I. PDFs and CDFs

1. (a) Call $f(x)=\sin (x)+\frac{1}{2 \pi}$ for $0 \leq x \leq 2 \pi$ and $f(x)=0$ otherwise. Verify that $f(x)$ is a valid PDF.
(b) What is the CDF of this function?
(c) What is $P(X \leq \pi / 2)$?
2. (a) Call $f(x)=a e^{-a x}$ for $0 \leq x \leq \infty$ and $f(x)=0$ otherwise, where $a>0$ is a constant. Verify that $f(x)$ is a valid PDF.
(b) What is the CDF of this function?
(c) What is $P(1 \leq X \leq 2)$?
3. (a) Call $f(x)=\frac{1}{\pi} \frac{1}{\sqrt{1-z^{2}}}$ for $-1 \leq x \leq 1$. Verify that $f(x)$ is a valid PDF.
(b) What is the CDF?
(c) What is $P\left(-\frac{1}{\sqrt{2}} \leq X \leq 0\right)$?
4. (a) Call $f(x)=\frac{1}{x}$ for $e \leq x \leq e^{2}$. Verify that $f(x)$ is a valid PDF.
(b) What is the CDF?
(c) What is $P\left(e^{1.5} \leq X \leq e^{1.75}\right)$?
5. What PDF has CDF $\sin (x)$ for $0 \leq x \leq \pi / 2$?
6. I flip a fair coin 15 times, represented by the random variables X_{1}, \ldots, X_{15}. The average of these variables is \bar{X}. What is the probability that X and \bar{X} are within one standard error of their expectations? (Calculate exactly!). What is a way to estimate this (do the estimation).

7. (Review Question)!

In the Ancient Greek Attic Calendar, there are 10 months in a year. How many people chosen randomly do we need to ensure that the probability that at least two people are born in the same Attic month is at least $1 / 2$? Assume that birthdays are uniform.

