True/False - No explanation needed. (For each: 1 point if correct, 0 points if not answered, -1 points if incorrect)

1. The symmetry of permutations can be seen in the identity $P(n, k)=P(n, n-k)$ for all integer n, k. True/False

False: For example $P(3,2) \neq P(3,1)$. However we have $C(n, k)=C(n, n-k)$.
2. The basic combinatorial relation satisfied by binomial coefficients that makes it possible to identify all numbers in Pascal's triangle as some binomial coefficients can be written as: $\binom{n-1}{k-1}+\binom{n-1}{k}=\binom{n}{k}$. True/False

True: It reflects the fact that a number in Pascal's triangle is the sum of the two numbers above it.

Problems - Need justification.

1. How many numbers must be selected from $\{1,2,3,4,5,6,7,8\}$ to guarantee that at least one pair of these numbers adds up to 9 ? (5 points)

The pairs of numbers that add up to 9 are $\{\{1,8\},\{2,7\},\{3,6\},\{4,5\}\}$. If we have any two numbers from one of these sets, then we are done. If we consider these sets as "holes", there are 4 "holes" and we need to guarantee there is one hole with two numbers in it, so we need 5 numbers.
2. What is the coefficient of $x^{7} y^{9}$ in $(3 x-2 y)^{16}$? You don't need to write the actual integer. A formula will suffice. (5 points)
We get a contribution of 3^{7} from the x part and $(-2)^{9}$ from the y part. From the binomial theorem, we add a coefficient of $\binom{16}{7}$, so our final answer is $-\left(3^{7} \cdot 2^{9} \cdot\binom{16}{7}\right)$

