I. PDFs and CDFs

- 1. (a) Call $f(x) = \sin(x) + \frac{1}{2\pi}$ for $0 \le x \le 2\pi$ and f(x) = 0 otherwise. Verify that f(x) is a valid PDF.
 - (b) What is the CDF of this function?
 - (c) What is $P(X \le \pi/2)$?
- 2. (a) Call $f(x) = ae^{-ax}$ for $0 \le x \le \infty$ and f(x) = 0 otherwise, where a > 0 is a constant. Verify that f(x) is a valid PDF.
 - (b) What is the CDF of this function?
 - (c) What is P(1 < X < 2)?
- 3. (a) Call $f(x) = \frac{1}{\pi} \frac{1}{\sqrt{1-x^2}}$ for $-1 \le x \le 1$. Verify that f(x) is a valid PDF.
 - (b) What is the CDF?
 - (c) What is $P(-\frac{1}{\sqrt{2}} \le X \le 0)$?
- 4. (a) Call $f(x) = \frac{1}{x}$ for $e \le x \le e^2$. Verify that f(x) is a valid PDF.
 - (b) What is the CDF?
 - (c) What is $P(e^{1.5} \le X \le e^{1.75})$?
- 5. What PDF has CDF $\sin(x)$ for $0 \le x \le \pi/2$?
- 6. I flip a fair coin 15 times, represented by the random variables X_1, \ldots, X_{15} . The average of these variables is \overline{X} . What is the probability that X and \overline{X} are within one standard error of their expectations? (Calculate exactly!). What is a way to estimate this (do the estimation).
- 7. (Review Question)!

In the Ancient Greek Attic Calendar, there are 10 months in a year. How many people chosen randomly do we need to ensure that the probability that at least two people are born in the same Attic month is at least 1/2? Assume that birthdays are uniform.