True/False - No explanation needed. (For each: 1 point if correct, 0 points if not answered, -1 points if incorrect)

1. The function f(x) = 2 for $\frac{1}{4} \le x \le \frac{3}{4}$, f(x) = 5 for all $x \in \mathbb{Z}$, and f(x) = 0 otherwise. f(x) is a valid PDF. True/False

True. We have $\int_{\infty}^{\infty} f(x) = 1$, and f(x) is nonnegative.

2. If f(x) is a PDF, then we necessarily have

$$\int_0^\infty f(x)dx \ge \int_5^\infty f(x)dx$$

True/False

True. This is saying $P(0 \le X \le \infty) \ge P(5 \le X \le \infty)$

Problems - Needs justification.

- 1. Call $f(x) = \frac{2}{(2+x)^2}$ for $0 \le x \le \infty$ and 0 otherwise.
 - (a) Verify this is a valid PDF
 - (b) What is the CDF?
 - (c) If X is the random variable with PDF x, what is $P(1 \le X \le 2)$?

(10 points)

(a)
$$\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{\infty} \frac{2}{(2+x)^{2}} dx = -\frac{2}{2+x} \Big|_{0}^{\infty} = 0 - (-1) = 1$$

also f(x) is nonnegative.

- (b) The CDF F(x) = 0 for $x \le 0$ and $1 \frac{2}{2+x}$ for $x \ge 0$.
- (c) This is

$$\int_{1}^{2} \frac{2}{(2+x)^{2}} dx = -\frac{2}{2+x} \Big|_{1}^{2} = \frac{2}{3} - \frac{2}{4} = \frac{1}{6}$$