I. PDFs and CDFs

1. (a) Call $f(x)=\sin (x)+\frac{1}{2 \pi}$ for $0 \leq x \leq 2 \pi$ and $f(x)=0$ otherwise. Verify that $f(x)$ is a valid PDF.
(b) What is the CDF of this function?
(c) What is $P(X \leq \pi / 2)$?

Solution:

In fact, this is not a valid PDF, as this is not always non-negative. For example $\sin (3 \pi / 2)+\frac{1}{2 \pi}$ is negative.
2. (a) Call $f(x)=a e^{-a x}$ for $0 \leq x \leq \infty$ and $f(x)=0$ otherwise, where $a>0$ is a constant. Verify that $f(x)$ is a valid PDF.
(b) What is the CDF of this function?
(c) What is $P(1 \leq X \leq 2)$?

Solution:

(a) We have

$$
\int_{0}^{\infty} a e^{-a x}=-\left.e^{-a x}\right|_{0} ^{\infty}=1
$$

and moreover this function is nonnegative.
(b) The CDF is the antiderivative, so $P(X \leq x)=0$ for $x \leq 0$ and $1-e^{-a x}$ for $x \geq 0$.
(c) This is

$$
\int_{1}^{2} a e^{-a x}=e^{-a}-e^{-2 a}
$$

3. (a) Call $f(x)=\frac{1}{\pi} \frac{1}{\sqrt{1-z^{2}}}$ for $-1 \leq x \leq 1$. Verify that $f(x)$ is a valid PDF.
(b) What is the CDF?
(c) What is $P\left(-\frac{1}{\sqrt{2}} \leq X \leq 0\right)$?

Solution:

(a) This function is nonnegative. Then

$$
\int_{-1}^{1} \frac{1}{\pi} \frac{1}{\sqrt{1-z^{2}}}=\left.\frac{1}{\pi} \arcsin (z)\right|_{-1} ^{1}=\frac{1}{\pi}(\pi / 2-(-\pi / 2))=1
$$

(b) This is the antiderivative, so $\frac{1}{\pi}(\arcsin (z)+\pi / 2)$ for $-1 \leq z \leq 1,0$ for $z \leq-1$ and 1 for $z \geq 1$.
(c) This is

$$
\frac{1}{\pi}\left(\arcsin (0)-\arcsin \left(-\frac{1}{\sqrt{2}}\right)=\frac{1}{\pi}(0-(-\pi / 4))=\frac{1}{4}\right.
$$

4. (a) Call $f(x)=\frac{1}{x}$ for $e \leq x \leq e^{2}$. Verify that $f(x)$ is a valid PDF.
(b) What is the CDF?
(c) What is $P\left(e^{1.5} \leq X \leq e^{1.75}\right)$?

Solution:

(a) This is nonnegative.

$$
\int_{e}^{e^{2}} \frac{1}{x}=\left.\ln (x)\right|_{e} ^{e^{2}}=\ln \left(e^{2}\right)-\ln e=1
$$

(b) The CDF is $\ln (z)-1$
(c) $\ln \left(e^{1.75}\right)-\ln \left(e^{1.5}\right)=.25$
5. What PDF has CDF $\sin (x)$ for $0 \leq x \leq \pi / 2$?

Solution We want the antiderivative to be $\sin (x)$, so the PDF must be $\cos (x)$.
6. I flip a fair coin 15 times, counting the number of heads. This is represented by the random variables X_{1}, \ldots, X_{15}. The average of these variables is \bar{X}. What is the probability that X_{1} and \bar{X} are within one standard error of their expectations? (Calculate exactly!). What is a way to estimate this (do the estimation).

Solution

The expectation of X_{1} is $1 / 2$. The standard error is $1 / 2$, meaning that X has probability 1 of being within one standard error of the expectation.
The expectation of \bar{X} is also $1 / 2$. The standard error this time will be $(1 / 2) / \sqrt{15} \approx .129$, so this is the probability that $P(.371<\bar{X}<.629)$. As this is an average, this corresponds to getting between $P\left(5.56<\sum X_{i}<9.44\right)$. By the binomial distribution this is

$$
\frac{\binom{15}{6}+\binom{15}{7}+\binom{15}{8}+\binom{15}{9}}{2^{15}} \approx .698
$$

By the central limit theorem, this will approximately be equal to the probability that a normal distribution is within 1 standard deviation, which is .683 .

7. (Review Question)!

In the Ancient Greek Attic Calendar, there are 10 months in a year. How many people chosen randomly do we need to ensure that the probability that at least two people are born in the same Attic month is at least $1 / 2$? Assume that birthdays are uniform.

Solution The complement of this is when everyone is born in different months, which happens with probability $\frac{10}{10} \frac{9}{10} \frac{8}{10} \cdots \frac{10-n+1}{10}$. Therefore the probability that n people are all born on different days is $\frac{P(10, n)}{10^{n}}$. We can check to see that we need $n=5$ for this to be at most $1 / 2$.

