)/(8+1)
CH(B+1) / o]l 1) [Vl < C(8+ Dbl alllw] o | o, IVl
By
(4.28)
where 1/g+ 1/q = 1. Once again we apply the Gagliardo-Nirenberg inequality
ol | essna s < Clllwl ™[NV (w7 |G (4.29)
witha=n/2—-n/((26+ 17 /(B+1)) if (26+1)7/(B+ 1) > 2 and & = 0 otherwise.
Thus, by Young’s inequality, we have
(28+1)/(B+1)
cr@+1) [l (i) Vi (430)

1— a 2 1 1 2 1 1
< C(B + 1)2|[bl| g | |w] P+ g | Uy DAV EH ) G ([ | 10 | 5D/ D | o

—_

C(B+1) a
< IVl )17 + WW)H alllwl 7153
Here we denoted oy = (26+2)/(26(1—a@)+2—a) and az = 2(2+1)(1—a)/(26(1—a)+2—a).
Note that, as in (4.24), we have @3 > 1 and @; is less than a constant independent of /3, while
0 < ag <2, and ag — 2 when 8 — oo.



Putting together (4.20), (4.21), (4.24), and (4.30), we obtain

B+1 C(B + 1)%(86)28 My
19 ol 5y < S ol g+ SEE D) (431
C8+ 1P 2ol Nt 3y + o 0 1
Using Sobolev embedding, we may rewrite (4.31) in the form
C(B+1)%*
1wl s, < M(H\w!ﬁ“ﬂiw + (86)* My (4.32)

1l gy M0t 13 5+ 1B 0158 )

where k = max{a; + 1,a;} and x =n/(n —2) if n > 3 and x > 2 if n = 2. Estimate (4.32) is
analogous to (3.11): a higher norm of w on a smaller ball is bounded in terms of a lower norm
of w on a larger ball.

The iteration process

Next, we consider the iteration process. Let 3; = x'—1 and r; = 7+(14+7) /2T fori = 0,1,2,....
From (4.32), we get

0P [,y < OX2O26D (s [+ (8592 Mo (433)
a2 g, M N33 g, )+ I005R s, Mol 153 5. )
for all i = 0,1,2,.... Taking 1/(2x*) power on both sides of (4.33) gives

||UJ||L2Xi+1 Brovt) < Cl/(Qxi)Xmi/Xi2(&1+2)(i+2)/(2xi)(HwHLQXi Bro) + 8X1M01/(2X1) (434)
Tit1

(2 2 (2 2
Hlallga (S Il )+ I el )

This leads to the inequality

a Kl az/2 az/2
HwHLZXH'I(BT. ) S ( ) a/(2x") ( ) i/ <||w‘L2x BT)+8X +||wHLi>/<i(B || Hin (Br,;) >
< (M) PO @25 (] oy 5, ) +8X) (4.35)
for all i = 0,1,2,..., with & = max{a;, a1} and My = 1+ |lal[ze + ||b]|32 + [|b]|za. For

the second 1nequahty in (4.35) we also used ag,as < 2, so that ||w||0‘2/2 < 1+ |Jw|?, and
2
loll 33 < 1+ w3, | _
Note that if a sequence Y; satisfies Y;11 < C;(Y; + x*) with C; > 1 and [[;2, C; < K, then
by induction we have

Y<C’KY0+ZX ) < C(Yo+ XY, (4.36)
7=0

10



for all i = 0,1,2,.... Thus, iterating (4.35), we obtain

ol o g,y < OM ™ (CMy+x7HY) < My @, (4.37)

for alli=0,1,2,..., as Z;le/xj < C and 23:1 Y/ < x for x > 1.
Finally, for any 3 > 1 there exists ¢ = 0,1,2,... such that

2 < B+ 1< 2. (4.38)
Thus, in particular, we have
. 1/(B+1) ()
(/ o) ) < Cllwll s,y < OM™ (B +1). (4.39)
Therefore, for all 8 > 1, we obtain
(polw)PHY 544 o(n) B+ 1
< <
/BT G+ 1] <o (C’M1 e) < 5@ (4.40)
by taking
p ! (4.41)
0 = :
CMlo(n)e

sufficiently small. By (4.13), we also have

/ngc/zﬁgcm) (4.42)
B: B:

which gives (4.40) for 8 = 0 as well. It follows from (4.40) that (4.7) holds, and therefore the
proof of the lemma is complete. O
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