Mean, Median and Variance of Continuous RVs

1. For each PDF, calculate the mean and the median:
(a) $f(x)=x^{-2}$ for $\frac{1}{2} \leq x \leq 1$ and $f(x)=0$ otherwise.

$$
\begin{aligned}
& E[X]=\int_{\frac{1}{2}}^{1} x f(x) d x=\int_{\frac{1}{2}}^{1} \frac{1}{x} d x=\left.\ln x\right|_{\frac{1}{2}} ^{1}=-\ln \frac{1}{2}=\ln 2 \\
& \int_{\frac{1}{2}}^{m} f(x) d x=\frac{1}{2} \Rightarrow \int_{\frac{1}{2}}^{m} \frac{1}{x^{2}} d x=\frac{1}{2} \Rightarrow-\left.\frac{1}{x}\right|_{\frac{1}{2}} ^{m}=\frac{1}{2} \Rightarrow-\frac{1}{m}+2=\frac{1}{2} \Rightarrow m=\frac{2}{3}
\end{aligned}
$$

(b) $f(x)=x\left(3 x^{2}+\frac{1}{2}\right)$ for $0<x \leq 1$ and $f(x)=0$ otherwise.

$$
\begin{aligned}
& E[X]=\int_{0}^{1} x f(x) d x=\int_{0}^{1} x^{2}\left(3 x^{2}+\frac{1}{2}\right) d x=\left.\left(\frac{3 x^{5}}{5}+\frac{x^{3}}{6}\right)\right|_{0} ^{1}=\frac{3}{5}+\frac{1}{6}=\frac{23}{30} \\
& \int_{0}^{m} f(x) d x=\frac{1}{2} \Rightarrow \int_{0}^{m} x\left(3 x^{2}+\frac{1}{2}\right) d x=\left.\frac{1}{2} \Rightarrow\left(\frac{3 x^{4}}{4}+\frac{x^{2}}{4}\right)\right|_{0} ^{m}=\frac{1}{2} \\
& \Rightarrow \frac{3 m^{4}}{4}+\frac{m^{2}}{4}=\frac{1}{2} \Rightarrow 3 m^{4}+m^{2}-2=0 \Rightarrow m^{2}=\frac{2}{3} \Rightarrow m=\sqrt{\frac{2}{3}}
\end{aligned}
$$

(c) $f(t)=\lambda e^{-\lambda t}$ for $t \geq 0$ and $f(t)=0$ otherwise.

$$
\begin{gathered}
E[X]=\int_{0}^{\infty} t f(t) d t=\int_{0}^{\infty} t \lambda e^{-\lambda t} d t=\left.\left(-t e^{-\lambda t}\right)\right|_{0} ^{\infty}-\int_{0}^{\infty}\left(-e^{-\lambda t}\right) d t=\left.\left(-\frac{e^{-\lambda t}}{\lambda}\right)\right|_{0} ^{\infty}=\frac{1}{\lambda} \\
\int_{0}^{m} f(t) d t=\frac{1}{2} \Rightarrow \int_{0}^{m} \lambda e^{-\lambda t} d t=\left.\frac{1}{2} \Rightarrow\left(-e^{-\lambda t}\right)\right|_{0} ^{m}=\frac{1}{2} \Rightarrow 1-e^{-\lambda m}=\frac{1}{2} \Rightarrow m=\frac{\ln 2}{\lambda}
\end{gathered}
$$

(d) $f(x)=c\left(1-x^{2}\right)$ for $-1<x<1$ and $f(x)=0$ otherwise. Does the answer depend on c ? Why?
We can do integration to find out that $E[X]=m=0$. We observe that $f(x)$ is symmetric about 0 and the domain of x is also symmetric about 0 , so we can conclude that the mean and the median must be at the symmetric point.
2. Chromosomal recombination is a process by which two chromosomes join together and exchange DNA. The point along the DNA at which the join occurs is randomly located. Suppose X is a RV denoting the location with $0 \leq X \leq 2$. In an experiment, $E[X]=1$ and $\operatorname{Var}[X]=\frac{1}{3}$. Are the findings consistent with the hypothesis that all locations along the chromosome are equally likely to contain the join point? Explain.

Hypothesis: $X \sim \operatorname{Uniform}(0,2) \Rightarrow E[X]=\frac{0+2}{2}=1 . \operatorname{Var}[X]=\frac{(2-0)^{2}}{12}=\frac{1}{3}$. Thus, the findings are consistent with the hypothesis.

