True/False - No explanation needed. (For each: 1 point if correct, 0 points if not answered, -1 points if incorrect)

1. The law of large numbers implies that for a Geometric distribution X with $p>0$, the probability $P(X=\infty)=0$. True/False

False. The law of large numbers only deals with averages, not individual distributions.
2. $E(X Y)=E(X) E(Y)$ does not necessarily imply that X and Y are independent. True/False

True. The converse implication is true but not this direction. For example, take X to be uniformly either -1 or 1 . Then take $P(Y \mid X=1)$ as 3 with probability $1 / 3$ and 0 otherwise. Then take $P(Y \mid X=-1)=1$ with probability 1 . Then X and Y satisfy the equation but are not independent.

Problems - Needs justification.

1. I flip a biased coin until I get a heads. If the standard error is $2 / 3$, what is the expected number of tails I receive before I flip a heads? (10 points)

We have

$$
\begin{array}{r}
\frac{\sqrt{1-p}}{p}=\frac{2}{3} \\
\frac{1-p}{p^{2}}=\frac{4}{9} \\
4 p^{2}=9-9 p \\
4 p^{2}+9 p-9=0 \\
p=\frac{-9 \pm \sqrt{81+144}}{2 \cdot 4}=\frac{3}{4} \text { or }-13 / 4
\end{array}
$$

so the only reasonable solution is $p=\frac{3}{4}$. The expectation is then

$$
E(X)=\frac{1-p}{p}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}
$$

