Inductions

1. Prove using mathematical induction that for all $n \geq 1$,

$$
1+4+7+\cdots+(3 n-2)=\frac{n(3 n-1)}{2}
$$

2. Prove that

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\cdots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1} .
$$

3. (*) Prove using mathematical induction that for all $n \geq 1,6^{n}-1$ is divisible by 5 .
4. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence defined as $a_{1}=1$ and $a_{n+1}=\sqrt{a_{n}+2}$. Prove that $a_{n} \leq 2$ for all $n \geq 1$, by using mathematical induction.
5. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence defined as $a_{1}=1, a_{2}=5$ and $a_{n+2}=5 a_{n+1}-6 a_{n}$. Prove that $a_{n}=3^{n}-2^{n}$ for all $n \geq 1$, by using mathematical induction.
6. (a) Prove that $n^{2}+3 n$ can be divided by 2 for every $n \geq 1$.
(b) Prove that $n^{3}-n$ can be divided by 3 for every $n \geq 1$.
7. (a) $\left(^{*}\right)$ Let a_{n} be the number of permutation of distinguishable n-balls. (Assume that we don't know $a_{n}=n$! yet.) Prove that $a_{1}=1$ and $a_{n+1}=(n+1) a_{n}$.
(b) By using the above recurrence relation and mathematical induction, prove that $a_{n}=n!$.
