Mean, Mode, Variance, Standard Deviation

1. Find the mean and the variance of the random variables with the following PDFs.
(a) $f(t)=1$ for $0 \leq t \leq 1$ and $f(t)=0$ otherwise. solution

Mean:

$$
\int_{0}^{1} x \cdot 1 d x=\int_{0}^{1} x d x=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{2}
$$

Maybe you could have guessed this!

Variance:

$$
\int_{0}^{1} x^{2} \cdot 1 d x=\int_{0}^{1} x^{2} d x=\left.\frac{1}{3} x^{2}\right|_{0} ^{1}=\frac{1}{3}
$$

so our answer is $\frac{1}{3}-\left(\frac{1}{2}\right)^{2}=\frac{1}{12}$
(b) $f(x)=\frac{2}{x^{3}}$ for $1 \leq x \leq \infty$ and $f(x)=0$ otherwise. solution Mean:

$$
\int_{1}^{\infty} x \cdot \frac{2}{x^{3}} d x=\int_{1}^{\infty} \frac{2}{x^{2}} d x=-\left.\frac{2}{x}\right|_{1} ^{\infty}=2
$$

Variance:

$$
\int_{1}^{\infty} x^{2} \cdot \frac{2}{x^{3}} d x=\int_{1}^{\infty} \frac{2}{x} d x=\left.\ln (x)\right|_{1} ^{\infty}=\infty
$$

So in this case we have infinite variance!
(c) $f(t)=3 t^{2}$ for $0 \leq t \leq 1$ and $f(t)=0$ otherwise.

Mean:

$$
\int_{0}^{1} t \cdot 3 t^{2} d t=\int_{0}^{1} 3 t^{3} d t=\left.\frac{3}{4} t^{4}\right|_{0} ^{1}=\frac{3}{4}
$$

Variance:

$$
\int_{0}^{1} t^{2} \cdot 3 t^{2} d t=\int_{0}^{1} 3 t^{4} d t=\left.\frac{3}{5} t^{5}\right|_{0} ^{1}=\frac{3}{5}
$$

so our answer is $\frac{3}{5}-\frac{3^{2}}{4^{2}}=\frac{3}{80}$
(d) $f(x)=\frac{1}{2} e^{-|x|}$ for $x \in \mathbb{R}$.

Mean:
This is a symmetric function so the mean is 0 .
Variance

$$
\begin{aligned}
\int_{-\infty}^{\infty} x^{2} \cdot \frac{1}{2} e^{-|x|} d x & =\int_{0}^{\infty} x^{2} e^{-x} d x=-\left.x^{2} e^{-x}\right|_{0} ^{\infty}+2 \int_{0}^{\infty} x e^{-x} d x \\
& =-\left.2 x e^{-x}\right|_{0} ^{\infty}+2 \int_{0}^{\infty} e^{-x} d x=-\left.2 e^{-x}\right|_{0} ^{\infty}=2
\end{aligned}
$$

As the mean is 0 , the variance is 2 .
2. What is the mode of the random variable with PDF

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

solution

The mode is where the function reaches its maximum. The easiest way to see this is to graph it. This is a normal distribution, so the maximum is at the mean, μ.
3. What is the standard deviation of the random variable with PDF $2 e^{-2 t}$ for $0 \leq x \leq \infty$.. Mean:

$$
\begin{gathered}
\int_{0}^{\infty} t \cdot 2 e^{-2 t} d t=-\left.t e^{-2 t}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-2 t} d t=0--\left.\frac{1}{2} e^{-2 t}\right|_{0} ^{\infty}=\frac{1}{2} \\
\int_{0}^{\infty} t^{2} \cdot 2 e^{-2 t} d t=-\left.t^{2} e^{-2 t}\right|_{0} ^{\infty}+\int_{0}^{\infty} 2 t e^{-2 t} d t=\frac{1}{2}
\end{gathered}
$$

from above. So the variance is $\frac{1}{2}-\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$. Therefore standard deviation is $\sqrt{\frac{1}{4}}=\frac{1}{2}$
4. What is the standard deviation of the random variable with $\operatorname{PDF} \frac{1}{2} e^{-|x|}$?
solution This is the square root of variance, so $\sqrt{2}$

