Chebyshev

1. Take the Pareto distribution $\frac{4}{x^{5}}$ for $x \geq 1$. What is the probability $P(\mu-3 \sigma<X<\mu+3 \sigma)$? What is the bound Chebyshev gives us?

$$
\begin{gathered}
\mu=\int_{1}^{\infty} \frac{4}{x^{4}} d x=-\left.\frac{4}{3 x^{3}}\right|_{1} ^{\infty}=\frac{4}{3} \\
\int_{1}^{\infty} \frac{4}{x^{3}} d x=-\left.\frac{4}{2 x^{2}}\right|_{1} ^{\infty}=2
\end{gathered}
$$

so $\sigma^{2}=2 \frac{16}{9}=\frac{2}{9}$. Therefore $\sigma=\frac{\sqrt{2}}{3}$.
The integral we then take is

$$
\int_{1}^{\frac{4}{3}+\sqrt{2}} \frac{4}{x^{5}} d x=-\left.\frac{1}{x^{4}}\right|_{1} ^{\frac{4}{3}+\sqrt{2}} \approx 98.2 \%
$$

Chebyshev gives us that this is at least $1-\frac{1}{3^{2}} \approx 88.9 \%$
2. The RV X is a Laplace distribution with PDF $\frac{1}{2} e^{-|x|}$. What is $P(|X|>3)$? What bound does Chebyshev give us?
This is $\int_{3}^{\infty} e^{-x} d x=e^{-3} \approx 5 \% . \mu=0, \sigma=\sqrt{2}$, so Chebyshev gives us $P(|X|>3) \leq \frac{\sigma^{2}}{9} \approx 22 \%$
3. Bubbles the clown blows up 100 balloons an hour, with a variance of 16 balloons. What is a lower bound on the probability Bubbles blows between 94 and 106 balloons? $\mu=100, \sigma=4$.

Therefore this is $P(\mu-1.5 \sigma<X<\mu+1.5 \sigma) \geq 1-\frac{1}{2.25} \approx 56 \%$, by Chebyshev's inequality.
4. What distribution that we have studied best models the random variable X, where X is the number of emails Nicole receives in an hour, assuming that she receives an average of 4 ? What is a formula for the exact value $P(X>10)$? How can we estimate the probability $P(X>10)$? This is poisson. The exact formula will be

$$
1-\sum_{k=0}^{10} \frac{e^{-4} 4^{k}}{k!}
$$

An approximation can be made as follows.

$$
P(X>10)=P(X \geq 11)=P(X-\mu \geq 7)=P(|X-\mu| \geq 7) \leq \frac{1}{3.5^{2}}=.82 \%
$$

5. For the random variable X with $\operatorname{PDF} f(x)=c e^{-c x}$ for $x \geq 0$, what is $P(\mu-2 \sigma<X<\mu+2 \sigma)$? What bound does Chebyshev give us?

Here we have $\mu=\sigma=\frac{1}{c}$. Therefore this is

$$
\int_{0}^{\frac{3}{c}} c e^{-c x} d x=\left.e^{-c x}\right|_{0} ^{\frac{3}{c}}=1-e^{-3} \approx 95 \%
$$

Chebyshev gives us a lower bound of $1-\frac{1}{2^{2}}$, which is 75%.
6. Packer High School's high jump team jumps an average of 180 cm with a standard deviation of 8 cm . Assuming the distribution is normally distributed, what is the probability that someone on the team jumps to a height of at least 2 meters?

By converting to $\frac{X-\mu}{\sigma}$ we get $P(X \geq 200)=P\left(\frac{X-\mu}{\sigma} \geq 2.5\right)=.5-z(2.5)=.5-.4938=.6 \%$

