Algorithms

Examples

1. Demonstrate bubble sort to sort the list $3,4,2,1$.
2. Demonstrate the quick sort to sort the list $3,6,2,5,1,4$.
3. Demonstrate the stable matching algorithm when men and women have the preferences $m_{1}: w_{1}>w_{2}, m_{2}: w_{1}>w_{2}$ and $w_{1}: m_{1}>m_{2}, w_{2}: m_{1}>m_{2}$.

Problems

4. True False The stable matching algorithm with always produce a matching that is stable.
5. True False There is only one stable matching.
6. Three women A, B, C are proposing to men $\mathrm{E}, \mathrm{F}, \mathrm{G}$. Their preferences are as follows:

A	B	C	E	F	G
$E>G>F$	$E>G>F$	$G>E>F$	$C>A>B$	$A>B>C$	$B>C>A$

Show the stable matching algorithm with the women proposing to the men by clearly showing all rounds in a table.
7. Sort the list $2,1,6,4,5,3$ using both bubble sort and quicksort.
8. Find and prove a formula for $1+2+3+\ldots+n$