Midterm 2 Review

1. Find a, b or c given the PDF , then find the CDF .
(a) $f(x)=c\left(1-x^{2}\right)$ for $-1<x<1$ and $f(x)=0$ otherwise.

$$
\int_{-1}^{1} c\left(1-x^{2}\right) d x=\left.1 \Rightarrow\left(c x-\frac{c x^{3}}{3}\right)\right|_{-1} ^{1}=1 \Rightarrow c=\frac{3}{4}
$$

(b) $f(x)=c / x^{2}$ for $x>10$ and $f(x)=0$ otherwise.

$$
\int_{10}^{\infty} \frac{c}{x^{2}} d x=\left.1 \Rightarrow\left(-\frac{c}{x}\right)\right|_{10} ^{\infty}=1 \Rightarrow c=10
$$

(c) $f(x)=a+b x^{2}$ for $0 \leq x \leq 1$ and $f(x)=0$ otherwise, given $E(X)=\frac{3}{5}$.

$$
\begin{aligned}
& \frac{3}{5}=E[X]=\int_{0}^{1} x f(x) d x=\int_{0}^{1} x\left(a+b x^{2}\right) d x=\left.\left(\frac{a x^{2}}{2}+\frac{b x^{4}}{4}\right)\right|_{0} ^{1}=\frac{a}{2}+\frac{b}{4} \\
& 1=\int_{0}^{1} f(x) d x=\left.\left(a x+\frac{b x^{3}}{3}\right)\right|_{0} ^{1}=a+\frac{b}{3} \\
& \Rightarrow \quad a=\frac{3}{5}, \quad b=\frac{6}{5}
\end{aligned}
$$

2. Suppose you take a random sample of 10 tickets without replacement from a box containing 20 red tickets and 30 blue tickets.
(a) What is the chance of getting exactly 4 red tickets?

$$
\begin{aligned}
& X \sim \text { Hypergeometric }(50,20,10) \\
& P(X=4)=\frac{C(20,4) * C(30,6)}{C(50,10)}
\end{aligned}
$$

(b) Repeat (a) for sampling with replacement.

$$
\begin{aligned}
& X \sim \text { Binomial }(10,0.4) \\
& P(X=4)=C(10,4) * 0.4^{4} * 0.6^{6}
\end{aligned}
$$

3. Suppose that we observed 10 frogs in a pond during the obsevation period of 100 days. Find the Poisson approximation to the probability of observing $X=k$ frogs each day. Using that approximation to calculate the probability that
(a) you observe precisely one frog today?

On average, each day we observe $\lambda=10 / 100=0.1$ frogs.
Approximating $X \sim \operatorname{Poisson}(\lambda)$ gives $P(X=k)=0.1^{k} * \frac{e^{-0.1}}{k!}$
Thus, $P(X=1)=0.1^{1} * \frac{e^{-0.1}}{1!}=0.1 * e^{-0.1}$
(b) you observe more than one frog today?
$P(X>1)=1-P(X=0)-P(X=1)=1-e^{-0.1}-0.1 e^{-0.1}$
(c) you observe no frogs today?

$$
P(X=0)=0.1^{0} * \frac{e^{-0.1}}{0!}=e^{-0.1}
$$

4. Suppose that a test for opium use has a 2% false positive rate and a 5% false negative rate. That is, 2% of people who do not use opium test positive for opium, and 5% of opium users test negative for opium. Furthermore, suppose that 1% of people actually use opium.

Let A: use opium, B: test positive. Given:
$P(B \mid \bar{A})=0.02, \quad P(\bar{B} \mid A)=0.05$
$P(A)=0.01$
(a) Find the probability that someone who tests negative for opium use does not use opium.

$$
\begin{aligned}
P(\bar{A} \mid \bar{B}) & =\frac{P(\bar{B} \mid \bar{A}) * P(\bar{A})}{P(\bar{B} \mid \bar{A}) * P(\bar{A})+P(\bar{B} \mid A) * P(A)}=\frac{1}{1+\frac{P(\bar{B} \mid A) * P(A)}{P(\bar{B} \mid \bar{A}) * P(\bar{A})}} \\
& =\frac{(1-0.02)(1-0.01)}{(1-0.02)(1-0.01)+0.05 * 0.01}=0.9995
\end{aligned}
$$

(b) Find the probability that someone who tests positive for opium use actually uses opium.

$$
\begin{aligned}
P(A \mid B) & =\frac{P(B \mid A) * P(A)}{P(B \mid A) * P(A)+P(B \mid \bar{A}) * P(\bar{A})}=\frac{1}{1+\frac{P(B \mid \bar{A}) * P(\bar{A})}{P(B \mid A) * P(A)}} \\
& =\frac{(1-0.05) 0.01}{(1-0.05) 0.01+0.02(1-0.01)}=0.3242
\end{aligned}
$$

Source: some from Stewart's Biocalculus, the others from internet.

