more counting

1. How many ways are there to distribute
i) 4 distinguishable balls into 10 distinguishable bins if no bin contains more than 1 ball?
ii) 10 indistinguishable balls into 4 distinguishable bins if each bin contains at least 1 ball?

Solution:

i) $P(10,4)=\frac{10!}{6!}$ (distinguishable balls, distinguishable urns, injections)
ii) $\binom{10-1}{10-4}=\binom{9}{6}$ (indistinguishable balls, distinguishable urns, surjections)
2. How many permutations of MISSISSIPPI start with I?

Solution: A permutation of MISSISSIPPI that starts with I is the same as one I followed by a permutation of MISSISSIPP. Since there are $\frac{10!}{1!2!3!4!}$ permutations of MISSISSIPP, there are $\frac{10!}{1!2!3!4!}$ permutations of MISSISSIPPI that start with I.
3. $\left.{ }^{*}\right)$ How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=20$ where $x_{1}, x_{2}, x_{3}, x_{4}$ are nonnegative integers where
i) $x_{1} \geq 4$?
ii) $x_{1} \leq 6$?
iii) $2 \leq x_{1} \leq 5$?

Solution:

i) Replace x_{1} with $X_{1}=x_{1}-4$. We now need to count the number of solutions to $X_{1}+x_{2}+$ $x_{3}+x_{4}=16$ where $X_{1}, x_{2}, x_{3}, x_{4}$ are nonnegative integers. This is the problem of putting 16 indistinguishable objects into 4 distinguishable boxes, so the answer is $\binom{4+16-1}{4-1}=\binom{19}{3}$.
ii) Similarly as in the previous part, there are $\binom{4+(20-7)-1}{4-1}=\binom{16}{3}$ solutions with $x_{1} \geq 7$ and there are $\binom{4+20-1}{4-1}=\binom{23}{3}$ solutions overall. Thus there are $\binom{23}{3}-\binom{16}{3}$ solutions with $x_{1} \leq 6$.
iii) Similarly as in the previous parts, there are $\binom{4+(20-6)-1}{4-1}=\binom{17}{3}$ solutions with $x_{1} \geq 6$ and $\binom{4+(20-2)-1}{4-1}=\binom{21}{3}$ solutions with $x_{1} \geq 2$. Thus there $\operatorname{are}\binom{21}{3}-\binom{17}{3}$ solutions with $2 \leq x_{1} \leq 5$.
4. How many ways are there to deal 8 cards from a deck of 52 cards to 3 players (allowing the possibility of a player getting zero cards) if
i) the players are distinguishable?
ii) the players are indistinguishable? (Your answer may be in terms of Stirling numbers.)

Solution:

i) There are $\binom{52}{8}$ ways to choose the 8 cards. After choosing the 8 cards, there are 3^{8} ways to deal the 8 cards to the 3 players (cards $=$ balls, players $=$ urns). Thus there are $\binom{52}{8} \cdot 3^{8}$ ways.
ii) There are $\binom{52}{8}$ ways to choose the 8 cards. After choosing the 8 cards, there are $S(8,1)+$ $S(8,2)+S(8,3)$ ways to deal the 8 cards to the 3 players (cards $=$ balls, players $=$ urns). Thus there are $\binom{52}{8} \cdot(S(8,1)+S(8,2)+S(8,3))$ ways.
5. How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}=21$ where the order of the integers $x_{1}, x_{2}, x_{3}, x_{4}$ does not matter and $x_{1}, x_{2}, x_{3}, x_{4} \geq 4$?

Solution:

Replace each x_{i} with $X_{i}=x_{i}-4$. We now need to count the number of solutions to $X_{1}+X_{2}+$ $X_{3}+X_{4}=5$ where the order of the integers $x_{1}, x_{2}, x_{3}, x_{4}$ does not matter and $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$. This is the problem of putting 5 indistinguishable objects into 4 indistinguishable boxes, so the answer is $p_{1}(5)+p_{2}(5)+p_{3}(5)+p_{4}(5)$ where $p_{k}(n)$ is the number of partitions of n into k positive integers.

$$
\begin{array}{ll}
p_{1}(5)=1 & (5) \tag{5}\\
p_{2}(5)=2 & (4+1,3+2) \\
p_{3}(5)=2 & (3+1+1,2+2+1) \\
p_{4}(5)=1 & (2+1+1+1)
\end{array}
$$

Therefore the answer is $p_{1}(5)+p_{2}(5)+p_{3}(5)+p_{4}(5)=1+2+2+1=6$.

