True/False - No explanation needed. (For each: 1 point if correct, 0 points if not answered, -1 points if incorrect)

1. If X is the random variable of the product of two dice rolls, then $\left|X^{-1}(4)\right|=3$. True/False

True. The elements of the preimage are $\{(1,4),(2,2),(4,1)\}$
2. If A and B are disjoint, then they are independent. True/False

False. In fact, as long as the probability of each is nonzero then they will be dependent. $P(A \cap B)=0$, but we could have $P(A) P(B)>0$

Problems - Needs justification.

1. How many people n are necessary to have at least a $1 / 2$ chance that at least three people are born on a Tuesday? Assume a birthday occurs on a given day of the week with probability $1 / 7$. We don't need an actual number, just an equation with n as a variable. (10 points)

Assume there are n people. We check the complement. The probability that there are no people born on Tuesday is $\frac{6^{n}}{7^{n}}$. The probability that there is exactly one person born on Tuesday is $\binom{n}{1}\binom{1}{7} \frac{6^{n-1}}{7^{n-1}}$, as there are $\binom{n}{1}$ ways to place the person born on Tuesday. Similarly for 2 people we have $\binom{n}{2}\left(\frac{1}{7^{2}}\right)\left(\frac{6^{n-2}}{7^{n-2}}\right)$. Therefore our formula is that we would need n at least the value satisfying

$$
1-\frac{6^{n}}{7^{n}}-\binom{n}{1} \frac{6^{n-1}}{7^{n}}-\binom{n}{2} \frac{6^{n-2}}{7^{n}}=\frac{1}{2}
$$

