True/False - No explanation needed. (For each: 1 point if correct, 0 points if not answered, -1 points if incorrect)

1. The function $f(x)=2$ for $\frac{1}{4} \leq x \leq \frac{3}{4}, f(x)=5$ for all $x \in \mathbb{Z}$, and $f(x)=0$ otherwise. $f(x)$ is a valid PDF. True/False
True. We have $\int_{\infty}^{\infty} f(x)=1$, and $f(x)$ is nonnegative.
2. If $f(x)$ is a PDF, then we necessarily have

$$
\int_{0}^{\infty} f(x) d x \geq \int_{5}^{\infty} f(x) d x
$$

True/False
True. This is saying $P(0 \leq X \leq \infty) \geq P(5 \leq X \leq \infty)$

Problems - Needs justification.

1. Call $f(x)=\frac{2}{(2+x)^{2}}$ for $0 \leq x \leq \infty$ and 0 otherwise.
(a) Verify this is a valid PDF
(b) What is the CDF?
(c) If X is the random variable with PDF x, what is $P(1 \leq X \leq 2)$?
(10 points)
(a)

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{\infty} \frac{2}{(2+x)^{2}} d x=-\left.\frac{2}{2+x}\right|_{0} ^{\infty}=0-(-1)=1
$$

also $f(x)$ is nonnegative.
(b) The CDF $F(x)=0$ for $x \leq 0$ and $1-\frac{2}{2+x}$ for $x \geq 0$.
(c) This is

$$
\int_{1}^{2} \frac{2}{(2+x)^{2}} d x=-\left.\frac{2}{2+x}\right|_{1} ^{2}=\frac{2}{3}-\frac{2}{4}=\frac{1}{6}
$$

