1. Maya shoots a basketball 100 times and makes 73 shots.
(a) Assuming shots are independent, find a 95% confidence interval for the probability p of her making a single shot.

A 95% confidence interval is given by

$$
\left(\hat{\mu}-2 \frac{\hat{\sigma}}{\sqrt{n}}, \hat{\mu}+2 \frac{\hat{\sigma}}{\sqrt{n}}\right)
$$

We estimate $\hat{\sigma}$ of the Bernoulli random variable as $\sqrt{.73(1-.73)} \approx .444$. Therefore as $n=100$ and $\hat{\mu}=.73$, the interval is $(.686, .774)$
(b) Estimate the variance of her making a shot using $\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)^{2}$

Every shot that she shoots is either a 1 or 0 . For the 73 shots she makes, $\left(x_{k}-\bar{x}\right)^{2}=$ $(1-.73)^{2}=.0729$. For the 27 misses, the value is $(.73)^{2}=.5329$. Therefore

$$
s^{2}=\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)^{2}=\frac{1}{n-1}(73 \cdot .0729+27 \cdot .5329) \approx .199
$$

2. Packer High School's track and field team averages 16 meters on their shot put throws, with a standard deviation of 1.7 meters. Assuming throws are normally distributed, what is the probability that an athlete throws less than 14 meters?

Converting X to a standard normal, we see

$$
P(X<14)=P\left(\frac{X-16}{1.7}<-1.18\right)=.5-z(1.18)=11.9 \%
$$

3. People visit Grimaldi's Pizzaria. Hour by hour, the number of people who visit is $11,5,3,5,4,8,5,4,2,9$.
(a) Find a 95% confidence interval for λ, the average number of people who visit in an hour. In this case λ is the average, which is 5.6. Therefore $\hat{\sigma}=\sqrt{5.6} \approx 2.37$. This makes our
interval

$$
\left(\hat{\mu}-2 \frac{\hat{\sigma}}{\sqrt{n}}, \hat{\mu}+2 \frac{\hat{\sigma}}{\sqrt{n}}\right)=(4.10,7.10)
$$

(b) Estimate the variance using $\frac{1}{n-1} \sum_{k=1}^{n}\left(x_{k}-\bar{x}\right)^{2} s^{2}=8.044$
4. An art auction house in Amsterdam's average sale is 3.2 million euros with a standard deviation of 800,000 euros. Assuming sales are normally distributed, what is the probability that a piece of art is sold for more than 5 million euros?
$P(X>5)=P\left(\frac{X-3.2}{.8}>2.25\right) \approx .5-.4878=1.2 \%$
5. The age of onset of multiple sclerosis is well described by a normal random variable with unknown mean and with standard deviation 7.6 years. The age of onset is measured for 32 individuals. Find the probability that the sample mean falls within 2 years of the true population mean.

The sample mean is a normal random variable with mean μ and standard deviation $7.6 / \sqrt{32} \approx$ 1.34. Therefore this probability is

$$
\int_{\mu-2}^{\mu+2} \frac{1}{1.34 \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2(1.34)^{2}}}
$$

by substituting $u=\frac{x-\mu}{1.34}$ we get

$$
\frac{1}{\sqrt{2 \pi}} \int_{-2 / 1.34}^{2 / 1.34} e^{-u^{2} / 2} d u=2 z(1.49) \approx .864
$$

