True/False - No explanation needed. (For each: 1 point if correct, 0 points if not answered, -1 points if incorrect)

1. The law of large numbers implies that for a Geometric distribution X with p>0, the probability $P(X=\infty)=0$. True/False

False. The law of large numbers only deals with averages, not individual distributions.

2. E(XY) = E(X)E(Y) does not necessarily imply that X and Y are independent. True/False

True. The converse implication is true but not this direction. For example, take X to be uniformly either -1 or 1. Then take P(Y|X=1) as 3 with probability 1/3 and 0 otherwise. Then take P(Y|X=-1)=1 with probability 1. Then X and Y satisfy the equation but are not independent.

Problems - Needs justification.

1. I flip a biased coin until I get a heads. If the standard error is 2/3, what is the expected number of tails I receive before I flip a heads? (10 points)

We have

$$\frac{\sqrt{1-p}}{p} = \frac{2}{3}$$

$$\frac{1-p}{p^2} = \frac{4}{9}$$

$$4p^2 = 9 - 9p$$

$$4p^2 + 9p - 9 = 0$$

$$p = \frac{-9 \pm \sqrt{81 + 144}}{2 \cdot 4} = \frac{3}{4} \text{ or } -13/4$$

so the only reasonable solution is $p = \frac{3}{4}$. The expectation is then

$$E(X) = \frac{1-p}{p} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}$$