I. Bayes' Rule

- 1. Suppose a new cancer test has a 95% chance of correctly identifying that a sick patient has cancer and a 10% chance of incorrectly identifying that a healthy patient has cancer. Assume that 5% of the population has this form of cancer. Compute the following probabilities:
 - a) The probability that the test identifies a randomly chosen person as having cancer.
 - b) The probability that a person who tests positive for cancer actually has cancer.
 - c) The probability that a person who tests negative for cancer does not have cancer.
 - d) The probability that the test gives an incorrect result.
- 2. Suppose a weatherman predicts rainy days correctly with an accuracy of 90% and predicts clear days correctly with an accuracy of 90%. Given that it rains 20% of the time, and the weatherman predicted that it will rain tomorrow, what is the probability that it will actually rain tomorrow?

II. Review

- 1. How many ways can you arrange 10 marbles in a row if 4 are red, 3 are blue, and 3 are green (marbles of the same color are identical)?
- 2. How many ways are there to arrange 12 ones and 18 zeros in a line if every one must be immediately followed by a zero?
- 3. Show that in a group of 10 people, each of whom is friends with at least one of the others, there are two people with the same number of friends (within the group).
- 4. Prove that $k\binom{n}{k} = n\binom{n-1}{k-1}$ using a combinatorial argument and by algebraic manipulation.
- 5. How many ways are there to split 6 distinguishable people into 3 distinguishable non-empty teams?
- 6. How many solutions are there to the equation x + y + z = 12 such that $1 \le x \le 4$?
- 7. Let $\{a_n\}_{n\geq 0}$ be the sequence defined by $a_0=1$ and $a_{n+1}=4a_n+1$. Prove that $a_n=\frac{4^{n+1}-1}{3}$.