True/False - No explanation needed. (For each: 1 point if correct, 0 points if not answered, -1 points if incorrect)

1. Sampling without replacement begins to look like sampling with replacement as I increase the population size and as I increase the probability of being sampled. True/False

False. It begins to look like sampling with replacement as I increase population size and decrease the probability of being sampled.
2. I have 10 red ties and one blue tie. I randomly choose ties until I pick the blue tie. If X is the random variable signifying the number of red ties picked, then X is geometric. True/False

False. We do not have independence of samples, and the range is not infinite.

Problems - Needs justification.

1. What is the expected number of Jacks in a five card hand? Assume a normal 52 card deck. (10 points)
Call X_{i} a random variable that is 1 if the i th card is a Jack and 0 otherwise. Then we can write this problem as

$$
\begin{aligned}
E\left(X_{1}+X_{2}+X_{3}+X_{4}+X_{5}\right) & =E\left(X_{1}\right)+E\left(X_{2}\right)+E\left(X_{3}\right)+E\left(X_{4}\right)+E\left(X_{5}\right) \\
& =P\left(X_{1}\right)+P\left(X_{2}\right)+P\left(X_{3}\right)+P\left(X_{4}\right)+P\left(X_{5}\right) \\
& =\frac{1}{13}+\frac{1}{13}+\frac{1}{13}+\frac{1}{13}+\frac{1}{13} \\
& =\frac{5}{13}
\end{aligned}
$$

