True/False - No explanation needed. (For each: 1 point if correct, 0 points if not answered, -1 points if incorrect)

1. The statement

$$
B_{1} \cap B_{2} \cap \ldots \cap B_{n}=\emptyset \text { necessarily implies } B_{i} \cap B_{j}=\emptyset \text { for every } 1 \leq i, j \leq n
$$

is false, but the implication in the opposite direction is true. True/False

True. We could have, for example $B_{1}=\overline{B_{2}}$. In this case $B_{1} \cap B_{3}$ is not necessarily \emptyset, but $B_{1} \cap B_{2} \cap \ldots \cap B_{n}=\emptyset$. In the opposite direction, in fact if any pair has empty intersection then the entire intersection is also empty.
2. $P(A \mid B)$ is at most $P(B)$, considering that in $P(A \mid B)$ we are assuming the occurrence of B. True/False
False, considering we divide by the probability $P(B)$ in $P(A \mid B)$. This would be true if it were $P(A \cap B)$ instead of $P(A \mid B)$.

Problems - Needs justification.

1. A space probe near Neptune communicates with earth using bit strings. Suppose that in its transmissions it sends a 1 one-third of the time and a 0 two-thirds of the time. When a 0 is sent, the probability that it is received incorrectly (as a 1) is 0.1 . When a 1 is sent, the probability that it is received correctly is 0.8 , and the probability that it is received incorrectly (as a 0) is 0.2 . What is the probability that a 0 was transmitted, given that a 0 was received. Give your answer as a fraction in reduced terms. (10 points)

We use Bayes' Theorem. Call R the probability that a 0 was received, and S the probability a 0 was sent. We get

$$
P(S \mid R)=\frac{P(R \mid S) P(S)}{P(R \mid S) P(S)+P(R \mid \bar{S}) P(\bar{S})}=\frac{.9 \cdot \frac{2}{3}}{.9 \frac{2}{3}+.2 \cdot \frac{1}{3}}=\frac{6}{6+\frac{2}{3}}=\frac{9}{10}
$$

