## I. Bayes' Rule

1. Suppose a new cancer test has a $95 \%$ chance of correctly identifying that a sick patient has cancer and a $10 \%$ chance of incorrectly identifying that a healthy patient has cancer. Assume that $5 \%$ of the population has this form of cancer. Compute the following probabilities:
a) The probability that the test identifies a randomly chosen person as having cancer.
b) The probability that a person who tests positive for cancer actually has cancer.
c) The probability that a person who tests negative for cancer does not have cancer.
d) The probability that the test gives an incorrect result.

Solution: Let $A$ be the event that a randomly chosen person has cancer, $B$ be the event that the test identifies a randomly chosen person as having cancer. We are given that $P(B \mid A)=$ $.95, P(B \mid \bar{A})=.1$, and $P(A)=.05$. Then:
(a): $P(B)=P(B \mid A) P(A)+P(B \mid \bar{A}) P(\bar{A})=(.95)(.05)+(.10)(.95)=.1425$.
(b): $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{(.95)(.05)}{.1425}=\frac{1}{3}$.
(c): $P(\bar{A} \mid \bar{B})=\frac{P(\bar{B} \mid \bar{A}) P(\bar{A})}{P(\bar{B})}=\frac{(.9)(.95)}{1-.1425} \approx .997$.
(d): $P(B \mid \bar{A}) P(\bar{A})+P(\bar{B} \mid A) P(A)=(.1)(.95)+(.05)(.05)=.0975$.
2. Suppose a weatherman predicts rainy days correctly with an accuracy of $90 \%$ and predicts clear days correctly with an accuracy of $90 \%$. Given that it rains $20 \%$ of the time, and the weatherman predicted that it will rain tomorrow, what is the probability that it will actually rain tomorrow?
Solution: Let $A$ be the event that it rains tomorrow, and let $B$ be the event that the weatherman predicts it will rain tomorrow. We are given that $P(B \mid A)=.9, P(\bar{B} \mid \bar{A})=.9$, and $P(A)=.2$. We want to compute $P(A \mid B)$.
$P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \bar{A}) P(\bar{A})}=\frac{(.9)(.2)}{(.9)(.2)+(.1)(.8)} \approx .6923$

## II. Review

1. How many ways can you arrange 10 marbles in a row if 4 are red, 3 are blue, and 3 are green (marbles of the same color are identical)?
Solution: $\binom{10}{4}\binom{6}{3}=\frac{10!}{4!3!3!}$.
2. How many ways are there to arrange 12 ones and 18 zeros in a line if every one must be immediately followed by a zero?
Solution: $\binom{6+13-1}{13-1}=\binom{18}{12}$. We group 12 ones and 12 zeros into 12 pairs and the remaining 6 zeros can be filled in to the 13 gaps to produce a valid arrangement of 12 ones and 18 zeros.
3. Show that in a group of 10 people, each of whom is friends with at least one of the others, there are two people with the same number of friends (within the group).
Solution: People can be friends from 1 to $n-1$ people, so by the pigeonhole principle there are two people with the same number of friends.
4. Prove that $k\binom{n}{k}=n\binom{n-1}{k-1}$ using a combinatorial argument and by algebraic manipulation.

Solution: Both quantities represent the number of ways to choose a team of $k$ people with a captain from a pool of $n$ people (you get the two quantities by either choosing the team first or choosing the captain first).
Algebraically, we see $k\binom{n}{k}=\frac{n!}{(n-k)!(k-1)!}=n \frac{(n-1)!}{(n-1-(k-1))!(k-1)!}=n\binom{n-1}{k-1}$.
5. How many ways are there to split 6 distinguishable people into 3 distinguishable non-empty teams?
Solution: $3!S(6,3)=540$.
$S(6,3)=\frac{1}{3!} \sum_{i=0}^{2}(-1)^{i}\binom{3}{i}(3-i)^{6}=\frac{1}{6}\left(3^{6}-3 \cdot 2^{6}+3\right)=\frac{1}{2}\left(3^{5}-2^{6}+1\right)=90$.
6. How many non-negative integer solutions are there to the equation $x+y+z=12$ such that $1 \leq x \leq 4$ ?
Solution: $\binom{13}{2}-\binom{9}{2}$.
Substituting $x^{\prime}=x-1$, we see that we want to count the number of solutions to $x^{\prime}+y+z=11$ where $x^{\prime} \leq 3$. There are $\binom{13}{2}$ solutions with no restrictions on $x^{\prime}$, and $\binom{9}{2}$ solutions when $x^{\prime} \geq 4$.
7. Let $\left\{a_{n}\right\}_{n \geq 0}$ be the sequence defined by $a_{0}=1$ and $a_{n+1}=4 a_{n}+1$. Prove that $a_{n}=\frac{4^{n+1}-1}{3}$.

Solution: By induction on $n$.
Base Case $(n=0)$ : Note $a_{0}=1=\frac{4^{1}-1}{3}$.
Inductive Hypothesis: Assume $a_{n}=\frac{4^{n+1}-1}{3}$ for some $n \geq 0$. Inudctive Step: Then $a_{n+1}=$ $4 a_{n}+1=4 \frac{4^{n+1}-1}{3}+1=\frac{4^{n+2}-4+3}{3}=\frac{4^{n+2}-1}{3}$.
Thus by inudction $a_{n}=\frac{4^{n+1}-1}{3}$ for all $n \geq 0$.

