Algorithms

Examples

1. Demonstrate bubble sort to sort the list $3,4,2,1$.

Solution: On the first pass, we go $3421 \rightarrow 3241 \rightarrow 3214$, on the next pass we do $3214 \rightarrow 2314 \rightarrow 2134$ and on the third pass we do $2134 \rightarrow 1234$ and on the fourth pass, we make no changes which means the algorithm terminates.
2. Demonstrate the quick sort to sort the list $3,6,2,5,1,4$.

Solution: First we place the first number in the appropriate position and put the numbers smaller before it and the numbers larger after while preserving their relative order to get $362514 \rightarrow 213654$. Now we do the same on the smaller numbers and the larger to get $21 \rightarrow 12$ and $654 \rightarrow 546 \rightarrow 456$. This finally sorts the list as 123456 .
3. Demonstrate the stable matching algorithm when men and women have the preferences $m_{1}: w_{1}>w_{2}, m_{2}: w_{1}>w_{2}$ and $w_{1}: m_{1}>m_{2}, w_{2}: m_{1}>m_{2}$.

Solution: Both men will propose to woman 1 and she will choose man number 1. Then man 2 will propose to his next option which is woman 2 and she will accept him. Thus, we get the final pairing $\left(m_{1}, w_{1}\right),\left(m_{2}, w_{2}\right)$.

Problems

4. TRUE False The stable matching algorithm with always produce a matching that is stable.
5. True FALSE There is only one stable matching.

Could be more!
6. Three women A, B, C are proposing to men $\mathrm{E}, \mathrm{F}, \mathrm{G}$. Their preferences are as follows:

A	B	C	E	F	G
$E>G>F$	$E>G>F$	$G>E>F$	$C>A>B$	$A>B>C$	$B>C>A$

Show the stable matching algorithm with the women proposing to the men by clearly showing all rounds in a table.

Solution:	Men	Rd 1	Rd 2	Rd 3	Rd 4	Rd 5
	E	A, B	A	A, C	C	C
	F					A
	G	C	G, B	B	B, A	B

7. Sort the list $2,1,6,4,5,3$ using both bubble sort and quicksort.

Solution: Using bubble sort, we get

$$
216453 \rightarrow 124536 \rightarrow 124356 \rightarrow 123456
$$

Using quicksort using the last number as a pivot, we get

$$
216453 \rightarrow 213645 \rightarrow(12) 3(456)
$$

8. Find and prove a formula for $1+2+3+\ldots+n$

Solution: We induct. $1+2+\ldots+n=\frac{n(n+1)}{2}$. For the base case, $\frac{1(1+1)}{2}=1$. For the inductive step

$$
\begin{array}{r}
1+2+\ldots+n+(n+1)=\frac{n(n+1)}{2}+n+1=\frac{n^{2}+n}{2}+\frac{2 n+2}{2}=\frac{n^{2}+3 n+2}{2} \\
=\frac{(n+1)(n+2)}{2}
\end{array}
$$

as desired.

