Inductions

1. Prove using mathematical induction that for all $n \geq 1$,

$$
1+4+7+\cdots+(3 n-2)=\frac{n(3 n-1)}{2}
$$

Solution: Basis step: for $n=1,1=\frac{1(3 \cdot 1-1)}{2}$.
Inductive step: suppose that the equation is true for n, so that

$$
\sum_{k=1}^{n}(3 k-2)=\frac{n(3 n-1)}{2}
$$

Then

$$
\begin{aligned}
\sum_{k=1}^{n+1}(3 k-2) & =\sum_{k=1}^{n}(3 k-2)+(3 n+1)=\frac{n(3 n-1)}{2}+(3 n+1) \\
& =\frac{3 n^{2}-n+6 n+2}{2}=\frac{3 n^{2}+5 n+2}{2}=\frac{(n+1)(3 n+2)}{2} \\
& =\frac{(n+1)(3(n+1)-2)}{2}
\end{aligned}
$$

so it is also true for $n+1$. Hence it is true for all n by mathematical induction.
2. Prove that

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\cdots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1} .
$$

Solution: Basis step: for $n=1, \frac{1}{1 \cdot 3}=\frac{1}{3}$.
Inductive step: suppose that the equation is true for n, so that

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\cdots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1} .
$$

Then

$$
\begin{aligned}
\sum_{k=1}^{n+1} \frac{1}{(2 k-1)(2 k+1)} & =\sum_{k=1}^{n} \frac{1}{(2 k-1)(2 k+1)}+\frac{1}{(2 n+1)(2 n+3)} \\
& =\frac{n}{2 n+1}+\frac{1}{(2 n+1)(2 n+3)}=\frac{n(2 n+3)+1}{(2 n+1)(2 n+3)} \\
& =\frac{2 n^{2}+3 n+1}{(2 n+1)(2 n+3)}=\frac{(2 n+1)(n+1)}{(2 n+1)(2 n+3)} \\
& =\frac{n+1}{2 n+3}
\end{aligned}
$$

so it is also true for $n+1$. Hence it is true for all n by mathematical induction.
3. (*) Prove using mathematical induction that for all $n \geq 1,6^{n}-1$ is divisible by 5 .

Solution: Basis step: for $n=1,6^{1}-1=5$ is divisible by 5 .
Inductive step: suppose that $6^{n}-1$ is divisible by 5 for n. Then

$$
6^{n+1}-1=6\left(6^{n}-1\right)+6-1=6\left(6^{n}-1\right)+5
$$

Since both $6^{n}-1$ and 5 are multiple of 5 , so is $6^{n+1}-1$. Hence it is true for all n by mathematical induction.
4. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence defined as $a_{1}=1$ and $a_{n+1}=\sqrt{a_{n}+2}$. Prove that $a_{n} \leq 2$ for all $n \geq 1$, by using mathematical induction.
Solution: Basis step: for $n=1, a_{1}=1 \leq 2$.
Inductive step: suppose that $a_{n} \leq 2$ for n. Then

$$
a_{n+1}=\sqrt{a_{n}+2} \leq \sqrt{2+2}=2
$$

so it is also true for $n+1$. Hence it is true for all n by mathematical induction.
5. Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence defined as $a_{1}=1, a_{2}=5$ and $a_{n+2}=5 a_{n+1}-6 a_{n}$. Prove that $a_{n}=3^{n}-2^{n}$ for all $n \geq 1$, by using mathematical induction.

Solution: Basis step: for $n=1, a_{1}=1=3^{1}-2^{1}$ and for $n=2, a_{2}=5=3^{2}-2^{2}$.
Inductive step: suppose that the statement holds for n and $n+1$. For $n+2$, we have

$$
\begin{aligned}
a_{n+2} & =5 a_{n+1}-6 a_{n}=5\left(3^{n+1}-2^{n+1}\right)-6\left(3^{n}-2^{n}\right) \\
& =15 \cdot 3^{n}-10 \cdot 2^{n}-6 \cdot 3^{n}+6 \cdot 2^{n}=9 \cdot 3^{n}-4 \cdot 2^{n} \\
& =3^{n+2}-2^{n+2},
\end{aligned}
$$

so it is also true for $n+2$. Hence it is true for all n by mathematical induction.
6. (a) Prove that $n^{2}+3 n$ can be divided by 2 for every $n \geq 1$.
(b) Prove that $n^{3}-n$ can be divided by 3 for every $n \geq 1$.

Solution: (a) Basis step: for $n=1,1^{2}+3 \cdot 1=4$ can be divided by 2 .
Inductive step: suppose that the statement holds for n. For $n+1$, we have

$$
(n+1)^{2}+3(n+1)=n^{2}+2 n+1+3 n+3=\left(n^{2}+3 n\right)+2 n+4=\left(n^{2}+3 n\right)+2(n+2)
$$

Since $n^{2}+3 n$ can be divided by 2 by the assumption for n and $2(n+2)$ also can be divided by 2 , their sum can be divided by 2 . So it is also true for $n+1$. Hence it is true for all n by mathematical induction.
(b) Basis step: for $n=1,1^{3}-1=0$ can be divided by 3 .

Inductive step: suppose that the statement holds for n. For $n+1$, we have

$$
(n+1)^{3}-(n+1)=n^{3}+3 n^{2}+3 n+1-(n+1)=\left(n^{3}-n\right)+3\left(n^{2}+n\right) .
$$

Since $n^{3}-n$ can be divided by 3 by the assumption for n and $3\left(n^{2}+n\right)$ also can be divided by 3 , their sum can be divided by 3 . So it is also true for $n+1$. Hence it is true for all n by mathematical induction.
7. (a) $\left(^{*}\right)$ Let a_{n} be the number of permutation of distinguishable n-balls. (Assume that we don't know $a_{n}=n$! yet.) Prove that $a_{1}=1$ and $a_{n+1}=(n+1) a_{n}$.
(b) By using the above recurrence relation and mathematical induction, prove that $a_{n}=n$!.

Solution: (a) Assume that we have a permutation of n distinct balls. If we try to put one more ball to make it as $(n+1)$ balls, there are $(n+1)$ choices to put the $(n+1)$-th ball: between these n-balls, left end or the right end. Since putting $(n+1)$-th ball is independent of the previous n-balls, we have $a_{n+1}=(n+1) \times a_{n} . a_{1}=1$ is trivial.
(b) Basis step: for $n=1$, we have $a_{1}=1=1$!.

Inductive step: suppose that the statement holds for n, so that $a_{n}=n$!. For $n+1$, we have

$$
a_{n+1}=(n+1) a_{n}=(n+1) \cdot n!=(n+1)!,
$$

so it is also true for $n+1$. Hence it is true for all n by mathematical induction.

