Basic Discrete Probability

1. What is the probability that a five-card poker hand contains a royal flush, that is, the 10, jack, queen, king, and ace of one suit?

There are four possibilities for an unordered royal flush, one for each suit. Therefore there are $\frac{4}{\binom{52}{\epsilon}}$ possibilities.

- 2. What is the probability that Abby, Barry, and Syliva win the first, second, and third prizes, respectively, in a drawing if 200 people enter a contest and
 - (a) no one can win more than one prize.

In this case, our sample space is unordered sets of prizes. There is only one potential solution, so our answer is

$$\frac{1}{P(200,3)}$$

(b) winning more than one prize is allowed.

Here the only difference is that our sample space is larger, making our answer

$$\frac{1}{200^3} = \frac{1}{8,000,000}$$

- 3. What is the probability of these events when we randomly select a permutation of $\{1, 2, 3\}$?
 - (a) 1 precedes 3.

There are three permutations where 1 proceeds 3, so the answer is 1/2.

(b) 3 precedes 1.

This is the complement of the previous question, so 1-1/2=1/2

(c) 3 precedes 1 and 3 precedes 2.

There are two permutations where this happens, 312 and 321, so 1/3.

- 4. Assume that the probability a child is a boy is 0.51 and that sexes of children born into a family are independent. What is the probability a family of five children has
 - (a) exactly three boys?

The probability of having three boys is, by the binomial distribution $\binom{5}{3}(.51)^3(.49)^2$

(b) at least one boy?

This is the complement of having all girls, so is probability $1 - (.51)^5$

(c) at least one girl?

$$1-(.49)^5$$

(d) exactly two boys, conditional on there being at least two girls?

The probability that there are at least two girls is $1 - (.51)^5 - 5(.51)^4$.49. The probability that there are exactly two boys is $(.51)^2(.49)^3$. Since this entirely lies within the condition that there are at least two girls, the conditional probability is

$$\frac{(.51)^2(.49)^3}{1 - (.51)^5 - 5(.51)^4.49}$$

- 5. Assume that the probability of a 0 is 0.8 and a 1 is 0.2 for a randomly generated bit string of length six. What is the probability that there are
 - (a) at least 3 zeros?

We can sum up probabilities

$$\binom{6}{3}(.8)^3(.2)^3 + \binom{6}{4}(.8)^4(.2)^2 + \binom{6}{5}(.8)^5(.2)^1 + \binom{6}{6}(.8)^6$$

(b) two ones, conditional on the first digit being a zero. Here we can treat this as a string of length five, meaning that we have

$$\binom{5}{2}(.8)^3(.2)^2$$

6. (a) What is the probability that two people chosen at random were born during the same month of the year? Assume that it is equally likely that a person is born during any month.

Given the first person's birth month, there is a $\frac{1}{12}$ chance the second person has the same birth month, so $\frac{1}{12}$

(b) What is the probability that in a group of n people, two are born during the same month of the year?

We calculate the complement, namely if everyone is born in a different month. In this case there are 12 options for the first person, 11 for the second, etc. meaning there are P(12, n) options total. As there are 12^n possible birth month sets in our state space, our answer is

$$1 - \frac{P(12, n)}{12^n}$$

(c) How many people chosen at random are needed such that the probability that two are born during the same month is at least 1/2?

By calculating this value for various n, we see we need 5 people.

7. What is the conditional probability that exactly 4 heads appears when a fair coin is flipped five times, given that the first coin comes up heads.

We can treat this as if we have 4 coins of which 3 are heads. Using ELOP we see that the probability of this is $\frac{4}{16} = \frac{1}{4}$

8. For the Monty Hall problem, assume there are n doors, behind k of which are prizes. What is the probability of success now if we stick with our initial choice, versus switching to another door?

If we don't switch doors, there is a $\frac{k}{n}$ chance that we choose a door with a prize behind it. If we do switch doors, we split into cases of whether we initially choose a prize door or a non prize door. If we start with a prize door, then there are k-1 prize doors to choose from if we switch. If we start with a non prize door, there are k prize doors to choose from if we switch. Therefore the total probability of choosing a prize while switching is

$$\frac{k(k-1)}{n(n-2)} + \frac{(n-k)k}{n(n-2)} = \frac{(n-1)k}{n(n-2)}$$

So even in this general case, it is always good to switch.

Source: Rosen's Discrete Mathematics and its Applications.